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• Electrical conductivity 

• Dilepton production rate 

• Vector meson spectrum 
   at finite T

E
J

J=σE
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Fig. 3. Left panel: The dispersion relation in the fermionic sector. In both of the two figures, the coupling constant is set
to g = 0.1. The vertical axis is the energy p0, while the horizontal axis is the momentum |p|. The solid (blue in the web
version) lines correspond to the normal fermion and the antiplasmino, while the bold solid (red in the web version) one
to the ultrasoft mode. Note that since we focus on the fermion sector, the antiplasmino appears instead of the plasmino.
The dotted lines denote the light cone. Since our analysis on the ultrasoft mode is valid only for |p| ≪ g2T , the plot for
|p| ! g2T may not have a physical meaning. The residue of the antiplasmino becomes exponentially small for |p| ≫ gT ,
so the plot of the antiplasmino does not represent physical excitation for |p| ≫ gT , either. Right panel: The spectral
function in the fermion sector, Eq. (21), as a function of energy p0 at zero momentum.

smallness of the residue is actually compatible with the results in the HTL approximation: The
sum of the residues of the normal fermion and the antiplasmino modes obtained in the HTL
approximation is unity and thus the sum rule of the spectral function of the fermion is satisfied
in the leading order. Therefore, one could have anticipated that the residue of the ultrasoft mode
cannot be the order of unity but should be of higher order. Eqs. (17) through (20) for Yukawa
model with a scalar coupling are obtained for the first time.

The pole given by Eq. (18) gives rise to a new peak in the spectral function of the fermion as

ρ+
(
p0,p

)
= Z

π
Im

−1
p0 + v|p| + iζ

, (21)

which is depicted in the right panel of Fig. 3, where |p| is set to zero. Since the expression of ζ

for the Yukawa model is not available in the literature, we simply adopt ζ = g4T lng−1/(2π) in
the figure.

2.2. Absence of vertex correction in Yukawa model

So far, we have considered the one-loop diagram. We need to check that the higher-order loops
are suppressed by the coupling constant. This task would not be straightforward because, δm2 ∼
g2T 2 appears in the denominator, as seen in Eq. (14), which could make invalid the naive loop
expansion. The possible diagrams contributing in the leading order are ladder diagrams shown in
Fig. 4 because the fermion–boson pair of the propagators gives a contribution of order 1/g2, and
the vertex gives g2. However, there is a special suppression mechanism in the present case with
the scalar coupling.

For example, let us evaluate the first diagram in Fig. 4, at small p. The self-energy is evaluated
to be

≃
∫

d4k

(2π)4 K̃(k)

∫
d4l

(2π)4 K̃(l)
/k(/k − /l)/l

(2k · l)
2p̃ · (k − l)

δm2 . (22)
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Sum rules on electromagnetic spectral function (longitudinal/transverse)
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I. INTRODUCTION

There are three scales at finite temperature/density:

• Hydro scale (p ≪ Λ)

• Kinetic scale (Λ ≪ p ! T )

• Vacuum scale (p ≫ T )

In the first scale, the hydrodynamics is reliable while the OPE is expected to work in the third scale. We will fully
use these asymptotic behaviors in the UV and IR regions, by using sum rules.
The spectral function in the electromagnetic current sector is relevant to

• electric conductivity

• dilepton production rate

• vector meson spectrum

They are important quantities in the heavy ion collision.

II. CONVENTIONS

The retarded function of momentum reads

GRµν(t,x) ≡ iθ(t)⟨[jµ(t,x), jν(0,0)]⟩, (2.1)

GRµν(ω,p) = i

∫

dt

∫

d3xeiωt−ip·xθ(t)⟨[jµ(t,x), jν(0,0)]⟩. (2.2)

Here jµ ≡ e
∑

f qfψfγ
µψf is the electromagnetic current, where f is the index for the flavor. It can decomposed into

longitudinal and transverse components as

GRµν (ω,p) = Pµν
L (p)GR

L(ω,p) + Pµν
T (p)GR

T (ω,p), (2.3)

where Pµν
L (p) ≡ −gµν + pµpν/p2 − Pµν

T (p) and P ij
T (p) ≡ δij − pipj/|p|2. To obtain sum rule, it is convenient to focus

on the diagonal components. When p ∝ ẑ, we have

GR00(ω,p) =
p2

p2
GR

L(ω,p), (2.4)

GR33(ω,p) =
ω2

p2
GR

L(ω,p), (2.5)

GR11(ω,p) = GR22(ω,p) = GR
T (ω,p), (2.6)

At |p| = 0, GR
L(ω) = GR

T (ω) = GR(ω), so that GRµν(ω,p) = − [gµν − nµnν ]GR(ω), where nµ ≡ (1,0).

f: flavor index, qf: electric charge

Vector spectral function contains all 
information of them.
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Rich and complicated structure.

Possible form of vector spectral function

transport peak vector meson peak continuum (qq)

ω

ρ
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There are several approaches:  
perturbation, holography, model, lattice…

But no conclusive results are obtained. 
Even lattice QCD analysis needs an ansatz for the spectral function 

because it can not directly treat dynamical quantity.

pQCD: E. Braaten and R. D. Pisarski, Nucl. Phys. B 339 310 (1990). 
AdS/CFT: S. Caron-Huot, P. Kovtun, G. D. Moore, A. Starinets and L. G. Yaffe, JHEP 0612, 015 (2006). 
PNJL model: C. A. Islam, S. Majumder, N. Haque and M. G. Mustafa, JHEP 1502, 011 (2015). 
Semi-QGP: D. S. and W. Weise, Phys. Rev. D 92 056001 (2015). 
Sum rule: P. Gubler, W. Weise, Phys. Lett. B 751 396 (2015). 
Lattice QCD: H.-T. Ding et. al., Phys.Rev. D 83 034504 (2011).

ω

Lorentzian Lorentzian smooth functionρ(ω)
+ +
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Is there any exact relation we can use 
for improvement?

QCD sum rule
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Sum of spectral function is constrained 
by the UV/IR behaviors! (sum rule)

3

IV. HIGH ENERGY BEHAVIOR

According to Philipp’s note, we get DS: To be confirmed.

GRL(ω,p) = Ap2 ln(−p2/µ2) +B + Cmf ⟨qfqf ⟩
1

p2
+D⟨GµνGµν⟩

1

p2
+ EL(T )

1

p2
+

(

ln p2

p2
term

)

, (4.1)

GRT (ω,p) = Ap2 ln(−p2/µ2) +B + Cmf ⟨qfqf ⟩
1

p2
+D⟨GµνGµν⟩

1

p2
+ ET (T )

ω2 + p2

p4
+

(

ln p2

p2
term

)

. (4.2)

The A, B terms do not depend on T , so they do not appear in our sum rule.

V. SUM RULES

We follow the method introduced in Ref. [3]. Suppose that we have a function f(ω) which is analytic in the upper
plane of ω and goes to zero at |ω| → ∞ quickly. Then, by using the residue theorem,

f(iω′) =
1

2πi

∫

C
dω

f(ω)

ω − iω′

=
1

2πi

∫ ∞

−∞

dω
f(ω)

ω − iω′
,

(5.1)

where C is the contour drawn in Fig. ??. At ω′ → 0, it becomes

f(0) =
1

2πi
P

∫ ∞

−∞

dω
f(ω)

ω
+

1

2
f(0), (5.2)

where the last term appeared because in this limit, the pole crosses the contour C.
Now we define δGR(ω) ≡ GR(ω) − GR

T=0(ω), to treat the medium and the vacuum parts separately. Here GR

is a retarded Green function in arbitrary channel. We consider the case that f(ω) = δGR(ω,p) − δGR
∞(p), where

δGR
∞ ≡ limω→i∞ δGR(ω) was subtracted to make it sure that f(ω) converges at infinity |ω|. Now let us see the real

and the imaginary parts separately. From Eq. (A4), the parity of the diagonal component of the retarded Green
function, GRµµ, is determined. By using it, Eq. (5.2) becomes

δGR(0,p)− δGR
∞(p) =

2

π

∫ ∞

0
dω
δρ(ω,p)

ω
, (5.3)

where we have introduced δρ(ω,p) ≡ ImδGR(ω,p). We note that, when |p| is small enough, the first term in the left-
hand side contains the information of the hydrodynamics while the second term contains the information of ultraviolet
sector, which is given by the operator product expansion (OPE). We emphasize that this equation is exact as long as
the hydrodynamics describes the behavior at low energy correctly.

A. Longitudinal component

1. Zeroth moment

Here let us focus on the 00-component, GR00(ω,p). Then, from Eq. (3.12),

GR00(0,p) =
σ

D
. (5.4)

On the other hand, δGRL
∞ (p) is given by OPE (Eq. (4.1)). GR00(ω,p) is obtained from this expression by using

Eq. (??), and we find that δGR00
∞ (p) = 0. Thus, by collecting Eqs. (5.3) and (5.4), we get

σ

D
=

2

π

∫ ∞

0
dω
δρ00(ω,p)

ω
. (5.5)

This is the sum rule at zeroth moment. We note that the left-hand side does not contain |p| dependence while the
right-hand side generally depend on |p|. We also note that the left-hand side does not contain the information of
transport coefficient. This can be understood because, the integration over Lorentzian just gives the residue of it, and
does not give the information of the width, transport coefficient. To get the information of the width, we need to go
to sum rule at higher moment.

IR UV

P. Romatschke, D. T. Son, Phys.Rev. D 80 065021 (2009).
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GR00(ω,p) =
p2

p2
GR

L(ω,p), (2.4)

GR33(ω,p) =
ω2

p2
GR

L(ω,p), (2.5)

GR11(ω,p) = GR22(ω,p) = GR
T (ω,p), (2.6)

At |p| = 0, GR
L(ω) = GR

T (ω) = GR(ω), so that GRµν(ω,p) = − [gµν − nµnν ]GR(ω), where nµ ≡ (1,0).

analyticity in 
upper ω plane

3

IV. HIGH ENERGY BEHAVIOR

According to Philipp’s note, we get DS: To be confirmed.

GRL(ω,p) = Ap2 ln(−p2/µ2) +B + Cmf ⟨qfqf ⟩
1

p2
+D⟨GµνGµν⟩

1

p2
+ EL(T )

1

p2
+

(

ln p2

p2
term

)

, (4.1)

GRT (ω,p) = Ap2 ln(−p2/µ2) +B + Cmf ⟨qfqf ⟩
1

p2
+D⟨GµνGµν⟩

1

p2
+ ET (T )

ω2 + p2

p4
+

(

ln p2

p2
term

)

. (4.2)

The A, B terms do not depend on T , so they do not appear in our sum rule.

V. SUM RULES

We follow the method introduced in Ref. [3]. Suppose that we have a function f(ω) which is analytic in the upper
plane of ω and goes to zero at |ω| → ∞ quickly. Then, by using the residue theorem,

f(iω′) =
1

2πi

∫

C
dω

f(ω)

ω − iω′

=
1

2πi

∫ ∞

−∞

dω
f(ω)

ω − iω′
,

(5.1)

where C is the contour drawn in Fig. ??. At ω′ → 0, it becomes

f(0) =
1

2πi
P

∫ ∞

−∞

dω
f(ω)

ω
+

1

2
f(0), (5.2)

where the last term appeared because in this limit, the pole crosses the contour C.
Now we define δGR(ω) ≡ GR(ω) − GR

T=0(ω), to treat the medium and the vacuum parts separately. Here GR

is a retarded Green function in arbitrary channel. We consider the case that f(ω) = δGR(ω,p) − δGR
∞(p), where

δGR
∞ ≡ limω→i∞ δGR(ω) was subtracted to make it sure that f(ω) converges at infinity |ω|. Now let us see the real

and the imaginary parts separately. From Eq. (A4), the parity of the diagonal component of the retarded Green
function, GRµµ, is determined. By using it, Eq. (5.2) becomes

δGR(0,p)− δGR
∞(p) =

2

π

∫ ∞

0
dω
δρ(ω,p)

ω
, (5.3)

where we have introduced δρ(ω,p) ≡ ImδGR(ω,p). We note that, when |p| is small enough, the first term in the left-
hand side contains the information of the hydrodynamics while the second term contains the information of ultraviolet
sector, which is given by the operator product expansion (OPE). We emphasize that this equation is exact as long as
the hydrodynamics describes the behavior at low energy correctly.

A. Longitudinal component

1. Zeroth moment

Here let us focus on the 00-component, GR00(ω,p). Then, from Eq. (3.12),

GR00(0,p) =
σ

D
. (5.4)

On the other hand, δGRL
∞ (p) is given by OPE (Eq. (4.1)). GR00(ω,p) is obtained from this expression by using

Eq. (??), and we find that δGR00
∞ (p) = 0. Thus, by collecting Eqs. (5.3) and (5.4), we get

σ

D
=

2

π

∫ ∞

0
dω
δρ00(ω,p)

ω
. (5.5)

This is the sum rule at zeroth moment. We note that the left-hand side does not contain |p| dependence while the
right-hand side generally depend on |p|. We also note that the left-hand side does not contain the information of
transport coefficient. This can be understood because, the integration over Lorentzian just gives the residue of it, and
does not give the information of the width, transport coefficient. To get the information of the width, we need to go
to sum rule at higher moment.

remove UV divergence

Retarded Green function:
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For simplicity, we consider p=0 case.

isotropy: GR
ij(!,0) = �ijG

R(!)

Only one independent component.
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UV behavior: operator product expansion (OPE)
separation of scale: T, ΛQCD<<1/x~ω

High-energy 
information

Low-energy 
information 

(ω independent, static) 

factorization:

hjµ(x)j⌫(0)i =
X

i

C

i(x)hOi(x = 0)iT

(ω dependent)

It can be computed  
perturbatively.

