Recent results from NA61/SHINE from the strong interaction programme

Evgeny Andronov for the NA61/SHINE collaboration

SPbSU, Laboratory of Ultra-High Energy Physics

28 August - 4 September, 2016

1/15

XII-th QCHS, 2016, Thessaloniki, Greece

E. Andronov for the NA61/SHINE collaboration

SPbSU, Laboratory of Ultra-High Energy Physics

NA61/SHINE experiment

- Large acceptance hadron spectrometer located at the CERN SPS
- ► High momentum resolution: $\frac{\sigma(p)}{p^2} \approx 10^{-4} \text{ (GeV/c)}^{-1}$ (at full B = 9 T m)
- ToF walls resolution: $\sigma(tof) \approx 60$ ps
- ► Good particle identification: $\frac{\sigma (dE/dx)}{dE/dx} \approx 0.04, \ \sigma (m_{inv}) \approx 5 \text{ MeV}$
- Under testing: Vertex Detector (for open charm measurement) - talk by G. Feofilov on Thursday

Proposal: CERN-SPSC-2006-034, SPSC-P-330 (November 3, 2006)

NA61/SHINE facility paper: JINST 9 (2014) P06005

E. Andronov for the NA61/SHINE collaboration

NA61/SHINE highlights

 π^- spectra in Ar+Sc collisions at 150A GeV/c

 $d^2n/dp_T dy$ of π^- from the h⁻ method

SPbSU, Laboratory of Ultra-High Energy Physics

3/15

Motivation of the NA61/SHINE strong interaction programme

- Study of the onset of deconfinement
- Search for the critical point of strongly interacting matter

Onset of deconfinement signals

Statistical Model of the Early Stage (SMES)

Gazdzicki, Gorenstein, Acta Phys. Polon. B30, 2705, 1999

- ► Number of internal degrees of freedom (ndf) increases as HG→QGP (activation of partonic degrees of freedom)
- ► Total entropy and total strangeness are the same before and after hadronization (cannot decrease as QGP→HG)
- ▶ Mass of strangeness carriers decreases as HG→QGP $(m_{\Lambda,K}, ... > m_s)$
- Constant temperature and pressure in mixed phase

E. Andronov for the NA61/SHINE collaboration

π multiplicity - kink

Wounded Nucleon Model (Bialas et al, NPB 111, 461 (1976)):

$$\frac{\langle \pi \rangle}{\langle W \rangle}$$
 (AA) = $\frac{\langle \pi \rangle}{2}$ (pp)

Data: EPJC74:2794: PLB 726, 610 (2013): PRL 109, 252301 (2012)

E. Andronov for the NA61/SHINE collaboration

- ⟨π⟩ multiplicity at the SPS energies increases faster in central Pb+Pb than in p+p collisions (kink)
- p+p and Pb+Pb dependences cross at about 40A GeV
- For high SPS energies Ar+Sc follows the Pb+Pb trend; for low SPS energies Ar+Sc follows the p+p tendency
- The situation is opposite for Be+Be
- ► Results suffer from model dependence of estimating ⟨W⟩

SPbSU, Laboratory of Ultra-High Energy Physics

6/15

Strangeness/ π - horn p+p vs. Au+Au vs. Pb+Pb

The NA61/SHINE results from inelastic $p{+}p$ collisions exhibit rapid changes like observed in central Pb+Pb interactions

Do we see onset of deconfinement in p+p?

Strict strangeness conservation (CE) leads to horn-like structures even in p+p

NA61/SHINE: 2014 CERN-SPSC-2014-031 ; SPSC-SR-145 ZP C65, 215 (1995); ZP C71, 55 (1996); PRC 72,014908 (2005); EPJC 71, 1655 (2011), PRL 109, 252301 (2012)

E. Andronov for the NA61/SHINE collaboration

SPbSU, Laboratory of Ultra-High Energy Physics

K inverse slope parameter T - step _{p+p vs.} Au+Au vs. Pb+Pb

Transverse mass spectra $\frac{1}{m_T} \frac{dn}{dm_T} = Cexp(-\frac{m_T}{T})$ fits close to mid-rapidity

