Neutral meson production measurements with the ALICE/LHC detector

Paraskevi Ganoti, for the ALICE Collaboration
National and Kapodistrian University of Athens
August, 30 2016
Outline

- Physics motivation
- The experimental apparatus
- Photon detection in ALICE
- Energies and systems
- ALICE performance in neutral mesons in Run I and Run II
- π^0 and η cross sections and ratios in pp, Pb-Pb and p-Pb collisions
- Nuclear modification factor, R_{AA}
- Summary
Physics motivation

Measurement of π^0 and η mesons in pp collisions

- Cleanly identified via the $\gamma\gamma$ decay.
- At low p_T: understand particle production. Compare to phenomenological models.
- At high p_T: Test of pQCD cross section predictions.
- At LHC: Constraints on the gluon to pion fragmentation. Access to FF with s quark (η meson)
- Reference data for heavy ion collisions.
- Main source of background in the direct-photon measurement and in the heavy-flavour electron measurement.

Measurement of π^0 and η mesons in heavy-ion collisions

- Study energy loss (mainly gluons)/particle suppression.
- Compare to theoretical model predictions.
The ALICE experiment

[Diagram of the ALICE experiment with labels for EMCal, ITS, TPC, PHOS, ACORDE, TRD, HMPID, PMD, V0, T0, TOF, DIPOLE MAGNET, ABSORBER, FMD, T0 & V0, TRIGGER CHAMBERS, MUON FILTER, and ZDC ~116m from IP.]
PHOS calorimeter:
 PbWO4 crystal
 Located at 4.6 m from the ALICE IP.
 \(|\eta|<0.13, 260^\circ<\phi<320^\circ|

\[
\frac{\sigma_{E(GeV)}}{E} = \frac{1.8}{E} + \frac{3.3}{\sqrt{E}} + 1.1\%
\]

EMCal calorimeter:
 77 layers 1.4 mm lead + 1.7 mm scintillator
 Located at 4.4 m from ALICE IP.
 \(|\eta|<0.7, 80^\circ<\phi<180^\circ|

\[
\frac{\sigma_{E(GeV)}}{E} = \frac{5}{E} + \frac{11}{\sqrt{E}} + 1.7\%
\]

PCM (Photon Conversion Method):
 Photon conversion in detector material
 ITS and TPC \(X/X_0=11.4\pm0.5\) sys %
 \(|\eta|<0.9, 0^\circ<\phi<360^\circ|
 \sigma_R < 2\text{cm}, \sigma_Z < 1.5\text{cm}, \sigma_\phi < 7\text{mrad}
 Conversion probability is small (8.5-9%)
 but it is compensated by a wide acceptance.
Analysed data (published or analysis in progress)

pp collisions at $\sqrt{s} = 0.9$, 2.76 and 7 TeV (PHOS and PCM)

Pb-Pb at $\sqrt{s_{NN}} = 2.76$ TeV (PHOS and PCM, 2010 data)

Pb-Pb at $\sqrt{s_{NN}} = 2.76$ TeV (EMCal and PCM, 2011 data)
To be published

pp at $\sqrt{s} = 8$ TeV (EMCal, PCM and PHOS)
To be published

p-Pb at $\sqrt{s} = 5.02$ TeV (EMCal, PCM and PHOS)
To be published

pp at $\sqrt{s} = 5.02$ TeV and at $\sqrt{s} = 13$ TeV, Pb-Pb at $\sqrt{s_{NN}} = 5.02$ TeV
Analyses in progress
\(\pi^0 \) and \(\eta \) are reconstructed via invariant mass analysis

\[
M_{\gamma\gamma} = \sqrt{(2E_{\gamma_1}E_{\gamma_2} - (1 - \cos \theta_{\gamma_1\gamma_2}))}
\]

\(\pi^0 \) in EMCal, pp collisions at \(\sqrt{s}=7 \) TeV

\(\eta \) at EMCal, pp collisions at \(\sqrt{s}=7 \) TeV

\(\pi^0 \) and \(\eta \) in EMCal, Pb-Pb collisions at \(\sqrt{s_{NN}}=2.76 \) TeV