It contains all 
nonperturbative 

information.
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Asymptotic behavior—UV (OPE)

ω→∞
Asymptotic freedom

No αs correction in the coefficients!

Only T-dependent term was retained.

GR(!) = e2
X

f

q2f
1

!2


2mf�

⌦
 f f

↵
+

1

12
�
D↵s

⇡
G2

E
+

8

3

⌦
T 00
f

↵�
+O(!�4)

CF =(N2c -1)/(2Nc)

ω→∞
operator mixing

8

3

1

4CF +Nf
hT 00

f + T 00
g i

calculated from lattice.
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IR behavior: hydrodynamics

P. Romatschke, D. T. Son, Phys.Rev. D 80 065021 (2009).

Assume the locality of the current: 
j(t,x) = j[E(t,x),B(t,x)]

(Small frequency/wavelength of E, B justifies 
this assumption.)

Ohmic

σ: Electric conductivity

this tensor, GR(ω) ≡ GR
ii(ω, 0)/3, due to isotropy. In this paper,

we limit ourselves to this case for simplicity.
First, to introduce the method developed in Ref. [20], we red-

erive the sum rule of Eq. (8), which has already been obtained
in Ref. [15] from the current conservation law. The retarded
Green function is known to be analytic in the upper half of the
complex ω plane. This property enables us to derive various
sum rules. Because of the residue theorem, we have

δGR(iω) − δGR
∞ =

1
2πi

∮

C
dω′

δGR(ω′) − δGR
∞

ω′ − iω
, (1)

for which the contour C is shown in Fig. 1. Here δ stands
for the subtraction of the T = 0 value of GR(ω), δGR(ω) ≡
GR(ω) −GR(ω)|T=0. Due to this subtraction, the ultraviolet be-
havior of GR is improved so that the contribution from the arc
with infinite radius becomes negligible. Another subtraction of
δGR
∞ ≡ δGR(iω)|ω→∞ is for removing any possibly remaining

ultraviolet divergence. Taking the infinitesimal ω limit, we get

δGR(0) − δGR
∞ =

2
π

∫ ∞

0

dω
ω
δρ(ω), (2)

where we have made use of the fact that the real (imaginary)
part of GR(ω) is an even (odd) function of ω, and introduced
the spectral function, ρ(ω) ≡ ImGR(ω). We also changed the
integration variable to ω for simplicity.

On the left-hand side, the ultraviolet (UV) and infrared (IR)
limits of GR constrain the spectral function integral through
Eq. (2). The former quantity can be evaluated using the operator
product expansion (OPE) [21, 22]. Because of the subtraction
of the T = 0 piece, all terms with operators of mass dimensions
less than four vanish, so that the asymptotic behavior at large
ω is described by the operators with mass dimensions four. By
computing the coefficients of such operators at leading order in
αs, we get

δGR(ω) = e2
∑

f

q2
f

1
ω2

[
2mf δ⟨ψ fψ f ⟩ +

1
12
δ
〈αs

π
G2
〉

+
8
3
δ⟨T 00

f ⟩
]
+ O
(
ω−4
)
,

(3)

where Gµνa ≡ ∂µAν
a−∂νAµa−g fabcAµbAν

c is the field strength, G2 ≡
Ga
µνGaµν, Tαβ

f ≡ iSTψ fγ
αDβψ f is the quark component to the

traceless part of the energy-momentum tensor, Dµ ≡ ∂µ+igAµata

the covariant derivative, Aµa the gluon field, ta the generator of
the S U(Nc) group in the fundamental representation, fabc the
structure constant of the S U(Nc) group, mf the current quark
mass, g the QCD coupling constant, αs ≡ g2/(4π), and Nc the
number of the colors. ST makes a tensor symmetric and trace-
less: STOαβ ≡ (Oαβ + Oβα)/2 − gαβOµµ/4. We note that hav-
ing dropped higher order corrections to the coefficients above
will be justified because we will consider ω → ∞ limit, which
allows us to use the asymptotic freedom. Also note that the
traceless gluonic component of the energy-momentum tensor
(T 00

g defined later) also can appear in the OPE at finite tem-
perature in principle. We have dropped such a term since it

vanishes at leading order in αs, but we will discuss below that
it shows up once the operator mixing is taken into account.
We retained the gluon condensate term though formally it is
higher order in αs, but this will be shown to be finite even in
the ω → ∞ limit later with the scale anomaly relation. When
considering the ω → ∞ limit, we need to take into account
the effects of scaling and mixing of the operators, reflected
in their anomalous dimensions. The anomalous dimensions
of the chiral and gluon condensates are zero, so they do nei-
ther scale nor mix. On the other hand, the quark energy mo-
mentum tensor both scales and mixes with a respective glu-
onic operator. To understand this behavior, we rewrite the op-
erator as T 00

f = T ′00
f + (T 00 + 2T̃ 00/Nf )/(4CF + Nf ), where

T ′00
f ≡ T 00

f −
∑

f ′ T 00
f ′ /Nf , T 00 ≡ ∑ f ′ T 00

f ′ + T 00
g , and T̃ 00 ≡

2CF
∑

f ′ T 00
f ′ −Nf T 00

g /2. Here, T µνg ≡ −Gµαa Gν
αa+gµνG2/4 is the

gluon component of the traceless part of the energy-momentum
tensor, Nf the flavor number, and CF ≡ (N2

c − 1)/(2Nc). A stan-
dard renormalization group (RG) analysis yields the following
scaling properties [23]:

T ′00
f (κ) =

[
ln
(
κ0/ΛQCD

)

ln
(
κ/ΛQCD

)
]a′

T ′00
f (κ0),

T̃ 00(κ) =
[
ln
(
κ0/ΛQCD

)

ln
(
κ/ΛQCD

)
]ã

T̃ 00(κ0),

(4)

while T 00 is independent of κ. Here κ and κ0 are renormaliza-
tion scales, ΛQCD is the QCD scale parameter, a′ ≡ 8CF/(3b0),
and ã ≡ 2(4CF +Nf )/(3b0), where b0 ≡ (11Nc −2Nf )/3, which
appears in the expression αs(κ) = 2π/[b0(ln(κ/ΛQCD))]. We see
that, except for the T 00 term, all terms are suppressed logarith-
mically at large ω. Thus, the resultant expression becomes

δGR(ω) = e2
∑

f

q2
f

1
ω2

[
2mf δ⟨ψ fψ f ⟩ +

1
12
δ
〈αs

π
G2
〉

+
8
3

δ⟨T 00⟩
4CF + Nf

]
.

(5)

This vanishes at ω → ∞ and hence its contribution to Eq. (2)
is zero. We note that, in ω → ∞ limit, which is relevant to
the derivation of the sum rule, the asymptotic freedom of QCD
guarantees that the above expression is exact.

On the other hand, the IR limit is well described by hydro-
dynamics. At |p| = 0, it suffices to consider the constitutive
relation for the system at rest, j = σE−στJ∂tE+O(∂2E), since
the conservation law of the current is trivial (∂t j0 = −∇ · j = 0).
Here σ is the electrical conductivity, τJ the second order trans-
port coefficient for ∂tE, E ≡ −∇A0 − ∂0A the electric field, and
Aµ the vector potential. We have dropped magnetic field depen-
dent terms and the diffusion term from the constitutive relation,
since they vanish in the |p| = 0 case. The linear response theory
enables us to extract the retarded function through the relation,

jµ(ω) = −GR
µν(ω)Aν(ω), (6)

2
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which results in1

GR(ω) = iωσ (1 + iτJω) + O(ω3), ρ(ω) = σω + O(ω3). (7)

We note that, σ = τJ = 0 at T = 0, so that GR here is actually
equal to δGR. The reason for σ = 0 is that even the lightest vec-
tor meson ( the ρ) has non-zero mass and its spectral strength
vanishes below the ππ threshold. Therefore the spectral weight
around ω = 0 is zero. τJ = 0 is obtained from the renormal-
ization condition for photon wave function. This is not the case
for the coefficients of order ω4 or higher. We also note that
this expression is correct only in the large Nc limit, in which
the coupling effect among the hydro modes is negligible [25].
Beyond this limit, a nonanalytic term (ω3/2) appears in ρ(ω).
Nevertheless, this does not affect the sum rules 1 and 2 we de-
rive in this work. Applying the UV and IR results of Eqs. (5),
(7), Eq. (2) becomes

0 =
∫ ∞

0

dω
ω
δρ(ω). (8)

This is the first sum rule (sum rule 1) to be discussed in this
paper. We should mention here that this is the |p| = 0 version
of the sum rule derived in Ref. [15].

Let us check that this sum rule is satisfied at weak coupling
and in the chiral limit (mf = 0). In this case, the spectral func-
tion consists of a transport peak at low energy (ω ∼ g4T ) and a
continuum in the high energy region (ω ∼ T ). We first evaluate
the former contribution, which can be described by the Boltz-
mann equation

Dn± f (k, X) − τ−1nF(|k|)
= ∓eq f (E + v × B) (X) · ∇kn± f (k, X),

(9)

where D ≡ v ·∂X + τ−1, n± f (k, X) is the distribution function for
the quark (anti-quark) with momentum k at point X, nF(|k|) ≡
[exp(|k|/T )+1]−1 is the distribution function at equilibrium, and
vµ ≡ (1, v) with v ≡ k/|k|. We have adopted here the relaxation
time approximation, which considerably simplifies the collision
term2. τ is called relaxation time, and its order of magnitude is
determined by collision effects. Since we are interested in the
retarded Green function, we only need the linearized equation:
Dδn± f (k, X) = ∓eq f E(X) · vn′F(|k|), where δn± f ≡ n± f − nF .
After performing the Fourier transformation X → p and setting
|p| = 0, this results in the solution

δn± f (k,ω) = ∓ieq f
E(ω) · v
ω + iτ−1 n′F(|k|). (10)

The induced current is given by j(ω) =
2eNc

∑
f q f
∫

d3kv
∑

s=±1 sδns f (k,ω)/(2π)3, where the factor 2

1 The real part of GR(ω) contains a UV divergence coming from the T = 0
part, so σ and τJ need to be defined for the renormalized version of GR(ω).
This divergence can be removed by the renormalization of the photon wave
function [23, 24].

2This is a very simple approximation, which was however found to work
well by solving the Boltzmann equation without relying on it [26]: The full
calculation produces a solution for ρ(ω)/ω that is an almost perfect Lorentzian,
which is also obtained by the relaxation time approximation [see Eq. (11)].

comes from the spin degeneracy of the quarks. This expression
and Eq. (10), together with the linear response relation of
Eq. (6), give us the following result for GR and the spectral
function:

GR(ω) = −T 2CemNc

9
ω

ω + iτ−1 , ρ(ω) =
T 2CemNc

9
ωτ−1

ω2 + τ−2 .

(11)

Here we have introduced the factor, Cem ≡ e2∑
f q2

f . We note
that this is reduced to Eq. (7) when ω ≪ τ−1, and we can iden-
tify3 σ = T 2CemNcτ/9 and τJ = τ. Its contribution to the sum
rule Eq. (8) reads

∫ ∞

0

dω
ω
δρ(ω) =

πT 2CemNc

18
, (12)

which is of order e2T 2, and independent of τ. Here the T = 0
component does not contribute because of the absence of the
transport peak in the vacuum.

Next, we evaluate the contribution from the continuum.
From a one-loop calculation [29], we have

ρ(ω) =
NcCem

12π
ω2
(
1 − 2nF

(ω
2

))
. (13)

The pair creation/annihilation process of the quark and the anti-
quark is responsible for this expression: one can see that by
rewriting the distribution function factor 1−2nF as [1−nF]2−n2

F .
The former (latter) term comes from the pair creation (annihi-
lation) process. It is noted that, after subtracting the T = 0 part,
the spectral function becomes negative. Performing the inte-
gral over ω, it is straightforward to see that its contribution to
the sum rule cancels the contribution from the transport peak,
Eq. (12), so that the sum rule Eq. (8) is satisfied.

2.2. Sum Rule 2
In a similar way (replacing GR with ω2GR in the deriva-

tion), we derive another sum rule which contains two more
powers of ω in the integrand. In analogy to the derivation of
sum rule 1, we get δGR2

0 − δGR2
∞ = 2

∫ ∞
0 dωωδρ(ω)/π, where

δGR2
∞ ≡ ω2δGR(ω)|ω→∞ and δGR2

0 ≡ ω2δGR(ω)|ω→0. By using
the UV/IR limits of GR, Eqs. (5) and (7), we obtain

2
π

∫ ∞

0
dωωδρ(ω) = −e2

∑

f

q2
f

[
2mf δ⟨ψ fψ f ⟩

+
1
12
δ
〈αs

π
G2
〉
+

8
3(4CF + Nf )

δ⟨T 00⟩
]
.

(14)

This is the second sum rule (sum rule 2)4 we discuss in this
work.

3We note that collisional effects are essential for the evaluation of σ: If we
take the τ−1 → 0 limit, ρ(ω) will be proportional to ωδ(ω) and σ is proportional
to τ, which is infinitely large. This abnormal behavior indicates that collisions
are important in the small ω region.

4We note that this sum rule in the case of N f = 1 and Nc = 3 was derived in
Ref. [9]. However, the coefficient of T 00 in this reference is not the correct one
(Eq. (14)), but is equal to that in the expression (Eq. (16)), where the effect of
the mixing/rescaling of the energy-momentum tensor is neglected.