The NA61/SHINE results from inelastic p+p collisions exhibit rapid changes like observed in central Pb+Pb interactions

Do we see onset of deconfinement in p+p?

```
NA61/SHINE: CERN-SPSC-2014-031 ; SPSC-SR-145
PRC 69, 044903 (2004); PRC 79, 034909 (2009); PLB 736, 196 (2014); EPJC 71, 1655 (2011)
```

E. Andronov for the NA61/SHINE collaboration

SPbSU, Laboratory of Ultra-High Energy Physics

8/15

Strongly intensive fluctuation measures

We consider fluctuation quantities with trivial properties in the reference models (e.g. Wounded Nucleon Model - WNM)

Two families of strongly intensive quantities

- \bullet Independent of $\langle V \rangle$ and $\omega[V]$ in WNM
- $\Delta[P_T, N] = \Sigma[P_T, N] = 1$ for the independent particle production model
- $\Delta[P_T, N] = \Sigma[P_T, N] = 0$ in the absence of fluctuations

A. Bialas et al., NPB 111: 461 (1976) M.Gorenstein, M.Gazdzicki, PRC 84: 014904 M.Gorenstein, *et al.*, PRC 88, 2:024907

E. Andronov for the NA61/SHINE collaboration

SPbSU, Laboratory of Ultra-High Energy Physics

9/15

Strongly intensive fluctuation measures Sensitivity to critical point - CP

Analysis of strongly intensive fluctuation measures is expected to give more insight into the CP location

 Δ and Σ for nucleon system with van der Waals EOS in GCE formulation in vicinity of CP

V. Vovchenko, CPOD2016

E. Andronov for the NA61/SHINE collaboration

SPbSU, Laboratory of Ultra-High Energy Physics

10/15

No prominent structures which could be related to the CP are visible.

Number of wounded nucleons $\langle W \rangle$ from the GLISSANDO model W. Broniowski, M. Rybczynski, PRC 81: 064909.

E. Andronov for the NA61/SHINE collaboration

SPbSU, Laboratory of Ultra-High Energy Physics

Scaled variance of negatively charged particles $0 < y_{\pi} < y_{beam}, p_{T} < 1.5 \text{ GeV/c}, \text{ NA61/SHINE acceptance}$

In WNM: $\omega[N] = \omega^*[N] + \langle N \rangle / \langle W \rangle \cdot \omega[W]$ $\omega^*[N]$ - scaled variance calculated for any fixed value of W (i.e. $= \omega[N]_{pp}$) $\omega[W]$ - fluctuations in WThus in WNM $\omega[N]_{AA} \ge \omega[N]_{pp}$, what contradicts NA61 data

SPbSU, Laboratory of Ultra-High Energy Physics

Higher moments of net electric charge

Relation with the correlation lengthN: e-by-e net chargeMean: $M = \langle N \rangle$ St. dev.: $\sigma = \sqrt{\langle (N - \langle N \rangle)^2 \rangle}$ Skewness: $S = \frac{\langle (N - \langle N \rangle)^3 \rangle}{\sigma^3}$ Kurtosis: $k = \frac{\langle (N - \langle N \rangle)^4 \rangle}{\sigma^4} - 3$ $\langle (N - \langle N \rangle)^4 \rangle \approx \xi^7$

Volume independent combinations of the various moments: $\omega[N] = \frac{\sigma^2}{M} = \frac{\chi^{(2)}}{\chi^{(1)}}, S\sigma = \frac{\chi^{(3)}}{\chi^{(2)}}, S\sigma^2 = \frac{\chi^{(4)}}{\chi^{(2)}}$

The signature of non-monotonicity of these observables is expected if there is a nearby critical point in QCD phase transition.

Athanasiou et al., PRD82 (2010) 074008, Stephanov, PRL 107, 052301(2011), Karsch et al., PLB 695, 136 (2011).

