Higher Order Corrections to Diboson Production and anomalous Triple Gauge Couplings

Robin Roth | 01.09.2016
in collaboration with Francisco Campanario, Sebastian Sapeta, Dieter Zeppenfeld
Motivation

Goal
- test the Standard Model (SM) at the LHC with the highest possible precision
- look for deviations from the SM in a model independent way

Methods
- more precise SM prediction, reduced theory error ⇒ \bar{nNLO}
- parametrize beyond-SM effects ⇒ Anomalous Couplings (AC) / EFT
- improve analyses ⇒ better cuts and observables, dynamical jet veto

Tools
- VBFNLO: diboson production at NLO QCD with AC
- LoopSim: \bar{nNLO} based on VBFNLO input
LHC Cross Sections

Standard Model Production Cross Section Measurements

ATLAS Preliminary
Run 1,2 $\sqrt{s} = 7, 8, 13$ TeV

Theory
Data $4.5 - 4.9$ fb$^{-1}$
Data 20.3 fb$^{-1}$
Data $0.08 - 14.8$ fb$^{-1}$

Robin Roth – Higher Order Corrections to Diboson Production and anomalous Triple Gauge Couplings
01.09.2016 3/15
Diboson production at the LHC

Why Diboson
- leptonic decays: “easy” to tag, precise knowledge of final state
- access to triple gauge couplings, deviations in EW sector

Observables
- new resonances
- enhanced production at high energy ⇒ AC
- m_T, p_{TV}, p_{TI}
- decay angles, spin information
Corrections to diboson production

- NLO QCD first reliable prediction and scale variation uncertainty
 LO only depends on factorization scale

- NNLO QCD needed for **precision measurements**
 first order to include **all partonic channels**
 now available for all diboson processes [Grazzini, Kallweit et al.; Ellis et al.;]
 corrections to gg initial state large [Caola, Melnikov, et al.]
 coming soon: more differential results, public codes

- NLO EW sizeable in tails of distributions
 work ongoing towards automation and combination with QCD corrections
 [Baglio et al.; Bierweiler, Kühn et al.; Biedermann et al.; Denner, Dittmaier et al.]

- matching to parton shower:
 established schemes for NLO QCD
 first results for DY NNLO QCQ + PS [Hoeche, Li, Prestel; Karlberg, Re, Zanderighi]
Recent results

EW corrections to WW production
[Biedermann, Billoni, Denner, Dittmaier, Hofer, Jäger, Salfelder, 1605.03419]

NNLO QCD corrections to $V\gamma$ production
[Grazzini, Kallweit, Rathlev, 1601.06751]
Anomalous Couplings

SM as Effective Field Theory
- only use SM fields and preserve symmetries
- add higher-dimensional terms to Lagrangian $\mathcal{L} = \mathcal{L}_{\text{SM}} + \sum_i \frac{f_i}{\Lambda^2} \mathcal{O}_i$

Building Blocks
- Higgs field Φ
- (covariant) derivative ∂^μ, D^μ
- fermion fields ψ
- field strength tensors $G^{\mu\nu}, W^{\mu\nu}, B^{\mu\nu}$

Contributions to WWZ vertex
At dimension 6 only 3 linear independent operators:

$\mathcal{O}_W = (D_\mu \Phi)\dagger \hat{W}^{\mu\nu} (D_\nu \Phi)$, $\mathcal{O}_{WWW} = \text{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\nu\rho} \hat{W}_\rho^\mu \right]$, $\mathcal{O}_B = (D_\mu \Phi)\dagger \hat{B}^{\mu\nu} (D_\nu \Phi)$

Limited Validity of EFT
- low-energy expansion of unknown higher-energy model
- only valid if expansion parameter small
- validity depends on phase space region/kinematics
Anomalous Couplings

Example operator: \(\mathcal{O}_W = (D_\mu \Phi) \dagger \hat{W}^{\mu\nu} (D_\nu \Phi) \), \(\mathcal{L} = \mathcal{L}_{SM} + \frac{f_W}{\Lambda^2} \mathcal{O}_W + \ldots \)

WWH vertex: \(\frac{i g m_W g^{\mu\nu}}{2 \Lambda^2} \mathcal{O}_W \)