3

this tensor, GR(ω) ≡ GR
ii(ω, 0)/3, due to isotropy. In this paper,

we limit ourselves to this case for simplicity.
First, to introduce the method developed in Ref. [20], we red-

erive the sum rule of Eq. (8), which has already been obtained
in Ref. [15] from the current conservation law. The retarded
Green function is known to be analytic in the upper half of the
complex ω plane. This property enables us to derive various
sum rules. Because of the residue theorem, we have

δGR(iω) − δGR
∞ =

1
2πi

∮

C
dω′

δGR(ω′) − δGR
∞

ω′ − iω
, (1)

for which the contour C is shown in Fig. 1. Here δ stands
for the subtraction of the T = 0 value of GR(ω), δGR(ω) ≡
GR(ω) −GR(ω)|T=0. Due to this subtraction, the ultraviolet be-
havior of GR is improved so that the contribution from the arc
with infinite radius becomes negligible. Another subtraction of
δGR
∞ ≡ δGR(iω)|ω→∞ is for removing any possibly remaining

ultraviolet divergence. Taking the infinitesimal ω limit, we get

δGR(0) − δGR
∞ =

2
π

∫ ∞

0

dω
ω
δρ(ω), (2)

where we have made use of the fact that the real (imaginary)
part of GR(ω) is an even (odd) function of ω, and introduced
the spectral function, ρ(ω) ≡ ImGR(ω). We also changed the
integration variable to ω for simplicity.

On the left-hand side, the ultraviolet (UV) and infrared (IR)
limits of GR constrain the spectral function integral through
Eq. (2). The former quantity can be evaluated using the operator
product expansion (OPE) [21, 22]. Because of the subtraction
of the T = 0 piece, all terms with operators of mass dimensions
less than four vanish, so that the asymptotic behavior at large
ω is described by the operators with mass dimensions four. By
computing the coefficients of such operators at leading order in
αs, we get

δGR(ω) = e2
∑

f

q2
f

1
ω2

[
2mf δ⟨ψ fψ f ⟩ +

1
12
δ
〈αs

π
G2
〉

+
8
3
δ⟨T 00

f ⟩
]
+ O
(
ω−4
)
,

(3)

where Gµνa ≡ ∂µAν
a−∂νAµa−g fabcAµbAν

c is the field strength, G2 ≡
Ga
µνGaµν, Tαβ

f ≡ iSTψ fγ
αDβψ f is the quark component to the

traceless part of the energy-momentum tensor, Dµ ≡ ∂µ+igAµata

the covariant derivative, Aµa the gluon field, ta the generator of
the S U(Nc) group in the fundamental representation, fabc the
structure constant of the S U(Nc) group, mf the current quark
mass, g the QCD coupling constant, αs ≡ g2/(4π), and Nc the
number of the colors. ST makes a tensor symmetric and trace-
less: STOαβ ≡ (Oαβ + Oβα)/2 − gαβOµµ/4. We note that hav-
ing dropped higher order corrections to the coefficients above
will be justified because we will consider ω → ∞ limit, which
allows us to use the asymptotic freedom. Also note that the
traceless gluonic component of the energy-momentum tensor
(T 00

g defined later) also can appear in the OPE at finite tem-
perature in principle. We have dropped such a term since it

vanishes at leading order in αs, but we will discuss below that
it shows up once the operator mixing is taken into account.
We retained the gluon condensate term though formally it is
higher order in αs, but this will be shown to be finite even in
the ω → ∞ limit later with the scale anomaly relation. When
considering the ω → ∞ limit, we need to take into account
the effects of scaling and mixing of the operators, reflected
in their anomalous dimensions. The anomalous dimensions
of the chiral and gluon condensates are zero, so they do nei-
ther scale nor mix. On the other hand, the quark energy mo-
mentum tensor both scales and mixes with a respective glu-
onic operator. To understand this behavior, we rewrite the op-
erator as T 00

f = T ′00
f + (T 00 + 2T̃ 00/Nf )/(4CF + Nf ), where

T ′00
f ≡ T 00

f −
∑

f ′ T 00
f ′ /Nf , T 00 ≡ ∑ f ′ T 00

f ′ + T 00
g , and T̃ 00 ≡

2CF
∑

f ′ T 00
f ′ −Nf T 00

g /2. Here, T µνg ≡ −Gµαa Gν
αa+gµνG2/4 is the

gluon component of the traceless part of the energy-momentum
tensor, Nf the flavor number, and CF ≡ (N2

c − 1)/(2Nc). A stan-
dard renormalization group (RG) analysis yields the following
scaling properties [23]:

T ′00
f (κ) =

[
ln
(
κ0/ΛQCD

)

ln
(
κ/ΛQCD

)
]a′

T ′00
f (κ0),

T̃ 00(κ) =
[
ln
(
κ0/ΛQCD

)

ln
(
κ/ΛQCD

)
]ã

T̃ 00(κ0),

(4)

while T 00 is independent of κ. Here κ and κ0 are renormaliza-
tion scales, ΛQCD is the QCD scale parameter, a′ ≡ 8CF/(3b0),
and ã ≡ 2(4CF +Nf )/(3b0), where b0 ≡ (11Nc −2Nf )/3, which
appears in the expression αs(κ) = 2π/[b0(ln(κ/ΛQCD))]. We see
that, except for the T 00 term, all terms are suppressed logarith-
mically at large ω. Thus, the resultant expression becomes

δGR(ω) = e2
∑

f

q2
f

1
ω2

[
2mf δ⟨ψ fψ f ⟩ +

1
12
δ
〈αs

π
G2
〉

+
8
3

δ⟨T 00⟩
4CF + Nf

]
.

(5)

This vanishes at ω → ∞ and hence its contribution to Eq. (2)
is zero. We note that, in ω → ∞ limit, which is relevant to
the derivation of the sum rule, the asymptotic freedom of QCD
guarantees that the above expression is exact.

On the other hand, the IR limit is well described by hydro-
dynamics. At |p| = 0, it suffices to consider the constitutive
relation for the system at rest, j = σE−στJ∂tE+O(∂2E), since
the conservation law of the current is trivial (∂t j0 = −∇ · j = 0).
Here σ is the electrical conductivity, τJ the second order trans-
port coefficient for ∂tE, E ≡ −∇A0 − ∂0A the electric field, and
Aµ the vector potential. We have dropped magnetic field depen-
dent terms and the diffusion term from the constitutive relation,
since they vanish in the |p| = 0 case. The linear response theory
enables us to extract the retarded function through the relation,

jµ(ω) = −GR
µν(ω)Aν(ω), (6)

2

linear response: j(!) = �GR(!)A(!)

E = �@tA
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UV

irrelevant.δGR(ω)→0

which results in1

GR(ω) = iωσ (1 + iτJω) + O(ω3), ρ(ω) = σω + O(ω3). (7)

We note that, σ = τJ = 0 at T = 0, so that GR here is actually
equal to δGR. The reason for σ = 0 is that even the lightest vec-
tor meson ( the ρ) has non-zero mass and its spectral strength
vanishes below the ππ threshold. Therefore the spectral weight
around ω = 0 is zero. τJ = 0 is obtained from the renormal-
ization condition for photon wave function. This is not the case
for the coefficients of order ω4 or higher. We also note that
this expression is correct only in the large Nc limit, in which
the coupling effect among the hydro modes is negligible [25].
Beyond this limit, a nonanalytic term (ω3/2) appears in ρ(ω).
Nevertheless, this does not affect the sum rules 1 and 2 we de-
rive in this work. Applying the UV and IR results of Eqs. (5),
(7), Eq. (2) becomes

0 =
∫ ∞

0

dω
ω
δρ(ω). (8)

This is the first sum rule (sum rule 1) to be discussed in this
paper. We should mention here that this is the |p| = 0 version
of the sum rule derived in Ref. [15].

Let us check that this sum rule is satisfied at weak coupling
and in the chiral limit (mf = 0). In this case, the spectral func-
tion consists of a transport peak at low energy (ω ∼ g4T ) and a
continuum in the high energy region (ω ∼ T ). We first evaluate
the former contribution, which can be described by the Boltz-
mann equation

Dn± f (k, X) − τ−1nF(|k|)
= ∓eq f (E + v × B) (X) · ∇kn± f (k, X),

(9)

where D ≡ v ·∂X + τ−1, n± f (k, X) is the distribution function for
the quark (anti-quark) with momentum k at point X, nF(|k|) ≡
[exp(|k|/T )+1]−1 is the distribution function at equilibrium, and
vµ ≡ (1, v) with v ≡ k/|k|. We have adopted here the relaxation
time approximation, which considerably simplifies the collision
term2. τ is called relaxation time, and its order of magnitude is
determined by collision effects. Since we are interested in the
retarded Green function, we only need the linearized equation:
Dδn± f (k, X) = ∓eq f E(X) · vn′F(|k|), where δn± f ≡ n± f − nF .
After performing the Fourier transformation X → p and setting
|p| = 0, this results in the solution

δn± f (k,ω) = ∓ieq f
E(ω) · v
ω + iτ−1 n′F(|k|). (10)

The induced current is given by j(ω) =
2eNc

∑
f q f
∫

d3kv
∑

s=±1 sδns f (k,ω)/(2π)3, where the factor 2

1 The real part of GR(ω) contains a UV divergence coming from the T = 0
part, so σ and τJ need to be defined for the renormalized version of GR(ω).
This divergence can be removed by the renormalization of the photon wave
function [23, 24].

2This is a very simple approximation, which was however found to work
well by solving the Boltzmann equation without relying on it [26]: The full
calculation produces a solution for ρ(ω)/ω that is an almost perfect Lorentzian,
which is also obtained by the relaxation time approximation [see Eq. (11)].

comes from the spin degeneracy of the quarks. This expression
and Eq. (10), together with the linear response relation of
Eq. (6), give us the following result for GR and the spectral
function:

GR(ω) = −T 2CemNc

9
ω

ω + iτ−1 , ρ(ω) =
T 2CemNc

9
ωτ−1

ω2 + τ−2 .

(11)

Here we have introduced the factor, Cem ≡ e2∑
f q2

f . We note
that this is reduced to Eq. (7) when ω ≪ τ−1, and we can iden-
tify3 σ = T 2CemNcτ/9 and τJ = τ. Its contribution to the sum
rule Eq. (8) reads

∫ ∞

0

dω
ω
δρ(ω) =

πT 2CemNc

18
, (12)

which is of order e2T 2, and independent of τ. Here the T = 0
component does not contribute because of the absence of the
transport peak in the vacuum.

Next, we evaluate the contribution from the continuum.
From a one-loop calculation [29], we have

ρ(ω) =
NcCem

12π
ω2
(
1 − 2nF

(ω
2

))
. (13)

The pair creation/annihilation process of the quark and the anti-
quark is responsible for this expression: one can see that by
rewriting the distribution function factor 1−2nF as [1−nF]2−n2

F .
The former (latter) term comes from the pair creation (annihi-
lation) process. It is noted that, after subtracting the T = 0 part,
the spectral function becomes negative. Performing the inte-
gral over ω, it is straightforward to see that its contribution to
the sum rule cancels the contribution from the transport peak,
Eq. (12), so that the sum rule Eq. (8) is satisfied.

2.2. Sum Rule 2
In a similar way (replacing GR with ω2GR in the deriva-

tion), we derive another sum rule which contains two more
powers of ω in the integrand. In analogy to the derivation of
sum rule 1, we get δGR2

0 − δGR2
∞ = 2

∫ ∞
0 dωωδρ(ω)/π, where

δGR2
∞ ≡ ω2δGR(ω)|ω→∞ and δGR2

0 ≡ ω2δGR(ω)|ω→0. By using
the UV/IR limits of GR, Eqs. (5) and (7), we obtain

2
π

∫ ∞

0
dωωδρ(ω) = −e2

∑

f

q2
f

[
2mf δ⟨ψ fψ f ⟩

+
1
12
δ
〈αs

π
G2
〉
+

8
3(4CF + Nf )

δ⟨T 00⟩
]
.

(14)

This is the second sum rule (sum rule 2)4 we discuss in this
work.

3We note that collisional effects are essential for the evaluation of σ: If we
take the τ−1 → 0 limit, ρ(ω) will be proportional to ωδ(ω) and σ is proportional
to τ, which is infinitely large. This abnormal behavior indicates that collisions
are important in the small ω region.

4We note that this sum rule in the case of N f = 1 and Nc = 3 was derived in
Ref. [9]. However, the coefficient of T 00 in this reference is not the correct one
(Eq. (14)), but is equal to that in the expression (Eq. (16)), where the effect of
the mixing/rescaling of the energy-momentum tensor is neglected.
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(Also obtained by current conservation:  
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this tensor, GR(ω) ≡ GR
ii(ω, 0)/3, due to isotropy. In this paper,

we limit ourselves to this case for simplicity.
First, to introduce the method developed in Ref. [20], we red-

erive the sum rule of Eq. (8), which has already been obtained
in Ref. [15] from the current conservation law. The retarded
Green function is known to be analytic in the upper half of the
complex ω plane. This property enables us to derive various
sum rules. Because of the residue theorem, we have

δGR(iω) − δGR
∞ =

1
2πi

∮

C
dω′

δGR(ω′) − δGR
∞

ω′ − iω
, (1)

for which the contour C is shown in Fig. 1. Here δ stands
for the subtraction of the T = 0 value of GR(ω), δGR(ω) ≡
GR(ω) −GR(ω)|T=0. Due to this subtraction, the ultraviolet be-
havior of GR is improved so that the contribution from the arc
with infinite radius becomes negligible. Another subtraction of
δGR
∞ ≡ δGR(iω)|ω→∞ is for removing any possibly remaining

ultraviolet divergence. Taking the infinitesimal ω limit, we get

δGR(0) − δGR
∞ =

2
π

∫ ∞

0

dω
ω
δρ(ω), (2)

where we have made use of the fact that the real (imaginary)
part of GR(ω) is an even (odd) function of ω, and introduced
the spectral function, ρ(ω) ≡ ImGR(ω). We also changed the
integration variable to ω for simplicity.