Fluctuations of net-charge in inelastic p+p interactions $p_{T} < 1.5$ GeV/c, NA61/SHINE acceptance

- No non-monotonic behavior suggesting CP
- EPOS model describes data on net-charge fluctuations
- Results do not agree with independent particle production (Skellam), difference may come from multi-charged particles and quantum statistics
 - P. Braun-Munzinger et al., Nucl.Phys. A880 48-64 (2012)

Summary

- Data taking for the system size energy scan is well advanced: data for p+p, ⁷Be+⁹Be and ⁴⁰Ar+⁴⁵Sc collisions have already been recorded.
- Preliminary results on 4π pion multiplicities were shown in the form of kink plot.
- ► Even in p+p the energy dependence of (K⁺)/(π⁺) and kaons inverse slope parameter T exhibits rapid changes in the SPS energy range.
- ▶ Preliminary results on transverse momentum and multiplicity fluctuations in p+p, Be+Be and Ar+Sc collisions were presented in $0 < y_{\pi} < y_{beam}$. The energy dependence does not show any non-monotonic behaviour as expected for CP. Scaled variance for Ar+Sc collisions is surprisingly smaller than for p+p.
- Results on higher order moments of net-charge distribution in inelastic p+p interactions were shown. The trends of all measures are reproduced by EPOS and do not agree with independent particle production (Skellam).

E. Andronov for the NA61/SHINE collaboration

16/15

Back-up

E. Andronov for the NA61/SHINE collaboration

SPbSU, Laboratory of Ultra-High Energy Physics

Recent results from NA61/SHINE

PSD detector. Centrality determination.

PSD (Projectile Spectator Detector) is located on the beam axis and measures the forward energy E_F related to the non-interacting nucleons of the beam nucleus

18/15

Centrality determination

Due to the differences in magnetic field, PSD position and Fermi motion for various energies, different set of modules is chosen to calculate the E_F :

The module sets are chosen on the basis of corelations between energy and multiplicity for each module.

Analysis methods

- ▶ h⁻ analysis based on the fact that the majority of negatively charged particles are π⁻ mesons. Contribution of the other particles is subtracted using Monte-Carlo models
- dE/dx analysis uses TPC energy loss information to identify particles

h[•] analysis method – majority of negatively charged particles are π [•] mesons. Contribution (\approx 10%) of other particles (K[•], anti-p) is subtracted using EPOS 1.99

Precise large statistics results in full p_{τ} and wide rapidity range in all SPS energies

- The results are corrected for particles from weak decays (feed-down) and the detector effects using MC simulations
- Out of target interactions are subtracted using events recorded with removed target

Double differential spectra $d^2n/(dp_T dy)$ of negatively charged pions in rapidity and transverse momentum for central (0-5%) Ar+Sc collisions

Transverse mass spectra of π^{-} mesons in Ar+Sc - comparison to p+p, Be+Be, Pb+Pb

Pb+Pb (7%; 5%) measured by NA49: PR C66, 054902, 2002; PR C77, 024903, 2008 Inelastic p+p measured by NA61: EPJ C74, 2794, 2014

E. Andronov for the NA61/SHINE collaboration

SPbSU, Laboratory of Ultra-High Energy Physics

Rapidity spectra of π mesons in Ar+Sc – comparison to p+p, Be+Be, Pb+Pb

Pb+Pb (7%; 5%) measured by NA49: PR C66, 054902, 2002; PR C77, 024903, 2008 Inelastic p+p measured by NA61: EPJ C74, 2794, 2014

E. Andronov for the NA61/SHINE collaboration

SPbSU, Laboratory of Ultra-High Energy Physics

E. Andronov for the NA61/SHINE collaboration

24/15

Analysis

- Event selection criteria:
 - good beam quality
 - no off-time beam particles
 - good main vertex fit
 - centrality selected by forward energy
- Track selection criteria:
 - sufficient number of points inside TPCs
 - track trajectory points to interaction point
 - not electron or positron
 - $p_T < 1.5 \text{ GeV/c}$
 - $0 < y_{\pi} < y_{beam}$ (due to poor azimuthal angle acceptance and stronger electron contamination at backward rapidities)
 - NA61/SHINE acceptance map

Examples of uncorrected N vs. P_T distributions ${}^{40}\text{Ar}+{}^{45}\text{Sc}$ at 150A GeV/c, 0 – 5%

N, P_T and $P_{T,2} = \sum_{i=1}^{N} p_{Ti}^2$ are measured for each event.

