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1. Motivation 

Higgs Physics 

* CMS and ATLAS Collaborations. 

Strongly Coupled  
Scenarios 

i) The Standard Model (SM) provides an extremely succesful description of the electroweak 
and strong interactions. 
 

ii) A key feature is the particular mechanism adopted to 
break the electroweak gauge symmetry to the electroweak 
subgroup, SU(2)L x U(1)Y è U(1)QED, so that the W and Z 
bosons become massive. The LHC discovered a new 
particle around 125 GeV*. 

iii) What if this new particle is not a standard Higgs 
boson? Or a scalar resonance? We should look for 
alternative mechanisms of mass generation. 

iv) Strongly-coupled models: usually they do contain 
resonances.  

Resonance Theory 
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Resonance Lagrangians can be used to 
estimate the Low Energy Couplings (LECs) of 

the Electroweak Effective Theory (EWET) 
Estimation of the LECs 

Short-distance contraints are 
fundamental in order to reduce the 
number of resonance parameters. 

Short-distance 
constraints 

What values for resonance masses are 
required from phenomenology? 

Phenomenology 

What do we want to do? 
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Similarities to Chiral Symmetry Breaking in QCD 

i) Custodial symmetry: The Lagrangian is approximately invariant under global SU(2)L x SU(2)R 
transformations. Electroweak Symmetry Breaking (EWSB) turns to be SU(2)LxSU(2)RèSU(2)L+R. 

ii) Similar to the Chiral Symmetry Breaking (ChSB) occuring in QCD. So the same pion 
Lagrangian describes the Goldstone boson dynamics associated with the EWSB, being replaced 
fπ by v=1/√(2GF)=246 GeV. Similar to Chiral Perturbation Theory (ChPT)*⌃. 
 

iii) We can introduce the resonance fields needed in strongly-coupled models in a similar way as 
in ChPT: Resonance Chiral Theory (RChT)**.  

As in QCD, the assumed high-energy 
constraints are fundamental. 

* Weinberg ’79 
* Gasser and Leutwyler ‘84 ‘85 
* Bijnens et al. ‘99 ‘00 

**Ecker et al. ’89 
** Cirigliano et al. ’06 

ü  Note the implications of a naïve 
rescaling from QCD to EW: 

f� = 0.090 GeV �⇥ v = 0.246 TeV
M⇥ = 0.770 GeV �⇥ MV = 2.1 TeV

Ma1 = 1.260 GeV �⇥ MA = 3.4 TeV

⌃Dobado, Espriu and Herrero ’91 
⌃Espriu and Herrero ’92 
⌃Herrero and Ruiz-Morales ’94 

     

The determination of the Electroweak 
LECs is similar to the ChPT case**. 
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Looking at the phenomenology* 
ü  Oblique electroweak observables** (S and T) 

ü  Dispersive relations for both S** and T* 

ü  Short-distance constraints: two-Goldstone VFF, Higgs-Goldstone VFF, Weinberg Sum Rules  
 

* Pich, IR and Sanz-Cillero '12 ‘13 ’14 
** Peskin and Takeuchi ’92      6/17 Integrating out resonances in strongly-coupled electroweak scenarios, I. Rosell  

NLO: 1st and 2nd WSRs 
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2. Building the Lagrangian 
ü  Two strongly coupled Lagrangians  for two energy regions: 

ü  Electroweak Effective Theory (EWET) at low energies (without resonances). 
ü  Resonance Theory at high energies* (with resonances). 

ü  The aim of this work: 

 Estimation of the Low-Energy Couplings (LECs) in terms of resonance parameters  

ü  Steps: 

1.  Building the EWET and resonance Lagrangian 
2.  Matching the two effective theories 

 
ü  High-energy constraints 

1.  From QCD we know the importance of sum-rules and form factos at large energies. 
2.  Operators with a large number of derivatives tend to violate the asymptotic  behaviour. 
3.  The constraints are required to reduce the number of unknown resonance parameters. 
4.  The underlying theory is less known than in the case of QCD. 

ü  This program works pretty well in QCD: estimation of the LECs (Chiral Perturbation Theory) by 
using Resonance Chiral Theory** and importance of short-distance constraints***. 

* Pich, IR, Santos and Sanz-Cillero ’16 [and in progress] 
** Cirigliano et al. ’06 
*** Ecker et al. ‘89 
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ü  Custodial symmetry 

ü  Degrees of freedom: 

ü  At low energies: bosons χ (EW goldstones, gauge bosons, h), fermions ψ 
ü  At high energies: previous dof + resonances (V,A,S,P triplets and singlets) 

ü  Chiral power counting*  

ü  So 

ü  At low energies: 

ü  At high energies: 

 

How do we build the Lagrangian? 