On the left-hand side, the ultraviolet (UV) and infrared (IR)
limits of GR constrain the spectral function integral through
Eq. (2). The former quantity can be evaluated using the operator
product expansion (OPE) [21, 22]. Because of the subtraction
of the T = 0 piece, all terms with operators of mass dimensions
less than four vanish, so that the asymptotic behavior at large
ω is described by the operators with mass dimensions four. By
computing the coefficients of such operators at leading order in
αs, we get

δGR(ω) = e2
∑

f

q2
f

1
ω2

[
2mf δ⟨ψ fψ f ⟩ +

1
12
δ
〈αs

π
G2
〉

+
8
3
δ⟨T 00

f ⟩
]
+ O
(
ω−4
)
,

(3)

where Gµνa ≡ ∂µAν
a−∂νAµa−g fabcAµbAν

c is the field strength, G2 ≡
Ga
µνGaµν, Tαβ

f ≡ iSTψ fγ
αDβψ f is the quark component to the

traceless part of the energy-momentum tensor, Dµ ≡ ∂µ+igAµata

the covariant derivative, Aµa the gluon field, ta the generator of
the S U(Nc) group in the fundamental representation, fabc the
structure constant of the S U(Nc) group, mf the current quark
mass, g the QCD coupling constant, αs ≡ g2/(4π), and Nc the
number of the colors. ST makes a tensor symmetric and trace-
less: STOαβ ≡ (Oαβ + Oβα)/2 − gαβOµµ/4. We note that having
dropped higher order corrections to the coefficients above will
be justified in the ω→ ∞ limit, which allows us to use asymp-
totic freedom. Also note that the traceless gluonic component
of the energy-momentum tensor [T 00

g , defined above Eq. (4)]
can also in principle appear in the OPE at finite temperature.
We have dropped such a term since it vanishes at leading or-
der in αs, but we will discuss below that it shows up once the

operator mixing is taken into account. We retained the gluon
condensate term though formally it is of higher order in αs, as
it turns out to be finite even in theω→ ∞ limit due to its vanish-
ing anomalous dimension. When considering the ω→ ∞ limit,
we need to take into account the effects of scaling and mix-
ing of the operators, reflected in their anomalous dimensions.
The anomalous dimensions of the chiral and gluon condensates
are zero, so they do neither scale nor mix. On the other hand,
the quark energy momentum tensor both scales and mixes with
a respective gluonic operator. To understand this behavior, we
rewrite the operator as T 00

f = T ′00
f +(T 00+2T̃ 00/Nf )/(4CF+Nf ),

where T ′00
f ≡ T 00

f −
∑

f ′ T 00
f ′ /Nf , T 00 ≡ ∑ f ′ T 00

f ′ +T 00
g , and T̃ 00 ≡

2CF
∑

f ′ T 00
f ′ −Nf T 00

g /2. Here, T µνg ≡ −Gµαa Gν
αa+gµνG2/4 is the

gluon component of the traceless part of the energy-momentum
tensor, Nf the flavor number, and CF ≡ (N2

c − 1)/(2Nc). A stan-
dard renormalization group (RG) analysis yields the following
scaling properties [23]:

T ′00
f (κ) =

[
ln
(
κ0/ΛQCD

)

ln
(
κ/ΛQCD

)
]a′

T ′00
f (κ0),

T̃ 00(κ) =
[
ln
(
κ0/ΛQCD

)

ln
(
κ/ΛQCD

)
]ã

T̃ 00(κ0),

(4)

while T 00 is independent of κ. Here κ and κ0 are renormaliza-
tion scales, ΛQCD is the QCD scale parameter, a′ ≡ 8CF/(3b0),
and ã ≡ 2(4CF +Nf )/(3b0), where b0 ≡ (11Nc −2Nf )/3, which
appears in the expression αs(κ) = 2π/[b0(ln(κ/ΛQCD))]. We see
that, except for the T 00 term, all terms are suppressed logarith-
mically at large ω. Thus, the resultant expression becomes

δGR(ω) = e2
∑

f

q2
f

1
ω2

[
2mf δ⟨ψ fψ f ⟩ +

1
12
δ
〈αs

π
G2
〉

+
8
3

δ⟨T 00⟩
4CF + Nf

]
.

(5)

This vanishes at ω → ∞ and hence its contribution to Eq. (2)
is zero. We note that, in ω → ∞ limit, which is relevant to
the derivation of the sum rule, the asymptotic freedom of QCD
guarantees that the above expression is exact.

On the other hand, the IR limit is well described by hydro-
dynamics. At |p| = 0, it suffices to consider the constitutive
relation for the system at rest, j = σE−στJ∂tE+O(∂2E), since
the conservation law of the current is trivial (∂t j0 = −∇ · j = 0).
Here σ is the electrical conductivity, τJ the second order trans-
port coefficient for ∂tE, E ≡ −∇A0 − ∂0A the electric field, and
Aµ the vector potential. We have dropped magnetic field depen-
dent terms and the diffusion term from the constitutive relation,
since they vanish in the |p| = 0 case. The linear response theory
enables us to extract the retarded function through the relation,

jµ(ω) = −GR
µν(ω)Aν(ω), (6)

2

δρ(ω)=ρ(ω)-ρ(ω)T=0

sum rule 1

ω→∞

IR irrelevant.δGR(ω)→0

which results in1

GR(ω) = iωσ (1 + iτJω) + O(ω3), ρ(ω) = σω + O(ω3). (7)

We note that, σ = τJ = 0 at T = 0, so that GR here is actually
equal to δGR. The reason for σ = 0 is that even the lightest vec-
tor meson ( the ρ) has non-zero mass and its spectral strength
vanishes below the ππ threshold. Therefore the spectral weight
around ω = 0 is zero. τJ = 0 is obtained from the renormal-
ization condition for photon wave function. This is not the case
for the coefficients of order ω4 or higher. We also note that
this expression is correct only in the large Nc limit, in which
the coupling effect among the hydro modes is negligible [25].
Beyond this limit, a nonanalytic term (ω3/2) appears in ρ(ω).
Nevertheless, this does not affect the sum rules 1 and 2 we de-
rive in this work. Applying the UV and IR results of Eqs. (5),
(7), Eq. (2) becomes

0 =
∫ ∞

0

dω
ω
δρ(ω). (8)

This is the first sum rule (sum rule 1) to be discussed in this
paper. We should mention here that this is the |p| = 0 version
of the sum rule derived in Ref. [15].

Let us check that this sum rule is satisfied at weak coupling
and in the chiral limit (mf = 0). In this case, the spectral func-
tion consists of a transport peak at low energy (ω ∼ g4T ) and a
continuum in the high energy region (ω ∼ T ). We first evaluate
the former contribution, which can be described by the Boltz-
mann equation

Dn± f (k, X) − τ−1nF(|k|)
= ∓eq f (E + v × B) (X) · ∇kn± f (k, X),

(9)

where D ≡ v ·∂X + τ−1, n± f (k, X) is the distribution function for
the quark (anti-quark) with momentum k at point X, nF(|k|) ≡
[exp(|k|/T )+1]−1 is the distribution function at equilibrium, and
vµ ≡ (1, v) with v ≡ k/|k|. We have adopted here the relaxation
time approximation, which considerably simplifies the collision
term2. τ is called relaxation time, and its order of magnitude is
determined by collision effects. Since we are interested in the
retarded Green function, we only need the linearized equation:
Dδn± f (k, X) = ∓eq f E(X) · vn′F(|k|), where δn± f ≡ n± f − nF .
After performing the Fourier transformation X → p and setting
|p| = 0, this results in the solution

δn± f (k,ω) = ∓ieq f
E(ω) · v
ω + iτ−1 n′F(|k|). (10)

The induced current is given by j(ω) =
2eNc

∑
f q f
∫

d3kv
∑

s=±1 sδns f (k,ω)/(2π)3, where the factor 2

1 The real part of GR(ω) contains a UV divergence coming from the T = 0
part, so σ and τJ need to be defined for the renormalized version of GR(ω).
This divergence can be removed by the renormalization of the photon wave
function [23, 24].

2This is a very simple approximation, which was however found to work
well by solving the Boltzmann equation without relying on it [26]: The full
calculation produces a solution for ρ(ω)/ω that is an almost perfect Lorentzian,
which is also obtained by the relaxation time approximation [see Eq. (11)].

comes from the spin degeneracy of the quarks. This expression
and Eq. (10), together with the linear response relation of
Eq. (6), give us the following result for GR and the spectral
function:

GR(ω) = −T 2CemNc

9
ω

ω + iτ−1 , ρ(ω) =
T 2CemNc

9
ωτ−1

ω2 + τ−2 .

(11)

Here we have introduced the factor, Cem ≡ e2∑
f q2

f . We note
that this is reduced to Eq. (7) when ω ≪ τ−1, and we can iden-
tify3 σ = T 2CemNcτ/9 and τJ = τ. Its contribution to the sum
rule Eq. (8) reads

∫ ∞

0

dω
ω
δρ(ω) =

πT 2CemNc

18
, (12)

which is of order e2T 2, and independent of τ. Here the T = 0
component does not contribute because of the absence of the
transport peak in the vacuum.

Next, we evaluate the contribution from the continuum.
From a one-loop calculation [29], we have

ρ(ω) =
NcCem

12π
ω2
(
1 − 2nF

(ω
2

))
. (13)

The pair creation/annihilation process of the quark and the anti-
quark is responsible for this expression: one can see that by
rewriting the distribution function factor 1−2nF as [1−nF]2−n2

F .
The former (latter) term comes from the pair creation (annihi-
lation) process. It is noted that, after subtracting the T = 0 part,
the spectral function becomes negative. Performing the inte-
gral over ω, it is straightforward to see that its contribution to
the sum rule cancels the contribution from the transport peak,
Eq. (12), so that the sum rule Eq. (8) is satisfied.

2.2. Sum Rule 2
In a similar way (replacing GR with ω2GR in the deriva-

tion), we derive another sum rule which contains two more
powers of ω in the integrand. In analogy to the derivation of
sum rule 1, we get δGR2

0 − δGR2
∞ = 2

∫ ∞
0 dωωδρ(ω)/π, where

δGR2
∞ ≡ ω2δGR(ω)|ω→∞ and δGR2

0 ≡ ω2δGR(ω)|ω→0. By using
the UV/IR limits of GR, Eqs. (5) and (7), we obtain

2
π

∫ ∞

0
dωωδρ(ω) = −e2

∑

f

q2
f

[
2mf δ⟨ψ fψ f ⟩

+
1
12
δ
〈αs

π
G2
〉
+

8
3(4CF + Nf )

δ⟨T 00⟩
]
.

(14)

This is the second sum rule (sum rule 2)4 we discuss in this
work.

3We note that collisional effects are essential for the evaluation of σ: If we
take the τ−1 → 0 limit, ρ(ω) will be proportional to ωδ(ω) and σ is proportional
to τ, which is infinitely large. This abnormal behavior indicates that collisions
are important in the small ω region.

4We note that this sum rule in the case of N f = 1 and Nc = 3 was derived in
Ref. [9]. However, the coefficient of T 00 in this reference is not the correct one
(Eq. (14)), but is equal to that in the expression (Eq. (16)), where the effect of
the mixing/rescaling of the energy-momentum tensor is neglected.

3

ω→0

3

IV. HIGH ENERGY BEHAVIOR

According to Philipp’s note, we get DS: To be confirmed.

GRL(ω,p) = Ap2 ln(−p2/µ2) +B + Cmf ⟨qfqf ⟩
1

p2
+D⟨GµνGµν⟩

1

p2
+ EL(T )

1

p2
+

(

ln p2

p2
term

)

, (4.1)

GRT (ω,p) = Ap2 ln(−p2/µ2) +B + Cmf ⟨qfqf ⟩
1

p2
+D⟨GµνGµν⟩

1

p2
+ ET (T )

ω2 + p2

p4
+

(

ln p2

p2
term

)

. (4.2)

The A, B terms do not depend on T , so they do not appear in our sum rule.

V. SUM RULES

We follow the method introduced in Ref. [3]. Suppose that we have a function f(ω) which is analytic in the upper
plane of ω and goes to zero at |ω| → ∞ quickly. Then, by using the residue theorem,

f(iω′) =
1

2πi

∫

C
dω

f(ω)

ω − iω′

=
1

2πi

∫ ∞

−∞

dω
f(ω)

ω − iω′
,

(5.1)

where C is the contour drawn in Fig. ??. At ω′ → 0, it becomes

f(0) =
1

2πi
P

∫ ∞

−∞

dω
f(ω)

ω
+

1

2
f(0), (5.2)

where the last term appeared because in this limit, the pole crosses the contour C.
Now we define δGR(ω) ≡ GR(ω) − GR

T=0(ω), to treat the medium and the vacuum parts separately. Here GR

is a retarded Green function in arbitrary channel. We consider the case that f(ω) = δGR(ω,p) − δGR
∞(p), where

δGR
∞ ≡ limω→i∞ δGR(ω) was subtracted to make it sure that f(ω) converges at infinity |ω|. Now let us see the real

and the imaginary parts separately. From Eq. (A4), the parity of the diagonal component of the retarded Green
function, GRµµ, is determined. By using it, Eq. (5.2) becomes

δGR(0,p)− δGR
∞(p) =

2

π

∫ ∞

0
dω
δρ(ω,p)

ω
, (5.3)

where we have introduced δρ(ω,p) ≡ ImδGR(ω,p). We note that, when |p| is small enough, the first term in the left-
hand side contains the information of the hydrodynamics while the second term contains the information of ultraviolet
sector, which is given by the operator product expansion (OPE). We emphasize that this equation is exact as long as
the hydrodynamics describes the behavior at low energy correctly.