WH production \(\Lambda = 1 \text{ TeV} \)
Anomalous Couplings

Example operator: \(\mathcal{O}_W = (D_\mu \Phi) \dagger \hat{W}^{\mu \nu} (D_\nu \Phi) \), \(\mathcal{L} = \mathcal{L}_{SM} + \frac{f_W}{\Lambda^2} \mathcal{O}_W + \ldots \)

WWH vertex:
\[
\text{SM} \quad \frac{i g m_W g^{\mu \nu}_{SM}}{2 \Lambda^2} g m_W \left(-g^{\mu \nu} (p_h \cdot p_- + p_h \cdot p_+) + p_h^\nu p^\mu_- + p_h^\mu p^\nu_+ \right)
\]

WH production
\(\Lambda = 1 \text{ TeV} \)
Idea

- “Giant QCD K-factors beyond NLO” [Rubin, Salam, Sapeta, 1006.2144]
- merge different multiplicity final states \(X@NLO + Xj@NLO = X@\bar{n}NLO\)
- parton level
- use NLO events, interface to existing Monte Carlos programs

Properties

- preserve NLO total cross section
- exact tree-level and one-loop
- only singular two-loop contributions
- include dominant contributions from extra emissions, \(\mathcal{O}(\alpha_s \ln^2 p_T^{\text{jet}}/m_Z)\)
- nearly NNLO in high-\(p_T\) tails
LoopSim

Idea

- “Giant QCD K-factors beyond NLO” [Rubin, Salam, Sapeta, 1006.2144]
- merge different multiplicity final states $X@NLO + Xj@NLO = X@\bar{n}NLO$
- parton level
- use NLO events, interface to existing Monte Carlos programs

Properties

- preserve NLO total cross section
- exact tree-level and one-loop
- only singular two-loop contributions
- include dominant contributions from extra emissions, $O(\alpha_s \ln^2 p_{T\text{jet}}/m_Z)$
- nearly NNLO in high-p_T tails

Beyond NLO: LoopSim
Robin Roth – Higher Order Corrections to Diboson Production and anomalous Triple Gauge Couplings 01.09.2016 9/15
LoopSim

Idea

- “Giant QCD K-factors beyond NLO”
 [Rubin, Salam, Sapeta, 1006.2144]
- merge different multiplicity final states
 \(X@\text{NLO} + Xj@\text{NLO} = X@\bar{n}\text{NLO} \)
- parton level
- use NLO events, interface to existing
 Monte Carlos programs

Properties

- preserve NLO total cross section
- exact tree-level and one-loop
- only singular two-loop contributions
- include dominant contributions from
 extra emissions, \(\mathcal{O} (\alpha_s \ln^2 p_{T \text{jet}} / m_Z) \)
- nearly NNLO in high-\(p_T \) tails

\[X@\text{NLO} \]
LoopSim

Idea

- “Giant QCD K-factors beyond NLO” [Rubin, Salam, Sapeta, 1006.2144]
- merge different multiplicity final states \(X@NLO + Xj@NLO = X@\bar{nNLO} \)
- parton level
- use NLO events, interface to existing Monte Carlos programs

Properties

- preserve NLO total cross section
- exact tree-level and one-loop
- only singular two-loop contributions
- include dominant contributions from extra emissions, \(\mathcal{O}(\alpha_s \ln^2 p_{Tjet}/m_Z) \)
- nearly NNLO in high-\(p_T \) tails
LoopSim

Idea

- "Giant QCD K-factors beyond NLO"
 [Rubin, Salam, Sapeta, 1006.2144]
- merge different multiplicity final states
 \(X@NLO + Xj@NLO = X@\bar{n}NLO\)
- parton level
- use NLO events, interface to existing Monte Carlos programs

Properties

- preserve NLO total cross section
- exact tree-level and one-loop
- only singular two-loop contributions
- include dominant contributions from extra emissions,
 \(\mathcal{O}(\alpha_s \ln^2 p_{Tjet}/m_Z)\)
- nearly NNLO in high-\(p_T\) tails
Idea

