Parity doubling of nucleons, Δ and Ω baryons across the deconfinement phase transition

Davide De Boni

with G. Aarts, C. Allton, S. Hands, B. Jäger, C. Praki, J.-I. Skullerud

Thessaloniki, 30 August 2016

Swansea University Prifysgol Abertawe

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Contents

1 Chiral symmetry in a nutshell

2 Study of parity doubling for N, Δ and Ω baryons

- Correlators
- · Spectral functions

[1607.05082v1] [PRD 92 (2015) 014503] [1502.03603v2]

 $m_q = 0 \Rightarrow$ chiral symmetry of QCD action

$$\psi' = \mathrm{e}^{\mathrm{i}\alpha\gamma_5 T_i} \psi, \qquad \bar{\psi}' = \bar{\psi} \, \mathrm{e}^{\mathrm{i}\alpha\gamma_5 T_i}$$

 T_i generators of SU(N_f), $i = 1, \ldots, N_f^2 - 1$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 $m_q = 0 \Rightarrow$ chiral symmetry of QCD action

$$\psi' = \mathrm{e}^{\mathrm{i}lpha\gamma_5 T_i} \psi , \qquad ar{\psi}' = ar{\psi} \, \mathrm{e}^{\mathrm{i}lpha\gamma_5 T_i}$$

 T_i generators of SU(N_f), $i = 1, \ldots, N_f^2 - 1$

Positive and negative parity baryonic correlators (zero momentum)

$$\mathcal{C}_{\pm}(au) = \int \mathrm{d}\mathbf{x} \left\langle \mathrm{tr} \mathcal{O}(\mathbf{x}, au) \mathcal{P}_{\pm} \overline{\mathcal{O}}(\mathbf{0}, 0) \right\rangle, \qquad \mathcal{P}_{\pm} = \frac{1}{2} (\mathbb{1} \pm \gamma_4)$$

For nucleon $O(\mathbf{x}, \tau) = \epsilon_{abc} u_a(\mathbf{x}, \tau) \left(u_b^{\mathrm{T}}(\mathbf{x}, \tau) C \gamma_5 d_c(\mathbf{x}, \tau) \right)$

 $m_q = 0 \Rightarrow$ chiral symmetry of QCD action

$$\psi' = \mathrm{e}^{\mathrm{i}lpha\gamma_5 T_i} \psi , \qquad \bar{\psi}' = \bar{\psi} \, \mathrm{e}^{\mathrm{i}lpha\gamma_5 T_i}$$

 T_i generators of SU(N_f), $i = 1, \ldots, N_f^2 - 1$

Positive and negative parity baryonic correlators (zero momentum)

$$\mathcal{C}_{\pm}(au) = \int \mathrm{d}\mathbf{x} \left\langle \mathrm{tr} \mathcal{O}(\mathbf{x}, au) \mathcal{P}_{\pm} \overline{\mathcal{O}}(\mathbf{0},0)
ight
angle \,, \qquad \mathcal{P}_{\pm} = rac{1}{2} (\mathbbm{1} \pm \gamma_4)$$

For nucleon
$$O(\mathbf{x}, \tau) = \epsilon_{abc} u_a(\mathbf{x}, \tau) \left(u_b^{\mathrm{T}}(\mathbf{x}, \tau) C \gamma_5 d_c(\mathbf{x}, \tau) \right)$$

$$\mathcal{C}_{\pm}(au) pprox \mathcal{A}_{\pm} \, \mathrm{e}^{-M_{\pm} au} + \mathcal{A}_{\mp} \, \mathrm{e}^{-M_{\mp}(a_{ au}N_{ au}- au)}$$

Chiral symmetry \Rightarrow $C_+ = -C_- \Rightarrow$ $M_+ = M_-$

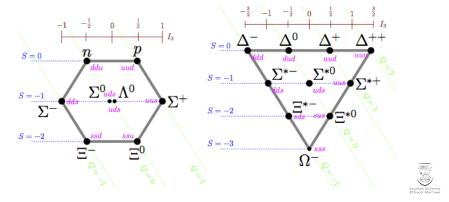
In Nature (T = 0) $M_{N^*} - M_N pprox$ 600 MeV $\gg m_{u,d} pprox$ 5 MeV

• Explicit chiral symmetry breaking ($m_{u,d} \neq 0$) is not enough to account for this big difference

In Nature (T = 0) $M_{N^*} - M_N pprox$ 600 MeV $\gg m_{u,d} pprox$ 5 MeV

- Explicit chiral symmetry breaking ($m_{u,d} \neq 0$) is not enough to account for this big difference
- \Rightarrow Chiral symmetry is spontaneously broken at T = 0