A. Longitudinal component

1. Zeroth moment

Here let us focus on the 00-component, GR00(ω,p). Then, from Eq. (3.12),

GR00(0,p) =
σ

D
. (5.4)

On the other hand, δGRL
∞ (p) is given by OPE (Eq. (4.1)). GR00(ω,p) is obtained from this expression by using

Eq. (??), and we find that δGR00
∞ (p) = 0. Thus, by collecting Eqs. (5.3) and (5.4), we get

σ

D
=

2

π

∫ ∞

0
dω
δρ00(ω,p)

ω
. (5.5)

This is the sum rule at zeroth moment. We note that the left-hand side does not contain |p| dependence while the
right-hand side generally depend on |p|. We also note that the left-hand side does not contain the information of
transport coefficient. This can be understood because, the integration over Lorentzian just gives the residue of it, and
does not give the information of the width, transport coefficient. To get the information of the width, we need to go
to sum rule at higher moment.
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VII. DISCUSSION ON ANSATZ USED IN LATTICE CALCULATION

In Ref. [6], the following ansatz is assumed on the vector spectral function at |p| = 0:

ρ11(ω) = e2
∑

f

q2f

[

3χcBW
ωΓ/2

ω2 + (Γ/2)2
+

9

4π
(1 + k)ω2

(

1− 2nF

(ω

2

))

]

(7.1)

Our sum rules constrain these parameters. Let us see Eq. (5.16):

2

π

∫ ∞

0
dω
δρ11(ω,p)

ω
= 3χcBW − 3(1 + k)T 2. (7.2)

Since this should be zero, we get a constraint

χcBW = (1 + k)T 2. (7.3)

The values obtained from the fit read [6]

k = 0.047, (7.4)

Γ/T = 2.2, (7.5)

2cBWχ/Γ = 1.1, (7.6)

where I assumed that the undefined quantity χ̃ means χ/T 2 in their notation. These values give 1.21T 2 (1.05T 2) for
the left (right) hand side of Eq. (7.3). We see that the constraint is not violated significantly.
For the other sum rules with higher/lower moment, we can not give constraint since the ansatz above gives the

UV/IR divergence. It indicates that more sophisticated ansatz is necessary.

VIII. POSSIBLE FUTURE WORKS

• Shear sector (Dimension 6)

• Bulk sector (Dimension ??)

Appendix A: Retarded Green function

We consider a retarded function:

GR(p) = i

∫

d4xeip·xθ(t)⟨[A(x), B(0)]⟩. (A1)

In Lehmann representation, it is

GR(p) = i

∫

d4xeip·xθ(t)
1

Z

∑

n,m

[

e−βEnei(pn−pm)·x⟨n|A(0)|m⟩⟨m|B(0)|n⟩ − e−βEnei(pm−pn)·x⟨n|B(0)|m⟩⟨m|A(0)|n⟩
]

= i

∫

d4xeip·xθ(t)
1

Z

∑

n,m

ei(pn−pm)·x⟨n|A(0)|m⟩⟨m|B(0)|n⟩
[

e−βEn − e−βEm

]

= −
1

Z

∑

n,m

(2π)3δ(3)(p+ pn − pm)⟨n|A(0)|m⟩⟨m|B(0)|n⟩
[

e−βEn − e−βEm

] 1

En − Em + ω + iϵ
,

(A2)

where we have used A(x) = eiP ·xA(0)e−iP ·x, with Pµ is operator for energy-momentum.
Now we invert p. Then, the real part is

ReGR(−p) = −
1

Z

∑

n,m

(2π)3δ(3)(−p+ pn − pm)⟨n|A(0)|m⟩⟨m|B(0)|n⟩
[

e−βEn − e−βEm

] 1

En − Em − ω

= −
1

Z

∑

n,m

(2π)3δ(3)(p+ pn − pm)⟨m|A(0)|n⟩⟨n|B(0)|m⟩
[

e−βEn − e−βEm

] 1

−Em + En + ω
,

(A3)

transport peak continuumansatz:
⇢(!) = Cem

-0.4
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-0.2
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 0

 0.1
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δρ
T

ω/T

3 parameters.
T=0 contribution is subtracted.

nF: Fermi distribution
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+
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2
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π
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0
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The values obtained from the fit read [6]
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where I assumed that the undefined quantity χ̃ means χ/T 2 in their notation. These values give 1.21T 2 (1.05T 2) for
the left (right) hand side of Eq. (7.3). We see that the constraint is not violated significantly.
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UV/IR divergence. It indicates that more sophisticated ansatz is necessary.

VIII. POSSIBLE FUTURE WORKS

• Shear sector (Dimension 6)

• Bulk sector (Dimension ??)

Appendix A: Retarded Green function

We consider a retarded function:

GR(p) = i

∫

d4xeip·xθ(t)⟨[A(x), B(0)]⟩. (A1)

In Lehmann representation, it is

GR(p) = i

∫

d4xeip·xθ(t)
1

Z

∑

n,m

[

e−βEnei(pn−pm)·x⟨n|A(0)|m⟩⟨m|B(0)|n⟩ − e−βEnei(pm−pn)·x⟨n|B(0)|m⟩⟨m|A(0)|n⟩
]

= i

∫

d4xeip·xθ(t)
1

Z

∑

n,m

ei(pn−pm)·x⟨n|A(0)|m⟩⟨m|B(0)|n⟩
[

e−βEn − e−βEm

]

= −
1

Z

∑

n,m

(2π)3δ(3)(p+ pn − pm)⟨n|A(0)|m⟩⟨m|B(0)|n⟩
[

e−βEn − e−βEm

] 1

En − Em + ω + iϵ
,

(A2)

where we have used A(x) = eiP ·xA(0)e−iP ·x, with Pµ is operator for energy-momentum.
Now we invert p. Then, the real part is

ReGR(−p) = −
1

Z

∑

n,m

(2π)3δ(3)(−p+ pn − pm)⟨n|A(0)|m⟩⟨m|B(0)|n⟩
[

e−βEn − e−βEm

] 1

En − Em − ω

= −
1

Z

∑

n,m

(2π)3δ(3)(p+ pn − pm)⟨m|A(0)|n⟩⟨n|B(0)|m⟩
[

e−βEn − e−βEm

] 1

−Em + En + ω
,

(A3)

We can reduce independent parameters.

which results in1

GR(ω) = iωσ (1 + iτJω) + O(ω3), ρ(ω) = σω + O(ω3). (7)

We note that, σ = τJ = 0 at T = 0, so that GR here is actually
equal to δGR. The reason for σ = 0 is that even the lightest vec-
tor meson ( the ρ) has non-zero mass and its spectral strength
vanishes below the ππ threshold. Therefore the spectral weight
around ω = 0 is zero. τJ = 0 is obtained from the renormal-
ization condition for photon wave function. This is not the case
for the coefficients of order ω4 or higher. We also note that
this expression is correct only in the large Nc limit, in which
the coupling effect among the hydro modes is negligible [25].
Beyond this limit, a nonanalytic term (ω3/2) appears in ρ(ω).
Nevertheless, this does not affect the sum rules 1 and 2 we de-
rive in this work. Applying the UV and IR results of Eqs. (5),
(7), Eq. (2) becomes

0 =
∫ ∞

0

dω
ω
δρ(ω). (8)

This is the first sum rule (sum rule 1) to be discussed in this
paper. We should mention here that this is the |p| = 0 version
of the sum rule derived in Ref. [15].

Let us check that this sum rule is satisfied at weak coupling
and in the chiral limit (mf = 0). In this case, the spectral func-
tion consists of a transport peak at low energy (ω ∼ g4T ) and a
continuum in the high energy region (ω ∼ T ). We first evaluate
the former contribution, which can be described by the Boltz-
mann equation

Dn± f (k, X) − τ−1nF(|k|)
= ∓eq f (E + v × B) (X) · ∇kn± f (k, X),

(9)

where D ≡ v ·∂X + τ−1, n± f (k, X) is the distribution function for
the quark (anti-quark) with momentum k at point X, nF(|k|) ≡
[exp(|k|/T )+1]−1 is the distribution function at equilibrium, and
vµ ≡ (1, v) with v ≡ k/|k|. We have adopted here the relaxation
time approximation, which considerably simplifies the collision
term2. τ is called relaxation time, and its order of magnitude is
determined by collision effects. Since we are interested in the
retarded Green function, we only need the linearized equation:
Dδn± f (k, X) = ∓eq f E(X) · vn′F(|k|), where δn± f ≡ n± f − nF .
After performing the Fourier transformation X → p and setting
|p| = 0, this results in the solution

δn± f (k,ω) = ∓ieq f
E(ω) · v
ω + iτ−1 n′F(|k|). (10)

The induced current is given by j(ω) =
2eNc

∑
f q f
∫

d3kv
∑

s=±1 sδns f (k,ω)/(2π)3, where the factor 2

1 The real part of GR(ω) contains a UV divergence coming from the T = 0
part, so σ and τJ need to be defined for the renormalized version of GR(ω).
This divergence can be removed by the renormalization of the photon wave
function [23, 24].

2This is a very simple approximation, which was however found to work
well by solving the Boltzmann equation without relying on it [26]: The full
calculation produces a solution for ρ(ω)/ω that is an almost perfect Lorentzian,
which is also obtained by the relaxation time approximation [see Eq. (11)].

comes from the spin degeneracy of the quarks. This expression
and Eq. (10), together with the linear response relation of
Eq. (6), give us the following result for GR and the spectral
function:

GR(ω) = −T 2CemNc

9
ω

ω + iτ−1 , ρ(ω) =
T 2CemNc

9
ωτ−1

ω2 + τ−2 .

(11)

Here we have introduced the factor, Cem ≡ e2∑
f q2

f . We note
that this is reduced to Eq. (7) when ω ≪ τ−1, and we can iden-
tify3 σ = T 2CemNcτ/9 and τJ = τ. Its contribution to the sum
rule Eq. (8) reads

∫ ∞

0

dω
ω
δρ(ω) =

πT 2CemNc

18
, (12)

which is of order e2T 2, and independent of τ. Here the T = 0
component does not contribute because of the absence of the
transport peak in the vacuum.

Next, we evaluate the contribution from the continuum.
From a one-loop calculation [29], we have

ρ(ω) =
NcCem

12π
ω2
(
1 − 2nF

(ω
2

))
. (13)

The pair creation/annihilation process of the quark and the anti-
quark is responsible for this expression: one can see that by
rewriting the distribution function factor 1−2nF as [1−nF]2−n2

F .
The former (latter) term comes from the pair creation (annihi-
lation) process. It is noted that, after subtracting the T = 0 part,
the spectral function becomes negative. Performing the inte-
gral over ω, it is straightforward to see that its contribution to
the sum rule cancels the contribution from the transport peak,
Eq. (12), so that the sum rule Eq. (8) is satisfied.

2.2. Sum Rule 2
In a similar way (replacing GR with ω2GR in the deriva-

tion), we derive another sum rule which contains two more
powers of ω in the integrand. In analogy to the derivation of
sum rule 1, we get δGR2

0 − δGR2
∞ = 2

∫ ∞
0 dωωδρ(ω)/π, where

δGR2
∞ ≡ ω2δGR(ω)|ω→∞ and δGR2

0 ≡ ω2δGR(ω)|ω→0. By using
the UV/IR limits of GR, Eqs. (5) and (7), we obtain

2
π

∫ ∞

0
dωωδρ(ω) = −e2

∑

f

q2
f

[
2mf δ⟨ψ fψ f ⟩

+
1
12
δ
〈αs

π
G2
〉
+

8
3(4CF + Nf )

δ⟨T 00⟩
]
.

(14)

This is the second sum rule (sum rule 2)4 we discuss in this
work.

3We note that collisional effects are essential for the evaluation of σ: If we
take the τ−1 → 0 limit, ρ(ω) will be proportional to ωδ(ω) and σ is proportional
to τ, which is infinitely large. This abnormal behavior indicates that collisions
are important in the small ω region.

4We note that this sum rule in the case of N f = 1 and Nc = 3 was derived in
Ref. [9]. However, the coefficient of T 00 in this reference is not the correct one
(Eq. (14)), but is equal to that in the expression (Eq. (16)), where the effect of
the mixing/rescaling of the energy-momentum tensor is neglected.

3

Also done in  
 B. B. Brandt, A. Francis, B. Jäger and H. B. Meyer, Phys. Rev. D 93, 054510 (2016).

Transport peak and continuum should cancel. 
(We confirm it in the weak coupling case)
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Sum rule 2

IR irrelevant.

UV

Sum rule for ωρ, not ρ/ω

×ω2

×ω2

this tensor, GR(ω) ≡ GR
ii(ω, 0)/3, due to isotropy. In this paper,

we limit ourselves to this case for simplicity.
First, to introduce the method developed in Ref. [20], we red-

erive the sum rule of Eq. (8), which has already been obtained
in Ref. [15] from the current conservation law. The retarded
Green function is known to be analytic in the upper half of the
complex ω plane. This property enables us to derive various
sum rules. Because of the residue theorem, we have

δGR(iω) − δGR
∞ =

1
2πi

∮

C
dω′

δGR(ω′) − δGR
∞

ω′ − iω
, (1)

for which the contour C is shown in Fig. 1. Here δ stands
for the subtraction of the T = 0 value of GR(ω), δGR(ω) ≡
GR(ω) −GR(ω)|T=0. Due to this subtraction, the ultraviolet be-
havior of GR is improved so that the contribution from the arc
with infinite radius becomes negligible. Another subtraction of
δGR
∞ ≡ δGR(iω)|ω→∞ is for removing any possibly remaining

ultraviolet divergence. Taking the infinitesimal ω limit, we get

δGR(0) − δGR
∞ =

2
π

∫ ∞

0

dω
ω
δρ(ω), (2)

where we have made use of the fact that the real (imaginary)
part of GR(ω) is an even (odd) function of ω, and introduced
the spectral function, ρ(ω) ≡ ImGR(ω). We also changed the
integration variable to ω for simplicity.