- “Giant QCD K-factors beyond NLO”
 [Rubin, Salam, Sapeta, 1006.2144]
- merge different multiplicity final states $X@\text{NLO} + Xj@\text{NLO} = X@\bar{n}\text{NLO}$
- parton level
- use NLO events, interface to existing Monte Carlos programs

Properties

- preserve NLO total cross section
- exact tree-level and one-loop
- only singular two-loop contributions
- include dominant contributions from extra emissions, $O(\alpha_s \ln^2 p_{T\text{jet}} / m_Z)$
- nearly NNLO in high-p_T tails
LoopSim

Idea

- “Giant QCD K-factors beyond NLO”
 [Rubin, Salam, Sapeta, 1006.2144]
- merge different multiplicity final states
 \(X@NLO + Xj@NLO = X@\bar{n}NLO \)
- parton level
- use NLO events, interface to existing Monte Carlos programs

Properties

- preserve NLO total cross section
- exact tree-level and one-loop
- only singular two-loop contributions
- include dominant contributions from extra emissions, \(\mathcal{O}(\alpha_s \ln^2 p_{T\text{jet}}/m_Z) \)
- nearly NNLO in high-\(p_T \) tails
\bar{n}NLO for WZ production

$e^+\nu_e\mu^+\mu^- + X$, LHC@13 TeV, inclusive cuts

$\frac{d\sigma}{dp_{T_{l,\text{max}}}/\text{fb}/\text{GeV}}$

$\sigma/\text{SM NLO}$

$R_{LS} = \{0.5, 1.5\}$

$\mu = 2^{\pm 1}\mu_0$ (NLO)

$\mu = 2^{\pm 1}\mu_0$ (nNLO)

WZ production with a dynamical jet veto

Robin Roth – Higher Order Corrections to Diboson Production and anomalous Triple Gauge Couplings
AC for diboson production

\[\frac{d\sigma}{dp_{T_{l,\text{max}}}} / \text{fb}/\text{GeV} \]

\[\mu = 2^{\pm 1}\mu_0 \text{ (NLO)} \]

FW = -5
FW = -3
FW = +10
SM (NLO)

\[\frac{\sigma}{\sigma_{\text{SM NLO}}} \]

\[p_{T_{l,\text{max}} / \text{GeV}} \]

WZ production with a dynamical jet veto

Robin Roth – Higher Order Corrections to Diboson Production and anomalous Triple Gauge Couplings

01.09.2016 11/15
AC for diboson production

\[\frac{d\sigma}{dp_{T\ell,\text{max}}} / \text{fb/GeV} \]

\[\mu = 2^{\pm 1}\mu_0 \text{ (NLO)} \]

\[\mu = 2^{\pm 1}\mu_0 \text{ (nNLO)} \]

\[R_{LS} = \{ 0.5, 1.5 \} \]

FW = -5

FW = -3

FW = +10

SM (NLO)

SM (nNLO)

WZ production with a dynamical jet veto
AC for diboson production

\[\frac{d\sigma}{d\frac{p_{T_{1,\text{max}}}}{\text{GeV}}} \]

\[\mu = 2^{\pm} \mu_0 \text{ (NLO)} \]
\[\mu = 2^{\pm} \mu_0 \text{ (nNLO)} \]
\[R_{LS} = \{0.5, 1.5\} \]
\[\text{FW} = +10 \]
\[\text{FW} = -5 \]
\[\text{FW} = -3 \]
\[\text{SM (NLO)} \]
\[\text{SM (nNLO)} \]

\[\frac{\sigma}{\text{SM NLO}} \]

WZ production with a dynamical jet veto
Robin Roth – Higher Order Corrections to Diboson Production and anomalous Triple Gauge Couplings
Jet vetos

want $V V + \text{jets}$, not $V j + V$

Traditional (fixed) jet veto

- don’t allow any jets above a fixed p_T threshold
- introduces large logs $\log \frac{p_{T\text{veto}}}{m_{VV}}$
- cuts away relevant phase space: $m_{VV} \approx 1 \, \text{TeV} \iff p_{T\text{jet}} = 50/300 \, \text{GeV}$

Dynamical veto

[Campanario, RR, Zeppenfeld, 1410.4840]

