Temperature dependence of shear viscosity in SU(3)-gluodynamics

Nikita Astrakhantsev, Viktor Braguta, Andrey Kotov

ITEP

Confinement–2016
Outline:

- Introduction
- Details of the calculation
- Fitting of the data
- Backus-Gilbert method
- Conclusion
Elliptic flow from STAR experiment (Nucl. Phys. A 757, 102 (2005))

\[\frac{dN}{d\varphi} \sim (1 + 2v_1 \cos \varphi + 2v_2 \cos^2 \varphi), \quad \varphi-\text{scattering angle} \]

Quark-gluon plasma is close to ideal liquid,

\[\eta/s = (1 - 3)/4\pi \]

Other works (SU(3) gluodynamics):

Results:

- $\eta/s = 0.134 \pm 0.033$ ($T/T_c = 1.65, 8 \times 28^3$)
- $\eta/s = 0.102 \pm 0.056$ ($T/T_c = 1.24, 8 \times 28^3$)
- $\eta/s = 0.20 \pm 0.03$ ($T/T_c = 1.58, 16 \times 48^3$)
- $\eta/s = 0.26 \pm 0.03$ ($T/T_c = 2.32, 16 \times 48^3$)

SU(2) gluodynamics:

- $\eta/s = 0.134 \pm 0.057$ ($T/T_c = 1.2, 16 \times 32^3$)

Indicates that small viscosity is a general feature of non-abelian gauge theories?
Lattice calculation of shear viscosity

The first step:

Measure the correlation function:

\[C(t) = \langle T_{12}(t) T_{12}(0) \rangle \]

The second step:

Calculation of the spectral function \(\rho(\omega) \):

\[C(t) = \int_0^\infty d\omega \rho(\omega) \cosh(\omega T - \omega t) \sinh(\omega T) \]

\[\eta = \pi \lim_{\omega \to 0} \frac{\rho(\omega)}{\omega} \]
Lattice calculation of shear viscosity

The first step:
Measurement of the correlation function:

\[C(t) = \langle T_{12}(t)T_{12}(0) \rangle \]
Lattice calculation of shear viscosity

The first step:
Measurement of the correlation function:

\[C(t) = \langle T_{12}(t)T_{12}(0) \rangle \]

The second step:
Calculation of the spectral function \(\rho(\omega) \):

\[C(t) = \int_0^\infty d\omega \rho(\omega) \frac{\cosh(\frac{\omega}{2T} - \omega t)}{\sinh(\frac{\omega}{2T})} \]

\[\eta = \pi \lim_{\omega \to 0} \frac{\rho(\omega)}{\omega} \]
Details of the calculation

- SU(3) gluodynamics
- Two-level algorithm
- Lattice size $32^3 \times 16$
- Temperatures
 $T/T_c = 0.9, 0.925, 0.95, 1.0, 1.1, 1.2, 1.35, 1.425, 1.5$
- Accuracy $\sim 2 - 3\%$ at $t = \frac{1}{2T}$
- $\langle T_{12}(x)T_{12}(y) \rangle \sim (\langle T_{11}(x)T_{11}(y) \rangle - \langle T_{11}(x)T_{22}(y) \rangle)$
- Clover discretization for the $\hat{F}_{\mu\nu}$
Correlation functions

\[C(\tau)/T^5_c \]

\(T/T_c = 0.9 \)
\(T/T_c = 1.0 \)
\(T/T_c = 1.2 \)
\(T/T_c = 1.5 \)

\(\tau/a \)

Nikita Astrakhantsev
QGP viscosity temperature dependence
Spectral function

\[C(t) = \int_0^\infty d\omega \rho(\omega) \frac{\cosh(\frac{\omega}{2T} - \omega t)}{\sinh(\frac{\omega}{2T})} \]

Properties of the spectral function:

- \(\rho(\omega) \geq 0, \rho(-\omega) = -\rho(\omega) \)
- Asymptotic freedom: \(\rho(\omega)|_{\omega \to \infty}^{NLO} = \frac{1}{10} \frac{d_A}{(4\pi)^2} \omega^4 \left(1 - \frac{5N_c\alpha_s}{9\pi} \right) \)
 \(\sim 90\% \) of the total contribution \(t = 1/2T \)
- Hydrodynamics: \(\rho(\omega)|_{\omega \to 0} = \frac{\eta}{\pi} \omega \)
Spectral function

\[C(t) = \int_0^\infty d\omega \rho(\omega) \frac{\cosh(\frac{\omega}{2T} - \omega t)}{\sinh(\frac{\omega}{2T})} \]

Properties of the spectral function:

- \(\rho(\omega) \geq 0, \rho(-\omega) = -\rho(\omega)\)
- Asymptotic freedom: \(\rho(\omega)|_{\omega \to \infty}^{NLO} = \frac{1}{10} \frac{dA}{(4\pi)^2} \omega^4 \left(1 - \frac{5N_c\alpha_s}{9\pi} \right)\)
 \(\sim 90\%\) of the total contribution \(t = 1/2T\)
- Hydrodynamics: \(\rho(\omega)|_{\omega \to 0} = \frac{\eta}{\pi} \omega\)

Ansatz for the spectral function (QCD sum rules motivation)

\[\rho(\omega) = \frac{\eta}{\pi} \omega \theta(\omega_0 - \omega) + A\rho_{lat}(\omega) \theta(\omega - \omega_0) \]
Lattice spectral function ρ_{lat}
Spectral function

\[\rho(\omega) = \frac{\eta}{\pi} \omega \theta(\omega_0 - \omega) + A \rho_{\text{lat}}(\omega) \theta(\omega - \omega_0) \]

\[\chi^2/\text{dof} \sim 1.0, \ A \sim 1, \ \omega_0/T \sim 7 - 8 \]
Properties of the spectral function

- Hydrodynamical approximation works well up to $\omega < \pi T \sim 1$ GeV (H. B. Meyer, arXiv:0809.5202).