LR = cR R Op2 [�, ] + . . .

* Weinberg ’79 
* Appelquist and Bernand ‘80 
* Longhitano ‘80, ‘81 
* Manohar, and Georgi ’84 
* Gasser and Leutwyler ‘84 ’85 
* Hirn and Stern ’05 

* Alonso et al. ‘12 
* Buchalla, Catá and Krause ’13 
* Brivio et al. ‘13 
* Delgado et al. ’14 
* Pich, IR, Santos and Sanz-Cillero ‘16 [and in progress] 
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�
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2.1. Low energies (no resonances)* 

     

* Longhitano ‘80 ’81 
* Buchalla and Catà ‘12 ‘14 
* Alonso et al. ’13 
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* Guo, Ruiz-Femenia and Sanz-Cillero ’15 
* Pich, IR, Santos and Sanz-Cillero ‘16 [and in progress] 
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2.2. High energies (with resonances)* 
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i) Spin-0 (S,S1,P,P1) 

LR =
1
2
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R R2 > + < R �R > (R = S, P ) ,
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1
2

�
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* Pich, IR, Santos and Sanz-Cillero ‘16 [and in progress]  
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ii) Spin-1 (V,V1,A,A1) with Proca formalism* 
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= �1
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* Pich, IR, Santos and Sanz-Cillero ‘16 [and in progress]  

R̂µ⌫ = rµR̂⌫ �r⌫R̂µ



     
* Pich, IR, Santos and Sanz-Cillero ‘16 [and in progress]  
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iii) Spin-1 (V,V1,A,A1) with antisymmetric formalism* 
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Proca vs. antisymmetric formalism* 

ü  By using path integral and changes of variables both formalisms are proven to be equivalent: 

ü  The following set of relations between resonance parameters emerges: 

ü  The couplings of the non-resonant operators are different: 
 
 

FR = fR̂ MR , GR = gR̂ MR , �hR
1 = �hR̂

1 MR , CR
0 = cR̂

0 MR ,

eFR = efR̂MR , eGR = egR̂MR , e�hR
1 = e�hR̂

1 MR , eCR
0 = ecR̂

0 MR ,

CR
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T /MR , eCR
T = ecR̂

T /MR , CR
1 = cR̂

1 /MR , eCR
1 = ecR̂

1 /MR .
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non�R

6= L(A)

non�R

 
ü  By using high-energy behaviour: 
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2

* Ecker et al. ’89 
* Bijnens and Pallante '96 
* Kampf, Novotny and Trnka '07 
* Pich, IR, Santos and Sanz-Cillero ‘16 [and in progress]  
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ü  By using high-energy behaviour: 

ü  LECs with resonance contributions coming from   do not contain local contributions,                   
     so then the antisymmetric formalism is the best choice. 

ü  LECs with resonance contributions coming from   do not contain local contributions,                   
     so then  Proca is the best choice. 



     

3. Estimation of the LECs 

* Ecker et al. ‘89 
** Pich, IR, Santos and Sanz-Cillero ‘16 [and in progress] 

14/17 

eiSeff [�, ] =

Z
[dR] eiS[�, ,R]

ü  Integration of the heavy modes 

ü  Similar to the ChPT case* 

ü  Results** 
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eiSeff [�, ] =

Z
[dR] eiS[�, ,R]

ü  Integration of the heavy modes 

ü  Similar to the ChPT case* 

ü  Results** 

ü  Purely bosonic operators 

  

ü  Two-fermion operators 

ü  Four-fermion operators 
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4. Short-distance constraints and the purely bosonic sector* 

* Pich, IR, Santos and Sanz-Cillero ’16 

15/17 

ü  Only P-even bosonic operators 

ü  Short-distance constraints coming from two-Goldstone and Higgs-Goldstone vector form 
factors and Weinberg Sum Rules.  

ü  Results in terms of a few resonance parameters: 
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5. Conclusions 

3. Where? 

What if this new particle 
around 125 GeV is not a 

SM Higgs bosson? 
2. Why? 

1. What? Electroweak Strongly Coupled Models 

Effective  
approach 

a)   EWSB: SU(2)L x SU(2)R è SU(2)L+R: similar to ChSB in QCD: ChPT. 

b)   Strongly-coupled models: similar to resonances in QCD: RChT. 

c)   Chiral power counting and short-distance constraints. 

ü  We should look for alternative ways of mass generation: 
strongly-coupled models. 