- veto scaled depending on overall scale \Rightarrow smaller logs
- allow more QCD radiation in tails of EW distributions

$$x_{\text{jet}} = \frac{\sum_{\text{jets}} E_{T,i}}{\sum_{\text{jets}} E_{T,i} + E_{T,W} + E_{T,Z}}$$

$$E_T = E \frac{|\vec{p}_T|}{|\vec{p}|}$$
Observable $x_{jet} = \frac{\sum_{jets} E_{T,i}}{\sum_{jets} E_{T,i} + E_{T,W} + E_{T,Z}}$
Dynamical veto to improve AC sensitivity

\[\frac{d\sigma}{dp_{T_{l,\text{max}}}} / \text{fb/GeV} \]

\[R_{LS} = \{0.5, 1.5\} \]

\[\mu = 2^{\pm 1}_{\mu_0} \text{ (nNLO)} \]

\[\mu = 2^{\pm 1}_{\mu_0} \text{ (NLO)} \]

\[\text{SM (NLO)} \]

\[\text{SM (nNLO)} \]

\[\text{FW} = 5 \]

\[\text{FW} = 3 \]

\[\text{FW} = 10 \]

\[\sigma / \text{SM NLO} \]

\[p_{T_{l,\text{max}}} / \text{GeV} \]

inclusive
Dynamical veto to improve AC sensitivity

\[\frac{d\sigma}{dp_{T_{l,\text{max}}}} / \text{fb/GeV} \]

\[R_{LS} = \{0.5, 1.5\} \]

\[\mu = 2^{\pm 1}\mu_0 \text{ (nNLO)} \]

\[\mu = 2^{\pm 1}\mu_0 \text{ (NLO)} \]

SM (NLO)

SM (nNLO)

FW = -5

FW = -3

FW = +10

\[\sigma / \text{SM NLO} \]

\[p_{T_{l,\text{max}}} / \text{GeV} \]

inclusive

\[x_{\text{jet}} < 0.2 \]

WZ production with a dynamical jet veto

Robin Roth – Higher Order Corrections to Diboson Production and anomalous Triple Gauge Couplings

01.09.2016 14/15
Conclusion

Beyond NLO: Loopsim

- Method to combine multiplicities consistently at parton level
 \(X@NLO + Xj@NLO = X@\tilde{nNLO} \)
- Captures log enhanced terms of real emission
- Nearly NNLO in high-\(p_T \) region

Anomalous couplings

- Diboson production interesting channel to study triple gauge couplings
- Validity depends on coupling and phase space region
- Increase sensitive \(\Rightarrow \) dynamical jet veto

\[
 x_{\text{jet}} = \frac{\sum_{\text{jets}} E_T,i}{\sum_{\text{jets}} E_T,i + E_T,W + E_T,Z}
\]

VBFNLO: https://www.itp.kit.edu/vbfnlo [0811.4559, 1107.4038, 1404.3940]
VBFNLO [0811.4559, 1107.4038, 1404.3940]

- Monte Carlo program for hadron collider cross sections at NLO QCD
- focus on processes with EW bosons: VBF, VV, VVV (+jets)
- includes leptonic decay of vector bosons with full off-shell effects
- anomalous triple/quartic gauge couplings
- efficient by reusing electroweak part of diagrams in terms of leptonic tensors
- BLHA interface to event generators: NLO event output
Validity of EFT approach

EFT assumptions
- all NP scales well above observables, no resonances at measurable scales
- f/Λ^2 “small”, depends on coupling: $O(1)$ or $O(\alpha_{\text{QED}})$

Power counting in Λ

\[M = M_{\text{SM}} + \underbrace{M_{\text{AC}}^{d=6}}_{1/\Lambda^2} + \underbrace{M_{\text{AC}}^{d=8}}_{1/\Lambda^4} \]

\[|M|^2 = |M_{\text{SM}}|^2 + 2\text{Re}M_{\text{SM}}^* M_{\text{AC}}^{d=6} + \underbrace{|M_{\text{AC}}^{d=6}|^2}_{1/\Lambda^4} + 2\text{Re}M_{\text{SM}}^* M_{\text{AC}}^{d=8} + \underbrace{|M_{\text{AC}}^{d=8}|^2}_{1/\Lambda^8} \]