Asymptotic freedom works well from $\omega > 3$ GeV.

Poor knowledge of the spectral function in the region $\omega \in (1, 3)$ GeV \Rightarrow Main source of uncertainty in the parametrical estimation \Rightarrow need to apply non-parametrical estimation procedure.
Properties of the spectral function

- Hydrodynamical approximation works well up to $\omega < \pi T \sim 1$ GeV (H. B. Meyer, arXiv:0809.5202).
- Asymptotic freedom works well from $\omega > 3$ GeV.
Properties of the spectral function

- Hydrodynamical approximation works well up to \(\omega < \pi T \sim 1 \text{ GeV} \) (H. B. Meyer, arXiv:0809.5202).
- Asymptotic freedom works well from \(\omega > 3 \text{ GeV} \).
- Poor knowledge of the spectral function in the region \(\omega \in (1, 3) \text{ GeV} \)
 \(\Rightarrow \) Main source of uncertainty in the parametrical estimation \(\Rightarrow \) need to apply non-parametrical estimation procedure.
Backus-Gilbert method for the spectral function

- Problem: find $\rho(\omega)$ from the integral equation
 \[C(x_i) = \int_0^{\infty} d\omega \rho(\omega) K(x_i, \omega), \quad K(x_i, \omega) = \frac{\cosh\left(\frac{\omega - \omega x_i}{2T}\right)}{\sinh\left(\frac{\omega}{2T}\right)} \]

- Define an estimator $\tilde{\rho}(\bar{\omega})$ ($\delta(\bar{\omega}, \omega)$ — resolution function):
 \[\tilde{\rho}(\bar{\omega}) = \int_0^{\infty} d\omega \delta(\bar{\omega}, \omega) \rho(\omega) \]

- Represent $\delta(\bar{\omega}, \omega)$ in the form
 \[\delta(\bar{\omega}, \omega) = \sum_i b_i(\bar{\omega}) K(x_i, \omega) \implies \tilde{\rho}(\bar{\omega}) = \sum_i b_i(\bar{\omega}) C(x_i) \]

- Goal: minimize the Backus-Gilbert functional
 \[\mathcal{H} = (1 - \lambda)A + \lambda B = \lambda \int (\omega' - \omega)^2 \delta^2(\omega', \omega) d\omega' + (1 - \lambda)\text{Var}(\tilde{\rho}(\omega)). \]

 First term tends to minimize the resolution function width, second term ensures ”stability” — $\tilde{\rho}(\omega)$ should not vary much when the data is changed within errors.

 \[b_i(\bar{\omega}) = \frac{\sum_j W_{ij}^{-1} R_j}{\sum_{ij} R_i W_{ij}^{-1} R_j}, \]

 \[W_{ij} = \int d\omega K(x_i, \omega)(\omega - \bar{\omega})^2 K(x_j, \omega), \quad R_i = \int d\omega K(x_i, \omega) \]

- Regularization by the covariance matrix S_{ij}:
 \[W_{ij} \rightarrow \lambda W_{ij} + (1 - \lambda)S_{ij}, \quad 0 < \lambda < 1 \]
Resolution functions for $T/T_c = 1.2$, $\lambda = 0.9$

- Width of the resolution function $\omega/T \sim 4$.
- Hydrodynamical approximation works up to $\omega/T < \pi$.
- Problem: large contribution from ultraviolet tail ($\sim 50\%$) because of finite δ width.
- The result is λ-dependent, the ratio η/s significantly grows as λ increases.
Nikita Astrakhantsev
QGP viscosity temperature dependence
Solution:

- Determine ultraviolet contribution to spectral function of the form
 \[\rho_{uv} = A \rho_{lat}(\omega) \theta(\omega - \omega_0) . \]

- Contract this with the resolution function and subtract the result from \(\eta/s \).

- This will not make assumptions about intermediate \(\omega \) region, thus the use of method is still sensible.

- The result now only mildly depends on \(\lambda \) \(\Rightarrow \) two problems cancel each other.

- The result of reconstruction mostly coincides with the usual fit, but now we can be sure that assumptions about medium frequencies don’t change the answer dramatically.
Ratio η/s without ultraviolet contribution, λ dependence

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{ratio_eta_s_without_UV_contribution.png}
\caption{Ratio η/s without ultraviolet contribution, λ dependence.}
\end{figure}
Preliminary results

\[\eta/s = (\eta/s) \omega \theta(\omega_0 - \omega) + A(\omega - \omega_0)\rho_{lat}(\omega) \]

Backus-Gilbert reconstruction

Nikita Astrakhantsev | QGP viscosity temperature dependence
Conclusion:

- Ratio η/s calculated for the set of temperatures $T/T_c \in [0.9, 1.5]$
- Applied fitting procedure and Backus-Gilbert method for the SF
- η/s is close to $N = 4$ SYM and in agreement with the experiment