\(\eta \) at EMCal, Pb-Pb collisions at \(\sqrt{s_{NN}}=2.76 \) TeV

Centrality 0-20%
ALICE performance in neutral mesons, Run I

- **pp at $\sqrt{s}=2.76$ TeV**
- **Pb-Pb at $\sqrt{s_{NN}}=2.76$ TeV**
- **p-Pb at $\sqrt{s_{NN}}=5.02$ TeV**
ALICE performance in neutral mesons, Run II

pp at \(\sqrt{s} = 5.02\) TeV

Pb-Pb at \(\sqrt{s_{NN}} = 5.02\) TeV

pp at \(\sqrt{s} = 13\) TeV

Pb-Pb at \(\sqrt{s_{NN}} = 13\) TeV
\(\pi^0 \) and \(\eta \) cross sections in pp collisions

\[\sqrt{s_{\text{NN}}} = 0.9, 2.76, 7 \text{ and } 8 \text{ TeV} \]

\(\rho_T \) reach:

\(\pi^0 \)'s up to 20 GeV/c and 30 GeV/c for \(\sqrt{s} = 8 \) TeV.

\(\eta \)'s from 0.5 to 10 GeV/c.

Power law dependence at high \(p_T \).

<table>
<thead>
<tr>
<th>(\sqrt{s}) (TeV)</th>
<th>(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9</td>
<td>7 ± 2</td>
</tr>
<tr>
<td>2.76</td>
<td>6.0 ± 0.5</td>
</tr>
<tr>
<td>7</td>
<td>6.0 ± 0.1</td>
</tr>
<tr>
<td>8</td>
<td>5.9 ± 0.2</td>
</tr>
</tbody>
</table>

NLO pQCD calculations:

Phys. Rev. D91 (2015) 1

Reasonable agreement between data and NLO pQCD for 0.9 and 2.76 TeV but increasing discrepancy with increasing \(p_T \) and \(\sqrt{s} \).

PDF: MSTW

Fragmentation functions: DSS14
0.9 and 2.76 TeV: PCM only
7 TeV: PCM+PHOS

PDF: Cteq6M5
FF: AES

PLB 717 (2012) 162
π⁰ spectra compared to Color Glass Condensate (CGC) calculations (arXiv:1408.2765).

CGC aims at describing strong interacting systems in the high energy limit: non-linear phenomena, gluon recombination.

Model describes our data in the p_T region of 1-10 GeV/c.

Comparisons between the pQCD and the CGC calculations could reveal issues not only on the FF but also on the initial state gluon distributions.
The ALICE measurement of the η/π^0 ratio is consistent with world results in pp collisions at all energies and it is well reproduced by pQCD.

$\eta/\pi^0 \sim 0.4$ for $p_T > 4$ GeV/c.

η : PDF:Cteq6M5, FF: AES

π^0 : PDF:Cteq6M5, FF: DSS
2010 data: π^0 yields measured in six centrality classes.
p_T reach 0.7-10 GeV/c
Clear modification of the spectrum in central collisions.

Low p_T: Hydrodynamic flow
High p_T: Energy loss of string segments

Dashed lines: Nemchik PRC86, 054904, 2012.
Low p_T: Hydrodynamic description
High p_T: Color dipole absorption
R_{AA}

Measured to quantify nuclear effects in A-A collisions \(R_{AA} \) contains both initial and final state effects.

\(\pi^0 R_{AA} \) measured in three centrality classes. \(p_T \) reach 0.5-10 GeV/c

\[
R_{AA}(p_T) = \frac{(1/N_{evt}) d^2N_{ch}^A / d\eta dp_T}{(1/N_{evt}) d^2N_{ch}^{pp} / d\eta dp_T}
\]

Large \(\pi^0 \) suppression in central Pb – Pb collisions.