- power-counting Λ^{-4}: $|M_{\text{AC}}^{d=6}|^2$, $M_{\text{SM}}^* M_{\text{AC}}^{d=8}$?
- conservative: experimental fit only in range where $|M_{\text{AC}}|^2 \ll M_{\text{SM}}^* M_{\text{SM}}$
- but: M_{SM} accidentally small (phase space, weak coupling compared to M_{AC})
 \[\Rightarrow M_{\text{SM}}^* M_{\text{AC}} \text{ suppressed, } |M_{\text{AC}}^{d=6}|^2 \text{ leading } 1/\Lambda^4 \text{ term} \]
ATLAS Preliminary

\(\sqrt{s} = 8 \text{ TeV}, \int \text{L dt} = 13 \text{ fb}^{-1} \)
Event Selection

Cuts

- $p_T^j > 30$ GeV
- $p_T^l > 15$ GeV
- $p_T > 30$ GeV
- $|\eta_j| < 4.5$
- $|\eta_l| < 2.5$
- $R_{l,j} > 0.4$
- 60 GeV $< m_{ll} < 120$ GeV
- boosted: $p_T^Z > 200$ GeV

Input values

- EW constants: VBFNLO default
- PDF: NNPDF23
Different x_{jet} cuts

\[\frac{d\sigma}{dp_{T,\text{max}}}/\text{fb/GeV} \]

\[\mu = 2^{\pm1}\mu_0 \text{ (NLO)} \]
\[\mu = 2^{\pm1}\mu_0 \text{ (nNLO)} \]
\[R_{\text{LS}} = \{0.5, 1.5\} \]
\[\text{FW} = +10 \]
\[\text{FW} = -5 \]
\[\text{FW} = -3 \]
\[\text{SM (NLO)} \]
\[\text{SM (nNLO)} \]
Different x_{jet} cuts

$d\sigma / dp_{T_{l,\text{max}}} / \text{fb}/\text{GeV}$

$\mu = 2^{\pm 1}\mu_0$ (NLO)
$\mu = 2^{\pm 1}\mu_0$ (nNLO)
$R_{LS} = \{0.5, 1.5\}$
FW = +10
FW = -5
FW = -3
SM (NLO)
SM (nNLO)

$\sigma / \text{SM NLO}$

$50 \quad 100 \quad 150 \quad 200 \quad 250 \quad 300$

$p_{T_{l,\text{max}}} / \text{GeV}$

$1.0 \quad 1.5 \quad 2.0 \quad 2.5 \quad 3.0$

$\sigma / \text{SM NLO}$

$50 \quad 100 \quad 150 \quad 200 \quad 250 \quad 300$

$p_{T_{l,\text{max}}} / \text{GeV}, x_{\text{jet}} < 0.4$
Observable: x_{jet}, x_Z

Motivation

- 3 particle final state (WZj)
- the transverse momenta can be parametrized using only two variables
 6 d.o.f. ($p_T^W, p_T^Z, p_T^{\text{jet}}$) - 2 (total $p_T = 0$) - 1 (no ϕ dependence) - 1 (rescaling at high p_T)
- dalitz-like construction

\[
\begin{align*}
 x_{\text{jet}} &= \frac{\sum_{\text{jets}} E_T, i}{\sum_{\text{jets}} E_T, i + E_T, W + E_T, Z}, \\
 x_V &= \frac{E_{TV}}{\sum_{\text{jets}} E_T, i + E_T, W + E_T, Z}, \\
 x_{\text{jet}} + x_W + x_Z &= 1 \\
 x_i &\leq 0.5 \quad \text{(at LO only)}
\end{align*}
\]

other choices: p_T instead of E_T, partons instead of jets, ...
Careful not to be (too) infrared-sensitive
Observable: x_{jet}, x_Z
PS effects on χ_{jet}

$$\frac{d^2\sigma}{dx_{\text{jet}}^p x_H^p} \ [\text{fb}]$$
PS effects on x_{jet}
The LoopSim Method – “Looping”