 $P_{T,2}$ is needed to calculate the scaled variance of the inclusive p_T distribution $\omega[p_T] = \frac{\overline{p_T^2} - \overline{p_T}^2}{\overline{p_T}}$ using only event quantities.

Corrections

K. Werner, et al., PRC 74:044902

- MC used for corrections: EPOS1.99 model (version CRMC 1.5.3), GEANT3.21. The simulated data were analysed within the NA61/SHINE acceptance.
- Corrections for losses due to event and track selections, trigger biases, detector inefficiencies, secondary interactions and feed-down from weak decays for ⁴⁰Ar+⁴⁵Sc were performed on the level of the first and second moments of measured observables.
- Correction factors for $\langle N \rangle$, $\langle N^2 \rangle$, $\langle P_T \rangle$, $\langle P_T^2 \rangle$, $\langle N \cdot P_T \rangle$ and $\langle P_{T,2} \rangle$ were calculated as ratios of the corresponding moments for pure to reconstructed MC for positively, negatively and all charged hadrons, separately.

Note on errors

Statistical uncertainties were calculated using the sub-sample method. They are typically smaller than the marker size.

 Δ , $\Sigma[P_T, N]$: energy vs. system size scan 0 < y_{π} < y_{beam} , p_T < 1.5 GeV/c, NA61/SHINE acceptance

No prominent structures which could be related to the CP are visible.

28/15

 $^{+p}_{^{7}\text{Be+}^{9}\text{Be}, 0-5\%}_{^{40}\text{Ar+}^{45}\text{Sc}, 0-5\%}$

 $\Delta, \Sigma[P_T, N]: \text{ energy vs. system size scan} \xrightarrow{P+p} {}^{7}Be+{}^{9}Be \text{ vs. } {}^{40}Ar+{}^{45}Sc \xrightarrow{P+p} {}^{7}Be+{}^{9}Be, 0-5\% {}^{40}Ar+{}^{45}Sc, 0-5\% {}^{40}Ar+{}^{45}Sc, 0-5\% {}^{40}Ar+{}^{45}Sc, 0-5\% {}^{40}Ar+{}^{45}Sc \xrightarrow{P+p} {}^{7}Be+{}^{9}Be, 0-5\% {}^{40}Ar+{}^{45}Sc \xrightarrow{P+p} {}^{7}Be+{}^{9}Be, 0-5\% {}^{40}Ar+{}^{45}Sc \xrightarrow{P+p} {}^{40}Ar+$

 $\Delta[P_T, N] < 1$ and $\Sigma[P_T, N] \ge 1$ for all systems.

1) Bose-Einstein statistics of pion gas 2) negative $M(p_T)$ vs. N correlation leads to the same inequalities.

29/15

89:034903

No prominent structures which could be related to the CP are visible.

Comparison with Pb+Pb results from NA49

To compare results of $p_{\mathcal{T}}$ fluctuations, NA49 cuts were applied to NA61/SHINE data.

In NA49:

• because of high density of tracks, analysis was limited to forward-rapidity region $(1.1 < y_{\pi} < 2.6)$

• to exclude elastically scattered or diffractively produced protons, analysis was limited in proton rapidity ($y_p < y_{beam} - 0.5$)

• $0.005 < p_T < 1.5 \text{ GeV/c}$

• common azimuthal acceptance for all energies (only for energy dependence analysis)

Comparison to NA49 A+A within NA49 acceptance

 Energy scan: NA49 Pb+Pb and NA61 Ar+Sc results similar. No prominent structures which could be related to the CP are visible.

 System size dependence of Σ[P_T, N] at 150/158A GeV/c: NA49 and NA61 points show consistent trends.