On the left-hand side, the ultraviolet (UV) and infrared (IR)
limits of GR constrain the spectral function integral through
Eq. (2). The former quantity can be evaluated using the operator
product expansion (OPE) [21, 22]. Because of the subtraction
of the T = 0 piece, all terms with operators of mass dimensions
less than four vanish, so that the asymptotic behavior at large
ω is described by the operators with mass dimensions four. By
computing the coefficients of such operators at leading order in
αs, we get

δGR(ω) = e2
∑

f

q2
f

1
ω2

[
2mf δ⟨ψ fψ f ⟩ +

1
12
δ
〈αs

π
G2
〉

+
8
3
δ⟨T 00

f ⟩
]
+ O
(
ω−4
)
,

(3)

where Gµνa ≡ ∂µAν
a−∂νAµa−g fabcAµbAν

c is the field strength, G2 ≡
Ga
µνGaµν, Tαβ

f ≡ iSTψ fγ
αDβψ f is the quark component to the

traceless part of the energy-momentum tensor, Dµ ≡ ∂µ+igAµata

the covariant derivative, Aµa the gluon field, ta the generator of
the S U(Nc) group in the fundamental representation, fabc the
structure constant of the S U(Nc) group, mf the current quark
mass, g the QCD coupling constant, αs ≡ g2/(4π), and Nc the
number of the colors. ST makes a tensor symmetric and trace-
less: STOαβ ≡ (Oαβ + Oβα)/2 − gαβOµµ/4. We note that having
dropped higher order corrections to the coefficients above will
be justified in the ω→ ∞ limit, which allows us to use asymp-
totic freedom. Also note that the traceless gluonic component
of the energy-momentum tensor [T 00

g , defined above Eq. (4)]
can also in principle appear in the OPE at finite temperature.
We have dropped such a term since it vanishes at leading or-
der in αs, but we will discuss below that it shows up once the

operator mixing is taken into account. We retained the gluon
condensate term though formally it is of higher order in αs, as
it turns out to be finite even in theω→ ∞ limit due to its vanish-
ing anomalous dimension. When considering the ω→ ∞ limit,
we need to take into account the effects of scaling and mix-
ing of the operators, reflected in their anomalous dimensions.
The anomalous dimensions of the chiral and gluon condensates
are zero, so they do neither scale nor mix. On the other hand,
the quark energy momentum tensor both scales and mixes with
a respective gluonic operator. To understand this behavior, we
rewrite the operator as T 00

f = T ′00
f +(T 00+2T̃ 00/Nf )/(4CF+Nf ),

where T ′00
f ≡ T 00

f −
∑

f ′ T 00
f ′ /Nf , T 00 ≡ ∑ f ′ T 00

f ′ +T 00
g , and T̃ 00 ≡

2CF
∑

f ′ T 00
f ′ −Nf T 00

g /2. Here, T µνg ≡ −Gµαa Gν
αa+gµνG2/4 is the

gluon component of the traceless part of the energy-momentum
tensor, Nf the flavor number, and CF ≡ (N2

c − 1)/(2Nc). A stan-
dard renormalization group (RG) analysis yields the following
scaling properties [23]:

T ′00
f (κ) =

[
ln
(
κ0/ΛQCD

)

ln
(
κ/ΛQCD

)
]a′

T ′00
f (κ0),

T̃ 00(κ) =
[
ln
(
κ0/ΛQCD

)

ln
(
κ/ΛQCD

)
]ã

T̃ 00(κ0),

(4)

while T 00 is independent of κ. Here κ and κ0 are renormaliza-
tion scales, ΛQCD is the QCD scale parameter, a′ ≡ 8CF/(3b0),
and ã ≡ 2(4CF +Nf )/(3b0), where b0 ≡ (11Nc −2Nf )/3, which
appears in the expression αs(κ) = 2π/[b0(ln(κ/ΛQCD))]. We see
that, except for the T 00 term, all terms are suppressed logarith-
mically at large ω. Thus, the resultant expression becomes

δGR(ω) = e2
∑

f

q2
f

1
ω2

[
2mf δ⟨ψ fψ f ⟩ +

1
12
δ
〈αs

π
G2
〉

+
8
3

δ⟨T 00⟩
4CF + Nf

]
.

(5)

This vanishes at ω → ∞ and hence its contribution to Eq. (2)
is zero. We note that, in ω → ∞ limit, which is relevant to
the derivation of the sum rule, the asymptotic freedom of QCD
guarantees that the above expression is exact.

On the other hand, the IR limit is well described by hydro-
dynamics. At |p| = 0, it suffices to consider the constitutive
relation for the system at rest, j = σE−στJ∂tE+O(∂2E), since
the conservation law of the current is trivial (∂t j0 = −∇ · j = 0).
Here σ is the electrical conductivity, τJ the second order trans-
port coefficient for ∂tE, E ≡ −∇A0 − ∂0A the electric field, and
Aµ the vector potential. We have dropped magnetic field depen-
dent terms and the diffusion term from the constitutive relation,
since they vanish in the |p| = 0 case. The linear response theory
enables us to extract the retarded function through the relation,

jµ(ω) = −GR
µν(ω)Aν(ω), (6)

2

relevant.

which results in1

GR(ω) = iωσ (1 + iτJω) + O(ω3), ρ(ω) = σω + O(ω3). (7)

We note that, σ = τJ = 0 at T = 0, so that GR here is actually
equal to δGR. The reason for σ = 0 is that even the lightest vec-
tor meson ( the ρ) has non-zero mass and its spectral strength
vanishes below the ππ threshold. Therefore the spectral weight
around ω = 0 is zero. τJ = 0 is obtained from the renormal-
ization condition for photon wave function. This is not the case
for the coefficients of order ω4 or higher. We also note that
this expression is correct only in the large Nc limit, in which
the coupling effect among the hydro modes is negligible [25].
Beyond this limit, a nonanalytic term (ω3/2) appears in ρ(ω).
Nevertheless, this does not affect the sum rules 1 and 2 we de-
rive in this work. Applying the UV and IR results of Eqs. (5),
(7), Eq. (2) becomes

0 =
∫ ∞

0

dω
ω
δρ(ω). (8)

This is the first sum rule (sum rule 1) to be discussed in this
paper. We should mention here that this is the |p| = 0 version
of the sum rule derived in Ref. [15].

Let us check that this sum rule is satisfied at weak coupling
and in the chiral limit (mf = 0). In this case, the spectral func-
tion consists of a transport peak at low energy (ω ∼ g4T ) and a
continuum in the high energy region (ω ∼ T ). We first evaluate
the former contribution, which can be described by the Boltz-
mann equation

Dn± f (k, X) − τ−1nF(|k|)
= ∓eq f (E + v × B) (X) · ∇kn± f (k, X),

(9)

where D ≡ v ·∂X + τ−1, n± f (k, X) is the distribution function for
the quark (anti-quark) with momentum k at point X, nF(|k|) ≡
[exp(|k|/T )+1]−1 is the distribution function at equilibrium, and
vµ ≡ (1, v) with v ≡ k/|k|. We have adopted here the relaxation
time approximation, which considerably simplifies the collision
term2. τ is called relaxation time, and its order of magnitude is
determined by collision effects. Since we are interested in the
retarded Green function, we only need the linearized equation:
Dδn± f (k, X) = ∓eq f E(X) · vn′F(|k|), where δn± f ≡ n± f − nF .
After performing the Fourier transformation X → p and setting
|p| = 0, this results in the solution

δn± f (k,ω) = ∓ieq f
E(ω) · v
ω + iτ−1 n′F(|k|). (10)

The induced current is given by j(ω) =
2eNc

∑
f q f
∫

d3kv
∑

s=±1 sδns f (k,ω)/(2π)3, where the factor 2

1 The real part of GR(ω) contains a UV divergence coming from the T = 0
part, so σ and τJ need to be defined for the renormalized version of GR(ω).
This divergence can be removed by the renormalization of the photon wave
function [23, 24].

2This is a very simple approximation, which was however found to work
well by solving the Boltzmann equation without relying on it [26]: The full
calculation produces a solution for ρ(ω)/ω that is an almost perfect Lorentzian,
which is also obtained by the relaxation time approximation [see Eq. (11)].

comes from the spin degeneracy of the quarks. This expression
and Eq. (10), together with the linear response relation of
Eq. (6), give us the following result for GR and the spectral
function:

GR(ω) = −T 2CemNc

9
ω

ω + iτ−1 , ρ(ω) =
T 2CemNc

9
ωτ−1

ω2 + τ−2 .

(11)

Here we have introduced the factor, Cem ≡ e2∑
f q2

f . We note
that this is reduced to Eq. (7) when ω ≪ τ−1, and we can iden-
tify3 σ = T 2CemNcτ/9 and τJ = τ. Its contribution to the sum
rule Eq. (8) reads

∫ ∞

0

dω
ω
δρ(ω) =

πT 2CemNc

18
, (12)

which is of order e2T 2, and independent of τ. Here the T = 0
component does not contribute because of the absence of the
transport peak in the vacuum.

Next, we evaluate the contribution from the continuum.
From a one-loop calculation [29], we have

ρ(ω) =
NcCem

12π
ω2
(
1 − 2nF

(ω
2

))
. (13)

The pair creation/annihilation process of the quark and the anti-
quark is responsible for this expression: one can see that by
rewriting the distribution function factor 1−2nF as [1−nF]2−n2

F .
The former (latter) term comes from the pair creation (annihi-
lation) process. It is noted that, after subtracting the T = 0 part,
the spectral function becomes negative. Performing the inte-
gral over ω, it is straightforward to see that its contribution to
the sum rule cancels the contribution from the transport peak,
Eq. (12), so that the sum rule Eq. (8) is satisfied.

2.2. Sum Rule 2
In a similar way (replacing GR with ω2GR in the deriva-

tion), we derive another sum rule which contains two more
powers of ω in the integrand. In analogy to the derivation of
sum rule 1, we get δGR2

0 − δGR2
∞ = 2

∫ ∞
0 dωωδρ(ω)/π, where

δGR2
∞ ≡ ω2δGR(ω)|ω→∞ and δGR2

0 ≡ ω2δGR(ω)|ω→0. By using
the UV/IR limits of GR, Eqs. (5) and (7), we obtain

2
π

∫ ∞

0
dωωδρ(ω) = −e2

∑

f

q2
f

[
2mf δ⟨ψ fψ f ⟩

+
1
12
δ
〈αs

π
G2
〉
+

8
3(4CF + Nf )

δ⟨T 00⟩
]
.

(14)

This is the second sum rule (sum rule 2)4 we discuss in this
work.

3We note that collisional effects are essential for the evaluation of σ: If we
take the τ−1 → 0 limit, ρ(ω) will be proportional to ωδ(ω) and σ is proportional
to τ, which is infinitely large. This abnormal behavior indicates that collisions
are important in the small ω region.

4We note that this sum rule in the case of N f = 1 and Nc = 3 was derived in
Ref. [9]. However, the coefficient of T 00 in this reference is not the correct one
(Eq. (14)), but is equal to that in the expression (Eq. (16)), where the effect of
the mixing/rescaling of the energy-momentum tensor is neglected.
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Figure 2: The right-hand sides of Eq. (14) (upper plot) and Eq. (16) (lower
plot), divided by T 4 and shown as a function of temperature T . To extract
the temperature dependence of the condensates, lattice QCD data provided in
Ref. [30] were used. T 00

f in Eq. (16) was estimated within a free pion gas model,
reliable at low T , and leading order perturbative QCD, which should give the
correct behavior at high T . We used the value e2 = 0.092 for the plots. The
cross at the lower right side of the lower plot marks the of our fitted spectral
function given in Eq. (32). For details, see the main text of Section 3.

rule is satisfied only considering the contribution of the UV tail
in the above limits. Also, it is easy to see that such contribution
to the other two sum rules is negligible at weak coupling (with
order estimate ωmin ∼ T ).

2.3. Sum Rule 3

In the sum rule to be discussed in this subsection, the inte-
grand of sum rule 1 is in essence divided by ω2. To avoid po-
tential IR divergences, the derivation however has to be carried
out with some care. Equation (1) can be written as

δGR(iω) − δGR
∞ =

1
2π

∫ ∞

−∞
dω′

1
ω′2 + ω2

× (ω′δρ(ω′) + ωRe[δGR(ω′) − δGR
∞])

=
1
π

∫ ∞

−∞
dω′

ω′δρ(ω′)
ω′2 + ω2 ,

(22)

where in the second line we have used the property that the con-
tributions from the first and the second terms are equal, which
can be shown by evaluating the right-hand side of Eq. (1) using
the residue theorem with the contour closing in the lower half
plane. Subtracting Eq. (2) and −σω from this expression and
using Eq. (7) on the left-hand side, we get

−στJ =
2
π

∫ ∞

0

dω
ω3
[
δρ(ω) − σω] , (23)

in which the −σω term in the integrand is included to remove
the IR singularity. This is the third sum rule (sum rule 3) we
have derived in this paper.

Let us again check that this sum rule is satisfied at weak cou-
pling. The contribution from the transport peak is found to be

2
π

∫ ∞

0

dω
ω3
[
δρ(ω) − σω] = −T 2Cem

9
Ncτ

2, (24)

where we have used Eq. (11) and the expression of σ in the
relaxation time approximation. Taking into account τJ = τ,
we find that Eq. (24) is equal to the left-hand side of sum rule
3. The contribution from the continuum is much smaller than
that from the transport peak, due to the negative power of ω
in the integrand: From Eq. (13), the continuum contributes to
the sum rule as 2

∫ ∞
µ

dω
[
δρ(ω) − σω] /(πω3) ∼ σ/µ, where µ

is the IR cutoff. The one-loop result of Eq. (13) is reliable for
ω ≫ gT , while for ω ≤ gT the effect of thermal modification
of the quark spectrum and the vertex becomes important so that
the hard thermal loop resummation is necessary [26, 31]. It is
thus natural to set the IR cutoff to µ ∼ gT . With this order
estimate, the contribution from the continuum turns out to be
much smaller than −στJ ∼ e2g−8.