Maximum around \(p_T \sim 1\text{-}2 \text{ GeV/c} \) for all centralities.

Increasing suppression as centrality increases

60-80%: \(R_{AA} \sim 0.6 \) for \(p_T \) 6-10 GeV/c

0-5% : \(R_{AA} \sim 0.1 \) for \(p_T \) 6-10 GeV/c

\(\pi^0 R_{AA} \) at LHC lower than at RHIC and at SPS

\(\pi^0 R_{AA} \) decrease due to higher initial energy density dominates over \(\pi^0 R_{AA} \) increase from harder parton \(p_T \) spectrum.

Shape of \(\pi^0 R_{AA}(p_T) \) at \(\sqrt{s_{NN}}=2.76 \text{ TeV} \) similar as at \(\sqrt{s_{NN}} = 200 \text{ GeV} \)

P. Ganoti

XII Quark Confinement and the Hadron Spectrum, Thessaloniki, Greece 2016

ALICE: EPJC 74 (2014) 10, 3108
PHENIX: PRL 109 (2012) 152301
WA98: PRL 100 (2008) 242301
2011 data with 10 times more statistics, 2 centrality classes, higher p_T reach (20 GeV/c). Measurement by EMCal and PCM.
Comparisons to NLO pQCD pp predictions (Phys. Rev. D91 (2015) 1) scaled by Ncoll
η/π^0 ratio in Pb-Pb collisions

η/π^0 ratio in two centrality classes.

Compared with the charged K^\pm/π^\pm (PLB 736 (2014) 186) and the 7 TeV result (PLB 717 (2012) 162).

\(\pi^0 \) and \(\eta \) in p-Pb collisions

Initial state effects can be tested with p-Pb data. \(\pi^0 \) spectrum obtained from PCM, Dalitz, PHOS and EMCal.

\(\eta \) spectrum obtained from PCM and EMCal, \(\sim 100 \text{M events} \).

EPS calculations assuming three different fragmentation functions (JHEP 1207 (2012) 073) and CGC (Phys. Rev D88 (2013) 114020)

\(R_{p-Pb} \) is consistent with the calculations within the errors.
Summary

- π^0 and η invariant cross sections are measured in pp, Pb-Pb and p-Pb collisions over a wide p_T range.

- pp results are compatible with the NLO pQCD calculations at the lower p_T and collision energies, however, there is a growing discrepancy with increasing p_T and \sqrt{s}.

- CGC reproduces π^0 production at $\sqrt{s} = 2.76$ and 7 TeV up to moderate (high) p_T.

- π^0 invariant yield measured in Pb-Pb collisions in 6 centrality classes (2010 data). Comparisons to theoretical models (EPOS and Nemchick et al.) over the complete p_T range are presented.

- The η/π^0 ratio reaches a constant value at $p_T > 4$ GeV/c for all systems, pp, Pb-Pb and p-Pb. In pp collisions, data and pQCD NLO calculations show the same trend.

- In 2011 Pb-Pb collisions, π^0 and η in two centrality classes are measured up to 20 GeV/c. Comparisons to NLO pQCD pp predictions (Phys. Rev. D91 (2015) 1) scaled by Ncoll show a suppression in the Pb-Pb data with respect to scaled NLO pQCD.

 - $\pi^0 R_{AA}$ is measured in different centrality classes.
 - $R_{AA} \approx 0.1$ for 0-5% centrality.
 - The measured suppression is stronger than at lower $\sqrt{s_{NN}}$. The shapes of $R_{AA}(p_T)$ at $\sqrt{s_{NN}} = 2.76$ TeV and at $\sqrt{s_{NN}} = 200$ GeV are similar.

- $\pi^0 R_{p-Pb}$ is consistent with unity for $p_T > 2.5$ GeV/c. This measurement indicates that the strong suppression of hadron production at high p_T observed in Pb–Pb collisions is not due to an initial-state effect, but is the fingerprint of jet quenching in hot QCD matter.