ü  They can be used to determine the LECs 
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Estimation of the LECs 
 
1.  Building the low-energy and high-energy Lagrangian 
2.  Equivalence between Proca and antisymmetric formalism 
3.  Integrating out the resonances 
4.  Estimation of the LECs 
5.  Short-distance constraints 
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Backup slides: calculation of S and T 

Let us consider a low-energy effective theory containing the SM gauge bosons coupled 
to the electroweak Goldstones, one light-scalar state h (the Higgs) and the lightest vector 
and axial-vector resonances: 

Seven resonance parameters: κW, FV, 
GV, FA, λ1

hA, MV and MA. 
The high-energy constraints 
are fundamental. 

π and h sector 

π and V sector 

π, h and A sector 

κW=κZ=a=ω=1 recovers the SM vertex 

     

i) The Lagrangian 

ii) At leading-order (LO)* 

V, A

SLO = 4�

�
F 2

V

M2
V

� F 2
A

M2
A

⇥

TLO = 0

* Peskin and Takeuchi ’92. 
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iii) At next-to-leading order (NLO)* 

ü  Dispersive relations 

ü  Only lightest two-particles cuts have 
been considered, since higher cuts 
are supposed to be suppressed**. 

* Barbieri et al.’08 
* Cata and Kamenik ‘08 
* Orgogozo and Rynchov ’11 ‘12 

     

iv) High-energy constraints 

ü  We have seven resonance parameters: importance of short-distance information. 
ü  In contrast to QCD, the underlying theory is not known. 
ü  Weinberg Sum-Rules (WSR)***: 

 
 
ü  We have 7 resonance parameters and up to 5 constraints: 

ü  With both, the 1st and the 2nd WSR: κW and MV as free parameters 
 
ü  With only the 1st WSR: κW, MV and MA as free parameters 

�30(s) =
g2 tan �W

4
s [�V V (s)��AA(s)]

1
�

� �

0
dt [Im�V V (t)� Im�AA(t)] = v2

1
�

� �

0
dt t [Im�V V (t)� Im�AA(t)] = 0

** Pich, IR and Sanz-Cillero ’12 *** Weinberg ’67 
*** Bernard et al. ’75. 
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ü  Weinberg Sum-Rules (WSR)***: 

 
 
ü  We have 7 resonance parameters and up to 5 constraints: 

ü  With both, the 1st and the 2nd WSR: κW and MV as free parameters 
 
ü  With only the 1st WSR: κW, MV and MA as free parameters 

*** Weinberg ’67 
*** Bernard et al. ’75. 

F 2
V M2

V � F 2
A M2

A = 0
FV GV = v2

F 2
V � F 2

A = v2 W =
M2

V

M2
A

1st WSR at LO: 

2nd WSR at LO: 

1st WSR at NLO  
(= VFF^ and AFF^^): 

2nd WSR at NLO: 

^ Ecker et al. ’89 ^^Pich, IR and Sanz-Cillero ’08 
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S = 0.03 ± 0.10 * (MH=0.126 TeV) 
T = 0.05 ± 0.12 * (MH=0.126 TeV) 

* Gfitter 
* LEP EWWG 
* Zfitter 

i) LO results 

i.i) 1st and 2nd WSRs** 

i.ii) Only 1st WSR*** 

SLO =
4�v2

M2
V

�
1 +

M2
V

M2
A

⇥

4�v2

M2
V

< SLO <
8�v2

M2
V

SLO = 4�
⇤

v2

M2
V

+ F 2
A

�
1

M2
V

� 1
M2

A

⇥⌅

SLO >
4�v2

M2
V

At LO MA > MV > 1.5 TeV at 95% CL 

** Peskin and Takeuchi ’92 *** Pich, IR and Sanz-Cillero ’12  
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MV !TeV"
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2.5
SLO

Backup slides: S and T at LO and at NLO 
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ii) NLO results: 1st and 2nd WSRs* 

1 > κW > 0.94 
MA≈	 MV > 5 TeV  

(68%CL) 

     

MV

ΚW

"0.4 "0.2 0.0 0.2 0.4

"0.4

"0.2

0.0

0.2

0.4

S

T

Similar conclusions, but softened 

ü  A moderate resonance-mass splitting implies κW ≈ 1. 

ü  MV < 1 TeV implies large resonance-mass splitting. 
ü  In any scenario MA > 1.5 TeV at 68% CL. 

iii) NLO results: 1st WSR and MV < MA*  

* Pich, IR and Sanz-Cillero ’13 ’14 
** Pich, IR, Santos and Sanz-Cillero [in progress] 
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iv) Preliminary results: inclusion of fermion cut doesn’t change appreciably the results**. 

68% CL 

0.2 < MV/MA < 1 
0.02 < MV/MA < 0.2 
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 1.5 TeV < MV  < 6.0 TeV 
0 < κW  < 1 