- cluster by distance to get emission sequence (C/A algorithm)
- captures soft/collinear divergences
- subtract divergences by generating looped diagrams with negative weight
- Catani-Seymour like generation of looped kinematics
- Clustering radius R_{LS} gives estimate of dependence on merging
- Scale dependence preserved for additional emissions, overestimates the NNLO scale dependence
Previous LoopSim results

\[\text{Campanario, Rauch, Sapeta, 1309.7293} \]
Anomalous Couplings

WHj with inclusive cuts and several values of f_W/Λ^2 in TeV$^{-2}$ and no form factor.
Anomalous Couplings
with form factor \(\left(\frac{\Lambda^2}{\Lambda^2+m_{\text{WH}}^2} \right)^2 \), \(\Lambda = 2 \text{ TeV} \)
Current state of diboson production at the LHC

Dec. 2015

CMS measurements vs. NLO (NNLO) theory

<table>
<thead>
<tr>
<th>System</th>
<th>Theory</th>
<th>Experiment</th>
<th>7 TeV CMS measurement (stat,stat+sys)</th>
<th>8 TeV CMS measurement (stat,stat+sys)</th>
<th>13 TeV CMS measurement (stat,stat+sys)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\gamma\gamma$, (NNLO th.)</td>
<td>$0.12^{+0.01}_{-0.01} \pm 0.06$</td>
<td>$1.06 \pm 0.01 \pm 0.12$</td>
<td>5.0 fb^{-1}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$W\gamma$</td>
<td>$0.13^{+0.03}_{-0.03} \pm 0.16$</td>
<td>$1.16 \pm 0.03 \pm 0.13$</td>
<td>5.0 fb^{-1}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$Z\gamma$</td>
<td>$0.05^{+0.01}_{-0.01} \pm 0.98$</td>
<td>$0.98 \pm 0.01 \pm 0.05$</td>
<td>5.0 fb^{-1}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$Z\gamma$</td>
<td>$0.05^{+0.01}_{-0.01} \pm 0.98$</td>
<td>$0.98 \pm 0.01 \pm 0.05$</td>
<td>19.5 fb^{-1}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$WW+WZ$</td>
<td>$0.08^{+0.02}_{-0.02} \pm 1.01$</td>
<td>$1.05 \pm 0.13 \pm 0.15$</td>
<td>4.9 fb^{-1}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WW</td>
<td>$0.10^{+0.04}_{-0.04} \pm 1.11$</td>
<td>$1.11 \pm 0.04 \pm 0.10$</td>
<td>4.9 fb^{-1}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WW, (NNLO th.)</td>
<td>$0.07^{+0.07}_{-0.03} \pm 1.14$</td>
<td>$1.01 \pm 0.02 \pm 0.08$</td>
<td>19.4 fb^{-1}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WZ</td>
<td>$0.07^{+0.11}_{-0.07} \pm 1.17$</td>
<td>$1.17 \pm 0.07 \pm 0.07$</td>
<td>4.9 fb^{-1}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WZ</td>
<td>$0.07^{+0.11}_{-0.07} \pm 1.17$</td>
<td>$1.12 \pm 0.07 \pm 0.07$</td>
<td>19.6 fb^{-1}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WZ</td>
<td>$0.07^{+0.11}_{-0.07} \pm 1.17$</td>
<td>$0.86 \pm 0.11 \pm 0.17$</td>
<td>1.34 fb^{-1}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZZ</td>
<td>$0.08^{+0.14}_{-0.07} \pm 0.99$</td>
<td>$0.99 \pm 0.14 \pm 0.07$</td>
<td>4.9 fb^{-1}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZZ</td>
<td>$0.08^{+0.14}_{-0.07} \pm 0.99$</td>
<td>$1.00 \pm 0.06 \pm 0.08$</td>
<td>19.6 fb^{-1}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZZ</td>
<td>$0.08^{+0.14}_{-0.07} \pm 0.99$</td>
<td>$1.00 \pm 0.16 \pm 0.06$</td>
<td>1.34 fb^{-1}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All results at: http://cern.ch/go/pNj7

Production Cross Section Ratio: $\sigma_{\text{exp}} / \sigma_{\text{theo}}$

Backup

Robin Roth – Higher Order Corrections to Diboson Production and anomalous Triple Gauge Couplings 01.09.2016 14/14