Multiplicity fluctuations in Ar+Sc

 $p_{T} < 1.5 \text{ GeV/c}$ $0 < y_{\pi} < y_{\text{beam}}$

 Statistical uncertainties are included

- Systematic uncertainties are under investigation
- Results are corrected for non-target interactions, detector inefficiencies and trigger bias

- ω [N] is not a strongly intensive measure and it depends on volume fluctuations \rightarrow values larger for 0-5% Ar+Sc than for 0-0.2% Ar+Sc
- No significant non-monotonic behavior observed
- Increase of $\omega_{\rm Nch}$ measured hadrons) with energy reflects increase of $\omega_{\rm Nch}$ measured in full phase-space $_{\rm (see PR 351, 161, 2001)}$
- NA61 Ar+Sc results (0-0.2%) in agreement with EPOS model

32/15

Data

Preliminary results were obtained from p+p data collected in 2009.

$\sqrt{s_{NN}}$ [GeV]	6.3	7.6	8.7	12.3	17.3
Events	0.2M	0.9M	3.0M	1.7M	1.6M

- Corrected results refer to inelastic interactions and particles produced in strong and EM processes within the analysis acceptance
- This analysis focuses on fluctuations of negatively charged hadrons and net-charge $(h^+ h^-)$ by calculating first, second, third and fourth moments of multiplicity distributions

Corrections

Multiplicity distributions are corrected for

- off-target interactions
- detector effects
- event selection (trigger bias and analysis procedure)
- track selection within the analysis acceptance
- contribution of weak decays
- secondary interactions

Example of vertex z distribution

In order to estimate off-target interactions NA61/SHINE takes data with *target inserted* and *removed*.

Scaling factor between *removed* and *inserted target* is obtained in region far from target. It is defined as

$$\epsilon = \frac{N_{ev}^{\prime}}{N_{ev}^{R}} \bigg|_{z > -450 \text{ cm}}.$$

Correction for off-target interactions and simulation based correction

• Off-target correction:

Corrected multiplicity distribution is obtained by subtracting scaled *target removed* multiplicity distribution from *target inserted* one.

- ② Simulation-based correction:
 - The correction was calculated using the EPOS 1.99 model as tables of correction factors in bins of N for negatively charged hadrons and net-charge distributions, separately.
 - ► Each entry of the table is the ratio of generated to reconstructed tracks (*c_i*).

Corrected multiplicity distribution is obtained by multiplying multiplicity distribution by table of correction factors

Moments are obtained from the corrected multiplicity distribution

EPOS, K. Werner et al. Phys. Rev. C74, 044902

SPbSU, Laboratory of Ultra-High Energy Physics

Comparison with models - net charge

For negatively charged hadrons we expect Poisson distribution (independent particle production). Thus, our intensive quantities should be equal to 1 for negatively charge hadrons. Net-charge is a difference between positive and negative charge, so it is described by Skellam distribution (difference of two variables from Poisson distributions):

$$\langle h^+ - h^- \rangle = \langle h^+ \rangle - \langle h^- \rangle$$
 (1)

$$Var[h^+ - h^-] = \langle h^+ \rangle + \langle h^- \rangle \tag{2}$$

$$S[h^{+} - h^{-}] = \frac{\langle h^{+} \rangle - \langle h^{-} \rangle}{(\langle h^{+} \rangle + \langle h^{-} \rangle)^{3/2}}$$
(3)

$$\kappa[h^+ - h^-] = rac{1}{\langle h^+
angle + \langle h^-
angle}$$
 (4)

E. Andronov for the NA61/SHINE collaboration

Fluctuations of negatively charged hadrons in inelastic p+p

• In IB-GCE intensive quantities (ω , S σ , $\kappa\sigma^2$) should be 1

- All quantities rise with collision energy
- No non-monotonic behavior suggesting CP
- Tendency reproduced by EPOS but the magnitude of $\kappa\sigma^2$ is not reproduced

E. Andronov for the NA61/SHINE collaboration

38/15

Thader (for STAR), arXiv:1601.00951 (QM 2015)

E. Andronov for the NA61/SHINE collaboration Recent results from NA61/SHINE