A comment on the sensitivity on the continuum/transport
peak of the sum rules is in order here. From the discussions
above, sum rule 1 was found to be equally sensitive to both of
them, at least in the weak coupling regime. Meanwhile, sum
rule 2 (3) is more sensitive to the continuum (transport peak)
because of positive (negative) power of ω in the integrand. This
suggests that, if one wishes to extract information of one of
these objects from the sum rules, one should use the most suit-
able one, which is most sensitive to the object of interest.

3. Application to Lattice QCD

Let us demonstrate that the sum rules we have derived can
be used to give constraints to the spectral ansatz used in fits to
lattice QCD data. As a first trial, we consider the simple5 ansatz
introduced in Ref. [13] (our convention differs from theirs by a
factor of two),

ρ(ω) = Cem
[
cBWρpeak(ω) + (1 + k)ρcont(ω)

]
, (25)

5A more complicated ansatz, which also contains information on vacuum
bound states, was introduced in Refs. [14, 16]. In these works, the sum rule
of Eq. (8) was furthermore used to constrain the parameters appearing in their
ansatz.
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ansatz:

Contribution from the continuum 
 contains IR divergence. 

More sophisticated ansatz is necessary.
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Figure 2: The right-hand sides of Eq. (14) (upper plot) and Eq. (16) (lower
plot), divided by T 4 and shown as a function of temperature T . To extract
the temperature dependence of the condensates, lattice QCD data provided in
Ref. [30] were used. T 00

f in Eq. (16) was estimated within a free pion gas model,
reliable at low T , and leading order perturbative QCD, which should give the
correct behavior at high T . We used the value e2 = 0.092 for the plots. The
cross at the lower right side of the lower plot marks the of our fitted spectral
function given in Eq. (32). For details, see the main text of Section 3.

rule is satisfied only considering the contribution of the UV tail
in the above limits. Also, it is easy to see that such contribution
to the other two sum rules is negligible at weak coupling (with
order estimate ωmin ∼ T ).

2.3. Sum Rule 3

In the sum rule to be discussed in this subsection, the inte-
grand of sum rule 1 is in essence divided by ω2. To avoid po-
tential IR divergences, the derivation however has to be carried
out with some care. Equation (1) can be written as

δGR(iω) − δGR
∞ =

1
2π

∫ ∞

−∞
dω′

1
ω′2 + ω2

× (ω′δρ(ω′) + ωRe[δGR(ω′) − δGR
∞])

=
1
π

∫ ∞

−∞
dω′

ω′δρ(ω′)
ω′2 + ω2 ,

(22)

where in the second line we have used the property that the con-
tributions from the first and the second terms are equal, which
can be shown by evaluating the right-hand side of Eq. (1) using
the residue theorem with the contour closing in the lower half
plane. Subtracting Eq. (2) and −σω from this expression and
using Eq. (7) on the left-hand side, we get

−στJ =
2
π

∫ ∞

0

dω
ω3
[
δρ(ω) − σω] , (23)

in which the −σω term in the integrand is included to remove
the IR singularity. This is the third sum rule (sum rule 3) we
have derived in this paper.

Let us again check that this sum rule is satisfied at weak cou-
pling. The contribution from the transport peak is found to be

2
π

∫ ∞

0

dω
ω3
[
δρ(ω) − σω] = −T 2Cem

9
Ncτ

2, (24)

where we have used Eq. (11) and the expression of σ in the
relaxation time approximation. Taking into account τJ = τ,
we find that Eq. (24) is equal to the left-hand side of sum rule
3. The contribution from the continuum is much smaller than
that from the transport peak, due to the negative power of ω
in the integrand: From Eq. (13), the continuum contributes to
the sum rule as 2

∫ ∞
µ

dω
[
δρ(ω) − σω] /(πω3) ∼ σ/µ, where µ

is the IR cutoff. The one-loop result of Eq. (13) is reliable for
ω ≫ gT , while for ω ≤ gT the effect of thermal modification
of the quark spectrum and the vertex becomes important so that
the hard thermal loop resummation is necessary [26, 31]. It is
thus natural to set the IR cutoff to µ ∼ gT . With this order
estimate, the contribution from the continuum turns out to be
much smaller than −στJ ∼ e2g−8.

A comment on the sensitivity on the continuum/transport
peak of the sum rules is in order here. From the discussions
above, sum rule 1 was found to be equally sensitive to both of
them, at least in the weak coupling regime. Meanwhile, sum
rule 2 (3) is more sensitive to the continuum (transport peak)
because of positive (negative) power of ω in the integrand. This
suggests that, if one wishes to extract information of one of
these objects from the sum rules, one should use the most suit-
able one, which is most sensitive to the object of interest.

3. Application to Lattice QCD

Let us demonstrate that the sum rules we have derived can
be used to give constraints to the spectral ansatz used in fits to
lattice QCD data. As a first trial, we consider the simple5 ansatz
introduced in Ref. [13] (our convention differs from theirs by a
factor of two),

ρ(ω) = Cem
[
cBWρpeak(ω) + (1 + k)ρcont(ω)

]
, (25)

5A more complicated ansatz, which also contains information on vacuum
bound states, was introduced in Refs. [14, 16]. In these works, the sum rule
of Eq. (8) was furthermore used to constrain the parameters appearing in their
ansatz.
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Figure 2: The right-hand sides of Eq. (14) (upper plot) and Eq. (16) (lower
plot), divided by T 4 and shown as a function of temperature T . To extract
the temperature dependence of the condensates, lattice QCD data provided in
Ref. [30] were used. T 00

f in Eq. (16) was estimated within a free pion gas model,
reliable at low T , and leading order perturbative QCD, which should give the
correct behavior at high T . We used the value e2 = 0.092 for the plots. The
cross at the lower right side of the lower plot marks the of our fitted spectral
function given in Eq. (32). For details, see the main text of Section 3.

rule is satisfied only considering the contribution of the UV tail
in the above limits. Also, it is easy to see that such contribution
to the other two sum rules is negligible at weak coupling (with
order estimate ωmin ∼ T ).

2.3. Sum Rule 3

In the sum rule to be discussed in this subsection, the inte-
grand of sum rule 1 is in essence divided by ω2. To avoid po-
tential IR divergences, the derivation however has to be carried
out with some care. Equation (1) can be written as

δGR(iω) − δGR
∞ =

1
2π

∫ ∞

−∞
dω′

1
ω′2 + ω2

× (ω′δρ(ω′) + ωRe[δGR(ω′) − δGR
∞])

=
1
π

∫ ∞

−∞
dω′

ω′δρ(ω′)
ω′2 + ω2 ,

(22)

where in the second line we have used the property that the con-
tributions from the first and the second terms are equal, which
can be shown by evaluating the right-hand side of Eq. (1) using
the residue theorem with the contour closing in the lower half
plane. Subtracting Eq. (2) and −σω from this expression and
using Eq. (7) on the left-hand side, we get

−στJ =
2
π

∫ ∞

0

dω
ω3
[
δρ(ω) − σω] , (23)

in which the −σω term in the integrand is included to remove
the IR singularity. This is the third sum rule (sum rule 3) we
have derived in this paper.

Let us again check that this sum rule is satisfied at weak cou-
pling. The contribution from the transport peak is found to be

2
π

∫ ∞

0

dω
ω3
[
δρ(ω) − σω] = −T 2Cem

9
Ncτ

2, (24)

where we have used Eq. (11) and the expression of σ in the
relaxation time approximation. Taking into account τJ = τ,
we find that Eq. (24) is equal to the left-hand side of sum rule
3. The contribution from the continuum is much smaller than
that from the transport peak, due to the negative power of ω
in the integrand: From Eq. (13), the continuum contributes to
the sum rule as 2

∫ ∞
µ

dω
[
δρ(ω) − σω] /(πω3) ∼ σ/µ, where µ

is the IR cutoff. The one-loop result of Eq. (13) is reliable for
ω ≫ gT , while for ω ≤ gT the effect of thermal modification
of the quark spectrum and the vertex becomes important so that
the hard thermal loop resummation is necessary [26, 31]. It is
thus natural to set the IR cutoff to µ ∼ gT . With this order
estimate, the contribution from the continuum turns out to be
much smaller than −στJ ∼ e2g−8.

A comment on the sensitivity on the continuum/transport
peak of the sum rules is in order here. From the discussions
above, sum rule 1 was found to be equally sensitive to both of
them, at least in the weak coupling regime. Meanwhile, sum
rule 2 (3) is more sensitive to the continuum (transport peak)
because of positive (negative) power of ω in the integrand. This
suggests that, if one wishes to extract information of one of
these objects from the sum rules, one should use the most suit-
able one, which is most sensitive to the object of interest.

3. Application to Lattice QCD

Let us demonstrate that the sum rules we have derived can
be used to give constraints to the spectral ansatz used in fits to
lattice QCD data. As a first trial, we consider the simple5 ansatz
introduced in Ref. [13] (our convention differs from theirs by a
factor of two),

ρ(ω) = Cem
[
cBWρpeak(ω) + (1 + k)ρcont(ω)

]
, (25)

5A more complicated ansatz, which also contains information on vacuum
bound states, was introduced in Refs. [14, 16]. In these works, the sum rule
of Eq. (8) was furthermore used to constrain the parameters appearing in their
ansatz.
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right-hand-side approach the perturbative limit quickly
enough. To study this question in more detail, an explicit
lattice calculation of δ⟨T 00

f ⟩ will however be needed.
In this context, we note that one could try to construct

a spectral function that is consistent with the sum rule
of Eq. (15). For this purpose, one would need to include
the above-mentioned UV tail in the ansatz (ansatz B):

ρ(ω) = Cem

[
cBW ρpeak(ω)[1−A(ω)]

+A(ω)(1 + k)ρcont(ω) + cUV θ(ω − ωmin)ρtail(ω)
]
,

(38)

where

ρtail(ω) ≡
4CFπ2T 4

9ω2
αs(eΛQCD)[ln(ω/ΛQCD)]

−ã−1.

(39)

e in the above expression stands for Euler’s number. This
form has two extra fitting parameters ωmin and cUV , and
would in principle allow us to use the exact sum rule of
Eq. (15). Here cUV = 1 corresponds to the perturba-
tive result at mf = 0, Eq. (21). In this work, we will
not pursue this possibility any further and only illustrate
the potential effect of ρtail(ω) by adding it to our fitted
spectral function, using Nc = Nf = 3, T/ΛQCD = 1.5,
cUV = 1, and ωmin = 4.0T . The result is shown as a blue
dotted line in Fig. 3. As one can see in this figure, the
UV tail just modestly modifies the spectral function in
the plotted energy region, at least with the parameters
used here.
As a last point, we next discuss the application of sum

rule 3 given in Eq. (24). At first, let us clarify the defi-
nition of the parameter appearing in the left-hand side,
τJ . It is expressed in terms of the retarded Green func-
tion as, τJ ≡ −GR′′(ω = 0)/(2σ) as can be seen from
Eq. (7). τJ therefore does not explicitly appear in the
spectral function since it corresponds to the real part of
GR. As the transport coefficient τJ is furthermore at
present not known, this sum rule can not be used as an
additional fitting constraint. If the spectral function is
however already determined from other sources, Eq. (24)
can be used to estimate τJ . Using Eqs. (30-36), we get

τJ = 0.067Cem/T (T = 1.45Tc). (40)

To our knowledge, this is the first time that this transport
coefficient has been determined non-perturbatively. Note
that the above number is a quenched QCD estimate, as
we have made use of quenched lattice data to fix the
spectral function. We should furthermore mention here
that, all the ansätze used in this section do not take into
account the large Nc suppressed nonanalytic behavior at
small ω (which seems to be challenging to see in current
lattice QCD analysis) caused by hydro mode coupling. It
is therefore consistent to use sum rule 3 (24), which does
not consider this effect as well.
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IV. CONCLUDING REMARKS

We give a few final comments on future perspectives of
this work. In this paper we have so far for simplicity only
analyzed the zero-momentum (|p| = 0) case. Generaliz-
ing our analysis to finite, but small |p| is straightforward
and is worth investigating in detail. In this case, one
needs to analyze both the longitudinal and the transverse
channels separately. Apart from that, other transport co-
efficients such as the diffusion constant and another one
related to the magnetic sector will appear in the sum
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use sum rule 3 to obtain τJ:

suggestion for improved ansatz:

Connect the two regions smoothly.

where

ρpeak(ω) ≡ 1
3

ωΓ/2
ω2 + (Γ/2)2 , (26)

ρcont(ω) ≡ ω2

4π

(
1 − 2nF

(ω
2

))
, (27)

correspond to the transport peak and the continuum in the weak
coupling limit. We note that, δρ(ω) can be obtained by subtract-
ing ρT=0(ω). Data for this function can be obtained from the
experimental (e+e− → hadrons) cross section (see for instance
the compilation of data given in the particle data group [32]),
or from zero temperature lattice calculations. In this paper, we
will however for simplicity confine ourselves to the averaged
form Cemω2(1 + k)/(4π)6. Equation (25) contains three param-
eters (cBW ,Γ, k) that need to be determined by fitting the data.
Sum rule 1 of Eq. (8) provides a constraint on these parameters:

cBW = (1 + k)T 2. (28)

This constraint may be used to reduce the number of fitting
parameters in the ansatz. Here, we simply check whether the
values of the parameters obtained from the fit [13] satisfy the
sum rule. The fitted values at T = 1.45Tc are k ≃ 0.047,Γ ≃
2.2T, cBW ≃ 1.2T 2, which give 1.2T 2 on the left-hand side of
Eq. (28) while 1.0T 2 is obtained on the right-hand side. We see
that, even though the agreement is not perfect, the fit satisfies
the constraint with reasonable precision.