In Nature (T = 0) $M_{N^*} - M_N pprox$ 600 MeV $\gg m_{u,d} pprox$ 5 MeV


- Explicit chiral symmetry breaking ($m_{u,d} \neq 0$) is not enough to account for this big difference
- \Rightarrow Chiral symmetry is spontaneously broken at $\mathcal{T}=0$
 - What happens at high temperature?
 - Parity restoration above T_c for N and Δ baryons Even if chiral symmetry is slightly explicitly broken by $m_{u,d}$ and lattice artefacts Wilson fermions \rightarrow No chiral symmetry at short distances
 - Signal of parity restoration for Ω around T_c Chiral symmetry is strongly explicitly broken by $m_s \approx 100 \text{ MeV}$

Name	Ν	Δ	٨	Σ	Ξ	Ω
lsospin	1/2	3/2	0	1	1/2	0
Strangenes	0		-1		-2	-3
Number of s-quarks	0		1		2	3

Spin 1/2 octet

Spin 3/2 decuplet

Lattice setup

FASTSUM ensembles and tuning by HadSpec collaboration

- $N_f = 2 + 1$ non-perturbatively improved Wilson fermions
- Anistropic lattice: $a_s/a_ au=3.5$, $a_ au^{-1}pprox 5.6$ GeV

 \rightarrow Important for constructing spectral functions

- $T = rac{1}{a_ au N_ au}$ varies by changing $N_ au$ from 128 to 16
- Large volume of the box $\sim (3\,{
 m fm})^3$, $N_{s}=24$
- Degenerate u and d quarks, heavier than physical ones $(m_{\pi}=384(4)$ MeV, $m_{\pi}/m_{
 ho}=0.466(3))$
- Physical strange quark mass
- Gaussian smearing on both source and sink to enhance ground state signal

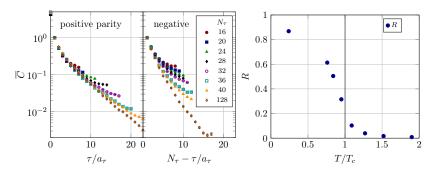
R factor for measuring parity doubling

$$R(\tau) \equiv \frac{C(\tau) - C(1/T - \tau)}{C(\tau) + C(1/T - \tau)}$$

- No parity doubling and $M_- \gg M_+ \Rightarrow R(au) = 1$, $0 \leq au < 1/(2T)$
- Parity doubling \Rightarrow R(au)= 0
- Note that $R(1/T \tau) = -R(\tau)$ and R(1/(2T)) = 0

We consider the weighted average

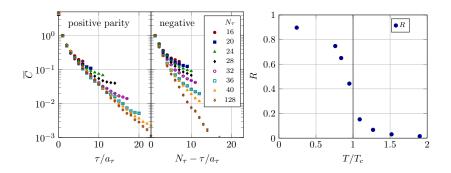
[Datta, Mathur et al. (2013)]


$$R \equiv \frac{\sum_{n=1}^{N_{\tau}/2-1} R(\tau_n) / \sigma^2(\tau_n)}{\sum_{n=1}^{N_{\tau}/2-1} 1 / \sigma^2(\tau_n)}$$

Swansea University

Technical note: Smearing essential to have a clear ground state

・ロト・西ト・ヨト・ヨー うらぐ


Nucleon (spin 1/2)

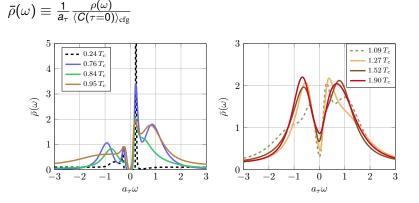
- · Nucleon ground state largely independent of temperature
- Negative parity partner much more sensitive to temperature
- Strong signal of parity restoration around T_c

Δ -baryon (spin 3/2)

- Δ baryon ground state largely independent of temperature
- Negative parity partner much more sensitive to temperature
- Strong signal of parity restoration around deconfinement transition (tied to restoration of chiral symmetry)

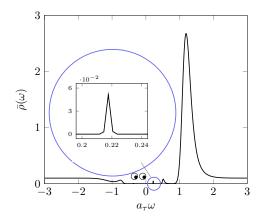
・ロット (雪) (山) (山)

Spectral functions

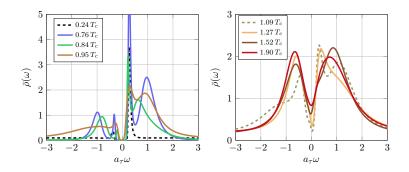

For baryons:

$$\mathcal{C}_{\pm}(au,\mathbf{p}) = \int_{-\infty}^{+\infty} rac{\mathrm{d}\omega}{2\pi} \,
ho_{\pm}(\omega,\mathbf{p}) \, rac{\mathrm{e}^{-\omega au}}{1+\mathrm{e}^{-\omega/T}} \,, \qquad
ho_{\pm} = \mathrm{tr}[\mathcal{P}_{\pm}
ho]$$

- Ill-posed problem: To extract $\sim 10^3$ points for $\rho_{\pm}(\omega, \mathbf{p} = \mathbf{0})$ given ~ 50 noisy data for $C_{\pm}(\tau, \mathbf{p} = \mathbf{0})$
- The Maximum Entropy Method (MEM) is an unbiased method to get a unique solution for ρ_{\pm} [Asakawa et al. hep:lat/0011040v2] Important property for MEM: $\rho_{+}(\omega, \mathbf{p}) \geq 0 \quad \forall \omega, \mathbf{p}$ $(\rho_{\pm}(-\omega, -\mathbf{p}) = -\rho_{\mp}(\omega, \mathbf{p}))$


Nucleon (spin 1/2)

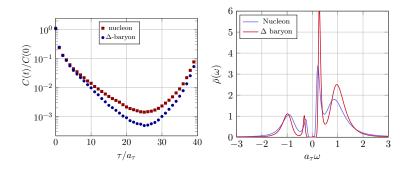
- $\omega > 0$ (+ parity): Very stable ground state below T_c
- $\omega < 0$ (- parity): Ground state moves inwards as $T
 ightarrow T_c$
- Very symmetric spectral functions above T_c


Nucleon ground state without smearing $(T = 0.24T_c)$

The ground state is at the right place but we need smearing to enhance its signal

Δ -baryon (spin 3/2)

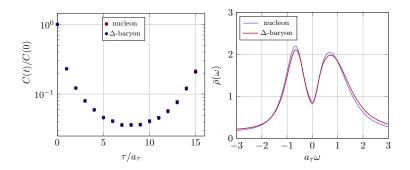
- $\omega > 0$ (+ parity): Very stable ground state below T_c
- $\omega < 0$ (- parity): Ground state moves inwards as $T
 ightarrow T_c$
- Very symmetric spectral functions above T_c


ъ

・ロト ・ 同ト ・ ヨト ・ ヨト

N and Δ below T_c

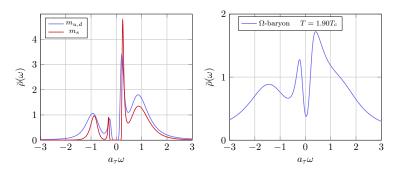
For ground-states (I = 0): $M_{\Delta} - M_N = \Delta M_{ss} = \frac{8}{3} \left(\frac{\hbar}{c}\right)^3 \frac{\pi \alpha_s}{m_{u,d}^2} |\psi(0)|^2$


 $\Delta M_{ss}^{\scriptscriptstyle + \text{parity}} = \left\{ \begin{array}{ll} (293 \pm 2) \text{MeV} & \text{Nature} \left(m_{\pi} = 140 \, \text{MeV} \,, \, T = 0 \right) \\ (274 \pm 96) \text{MeV} & \text{Lattice} \left(m_{\pi} = 384 \, \text{MeV} \,, \, T = 44 \, \text{MeV} \right) \end{array} \right.$

・ コ ト ・ 雪 ト ・ 雪 ト ・ ヨ ト

N and Δ above T_c

- Symmetric correlators and spectral functions (Parity restoration)
- Same correlators and spectral functions for N and Δ (GS melted)

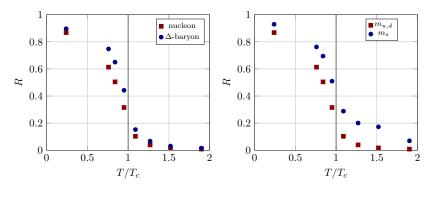


\pmb{N} and $\pmb{\Omega}$

< □ > < □ > < □ > < □ > < □ > .

above $T_c \rightarrow$ Parity not yet restored

T/T_c	<i>m</i> ⁺ [MeV]	<i>m</i> ⁻ [MeV]	
0	1672.4(0.3)	2250? 2380? 2470?	PDG
0.24	1703(159)	2232(380)	



æ

[See also HadSpec Collaboration, 0810.3588v1]

Nucleon vs Δ

Nucleon vs Ω

Parity restoration

Signal of parity doubling

イロト イロト イヨト イヨト

Both signals occur around T_c

ъ

Conclusions and perspectives

Summary

- Negative parity channel more affected by temperature than positive parity channel
- Parity restoration above T_c for N and Δ baryons
- Signal of parity doubling for Ω at \mathcal{T}_c
- Chiral symmetry is strongly explicitly broken by m_s

Outlook

- To use chiral (overlap) fermions
- Finer lattice spacing