The ansatz Eq. (25) can not be applied to the other two sum
rules, Eqs. (14) and (23), because it would cause a UV diver-
gence in sum rule 2 and an IR divergences in sum rule 3. There-
fore, to construct a spectral function that can satisfy all three
sum rules, an improved parametrization is necessary. We hence
propose the following ansatz (ansatz A):

ρ(ω) = Cem
[
cBWρpeak(ω)[1 − A(ω)] + A(ω)(1 + k)ρcont(ω)

]
,

(29)

where A(ω) ≡ tanh(ω2/∆2). As one can easily check, the cutoff
function A(ω) removes all IR and UV divergences in Eqs. (14)
and (23).

The values of Γ, cBW , k, and ∆ should be determined from
lattice data. To demonstrate that this functional form is fea-
sible, we have performed a simple trial analysis, making use
of the Euclidean vector correlator and second thermal moment
data provided in Ref. [13]. These data were also used to fit the
ansatz of Eq. (25), as explained above. We moreover employ
the sum rule 1 of Eq. (8) to constrain our fit, as it was done in
Ref. [14, 16]. Specifically, the constraints of the second ther-
mal moment and sum rule 1 first reduce the number of undeter-
mined parameters to two (Γ and ∆), which are then fitted to the
Euclidean vector correlator data. Following this procedure, we
have found that the best fit is obtained for very large values of
Γ, with values of ∆/T of the order of one. This means that the

6This ansatz could be improved by taking into account the lowest few reso-
nances of the spectrum, similar to Refs. [14, 16], or by making direct use of the
(e+e− → hadrons) cross section data.

transport peak at low energy is not generated by the Lorentzian
of Eq. (26), but by the function 1 − A(ω), with the width 2∆.
As will be shown in Fig. 3, these two functional forms are quite
alike and share many qualitative features. Quantitatively, our
best fit is obtained for,

k = 0.058,
2cBW/(TΓ) = 1.7,

Γ/T = infinity,
∆/T = 1.2,

(30)

which gives a χ2/d.o. f of 0.53. The respective (vacuum sub-
tracted) spectral function is shown in Fig. 3, together with the
fit result of Ref. [13], for which Eq. (25) was used.

Having the fitted and well behaved spectral function of
Eq. (29) at hand, we can now proceed to compute various quan-
tities of interest. First of all, one can easily extract the electrical
conductivity as

σ

T
= lim

ω→0

ρ(ω)
ωT

= Cem
2cBW

3TΓ
= 0.57 ×Cem,

(31)

which is about 50 % larger than the value reported in [13].
Next, we can check to what degree our spectral function sat-

isfies sum rule 2 of Eq. (16). As we have explained in Section
2.2, the difference between the sum rules of Eqs. (14) and (16)
corresponds to a non-exponentially suppressed UV tail of the
spectral function. As this tail is not included in the parametriza-
tion of Eq. (29), its integral should be compared to Eq. (16) and
not Eq. (14). Computing the integral with the values of Eq. (30),
we get

2
π

∫ ∞

0
dωωδρ(ω) = −0.59T 4, (32)

with Nf = 3. This value is marked as a cross on the lower
right corner in the second plot of Fig. 2. Note that the lattice
data of Ref. [13] are given at 1.45 Tc. For Tc, we have used
Tc = 270 MeV, suitable for quenched QCD. As can be seen in
this plot, the integrated value of Eq. (32) lies very close to the
leading order perturbative QCD result, showing that sum rule
2 can be satisfied with reasonable precision, if the condensates
on its right-hand-side approach the perturbative limit quickly
enough. To study this question in more detail, an explicit lattice
calculation of δ⟨T 00

f ⟩ will however be needed.
In this context, we note that one could try to construct a spec-

tral function that is consistent with the sum rule of Eq. (14). For
this purpose, one would need to include the above-mentioned
UV tail in the ansatz (ansatz B):

ρ(ω) = Cem
[
cBWρpeak(ω)[1 − A(ω)] + A(ω)(1 + k)ρcont(ω)

+ cUVθ(ω − ωmin)ρtail(ω)
]
,

(33)

where

ρtail(ω) ≡ 4CFπ2T 4

9ω2 αs(eΛQCD)[ln(ω/ΛQCD)]−ã−1. (34)
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where

ρpeak(ω) ≡ 1
3

ωΓ/2
ω2 + (Γ/2)2 , (26)

ρcont(ω) ≡ ω2

4π

(
1 − 2nF

(ω
2

))
, (27)

correspond to the transport peak and the continuum in the weak
coupling limit. We note that, δρ(ω) can be obtained by subtract-
ing ρT=0(ω). Data for this function can be obtained from the
experimental (e+e− → hadrons) cross section (see for instance
the compilation of data given in the particle data group [32]),
or from zero temperature lattice calculations. In this paper, we
will however for simplicity confine ourselves to the averaged
form Cemω2(1 + k)/(4π)6. Equation (25) contains three param-
eters (cBW ,Γ, k) that need to be determined by fitting the data.
Sum rule 1 of Eq. (8) provides a constraint on these parameters:

cBW = (1 + k)T 2. (28)

This constraint may be used to reduce the number of fitting
parameters in the ansatz. Here, we simply check whether the
values of the parameters obtained from the fit [13] satisfy the
sum rule. The fitted values at T = 1.45Tc are k ≃ 0.047,Γ ≃
2.2T, cBW ≃ 1.2T 2, which give 1.2T 2 on the left-hand side of
Eq. (28) while 1.0T 2 is obtained on the right-hand side. We see
that, even though the agreement is not perfect, the fit satisfies
the constraint with reasonable precision.

The ansatz Eq. (25) can not be applied to the other two sum
rules, Eqs. (14) and (23), because it would cause a UV diver-
gence in sum rule 2 and an IR divergences in sum rule 3. There-
fore, to construct a spectral function that can satisfy all three
sum rules, an improved parametrization is necessary. We hence
propose the following ansatz (ansatz A):

ρ(ω) = Cem
[
cBWρpeak(ω)[1 − A(ω)] + A(ω)(1 + k)ρcont(ω)

]
,

(29)

where A(ω) ≡ tanh(ω2/∆2). As one can easily check, the cutoff
function A(ω) removes all IR and UV divergences in Eqs. (14)
and (23).

The values of Γ, cBW , k, and ∆ should be determined from
lattice data. To demonstrate that this functional form is fea-
sible, we have performed a simple trial analysis, making use
of the Euclidean vector correlator and second thermal moment
data provided in Ref. [13]. These data were also used to fit the
ansatz of Eq. (25), as explained above. We moreover employ
the sum rule 1 of Eq. (8) to constrain our fit, as it was done in
Ref. [14, 16]. Specifically, the constraints of the second ther-
mal moment and sum rule 1 first reduce the number of undeter-
mined parameters to two (Γ and ∆), which are then fitted to the
Euclidean vector correlator data. Following this procedure, we
have found that the best fit is obtained for very large values of
Γ, with values of ∆/T of the order of one. This means that the

6This ansatz could be improved by taking into account the lowest few reso-
nances of the spectrum, similar to Refs. [14, 16], or by making direct use of the
(e+e− → hadrons) cross section data.

transport peak at low energy is not generated by the Lorentzian
of Eq. (26), but by the function 1 − A(ω), with the width 2∆.
As will be shown in Fig. 3, these two functional forms are quite
alike and share many qualitative features. Quantitatively, our
best fit is obtained for,

k = 0.058,
2cBW/(TΓ) = 1.7,

Γ/T = infinity,
∆/T = 1.2,

(30)

which gives a χ2/d.o. f of 0.53. The respective (vacuum sub-
tracted) spectral function is shown in Fig. 3, together with the
fit result of Ref. [13], for which Eq. (25) was used.

Having the fitted and well behaved spectral function of
Eq. (29) at hand, we can now proceed to compute various quan-
tities of interest. First of all, one can easily extract the electrical
conductivity as

σ

T
= lim

ω→0

ρ(ω)
ωT

= Cem
2cBW

3TΓ
= 0.57 ×Cem,

(31)

which is about 50 % larger than the value reported in [13].
Next, we can check to what degree our spectral function sat-

isfies sum rule 2 of Eq. (16). As we have explained in Section
2.2, the difference between the sum rules of Eqs. (14) and (16)
corresponds to a non-exponentially suppressed UV tail of the
spectral function. As this tail is not included in the parametriza-
tion of Eq. (29), its integral should be compared to Eq. (16) and
not Eq. (14). Computing the integral with the values of Eq. (30),
we get

2
π

∫ ∞

0
dωωδρ(ω) = −0.59T 4, (32)

with Nf = 3. This value is marked as a cross on the lower
right corner in the second plot of Fig. 2. Note that the lattice
data of Ref. [13] are given at 1.45 Tc. For Tc, we have used
Tc = 270 MeV, suitable for quenched QCD. As can be seen in
this plot, the integrated value of Eq. (32) lies very close to the
leading order perturbative QCD result, showing that sum rule
2 can be satisfied with reasonable precision, if the condensates
on its right-hand-side approach the perturbative limit quickly
enough. To study this question in more detail, an explicit lattice
calculation of δ⟨T 00

f ⟩ will however be needed.
In this context, we note that one could try to construct a spec-

tral function that is consistent with the sum rule of Eq. (14). For
this purpose, one would need to include the above-mentioned
UV tail in the ansatz (ansatz B):

ρ(ω) = Cem
[
cBWρpeak(ω)[1 − A(ω)] + A(ω)(1 + k)ρcont(ω)

+ cUVθ(ω − ωmin)ρtail(ω)
]
,

(33)

where

ρtail(ω) ≡ 4CFπ2T 4

9ω2 αs(eΛQCD)[ln(ω/ΛQCD)]−ã−1. (34)
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σ becomes 50% larger.
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e in the above expression stands for Euler’s number. This form
has two extra fitting parameters ωmin and cUV , and would in
principle allow us to use the exact sum rule of Eq. (14). Here
cUV = 1 corresponds to the perturbative result at mf = 0,
Eq. (20). It however remains to be seen whether lattice QCD
will be able to probe this additional UV tail which plays a ma-
jor role only at rather high energies. In this work, we will not
pursue this possibility any further and only illustrate the poten-
tial effect of ρtail(ω) by adding it to our fitted spectral function,
using Nc = Nf = 3, T/ΛQCD = 1.5, cUV = 1, and ωmin = 4.0T .
The result is shown as a blue dotted line in Fig. 3. As one can
see in this figure, the UV tail just modestly modifies the spectral
function in the plotted energy region, at least with the parame-
ters used here.

As a last point, we next discuss the application of sum rule
3 given in Eq. (23). At first, let us clarify the definition of the
parameter appearing in the left-hand side, τJ . It is expressed
in terms of the retarded Green function as, τJ ≡ −GR′′(ω =
0)/(2σ) as can be seen from Eq. (7). τJ therefore does not ex-
plicitly appear in the spectral function since it corresponds to
the real part of GR. As the transport coefficient τJ is further-
more at present not known, this sum rule can not be used as an
additional fitting constraint. If the spectral function is however
already determined from other sources, Eq. (23) can be used to
estimate τJ . Using Eqs. (29-31), we get

τJ = 0.067Cem/T (T = 1.45 Tc). (35)

To our knowledge, this is the first time that this transport co-
efficient has been determined non-perturbatively. Note that the
above number is a quenched QCD estimate, as we have made
use of quenched lattice data to fix the spectral function. We also
note that, all the ansatz used in this section do not take into ac-
count the nonanalytic behavior at small ω (which seems to be
challenging to see in the current lattice QCD analysis) caused
by hydro mode coupling. Therefore, it is consistent to use the
sum rule 3 (23), which does not consider this effect as well.

4. Concluding Remarks

We give a few final comments on future perspectives of this
work. In this paper we have so far for simplicity only analyzed
the zero-momentum (|p| = 0) case. Generalizing our analysis to
finite, but small |p| is straightforward and is worth investigating
in detail. In this case, one needs to analyze both the longitudinal
and the transverse channels separately. Apart from that, other
transport coefficients such as the diffusion constant and another
one related to the magnetic sector will appear in the sum rules.
Also, since the sum rules are exact, it would be interesting to
check their validity by explicit calculations in the hadron phase
below Tc and/or the strong coupling regime. We plan to report
on parts of these generalizations in a full publication in the near
future.
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Figure 2: The right-hand sides of Eq. (14) (upper plot) and Eq. (16) (lower
plot), divided by T 4 and shown as a function of temperature T . To extract
the temperature dependence of the condensates, lattice QCD data provided in
Ref. [30] were used. T 00

f in Eq. (16) was estimated within a free pion gas model,
reliable at low T , and leading order perturbative QCD, which should give the
correct behavior at high T . We used the value e2 = 0.092 for the plots. The
cross at the lower right side of the lower plot marks the of our fitted spectral
function given in Eq. (32). For details, see the main text of Section 3.

rule is satisfied only considering the contribution of the UV tail
in the above limits. Also, it is easy to see that such contribution
to the other two sum rules is negligible at weak coupling (with
order estimate ωmin ∼ T ).

2.3. Sum Rule 3

In the sum rule to be discussed in this subsection, the inte-
grand of sum rule 1 is in essence divided by ω2. To avoid po-
tential IR divergences, the derivation however has to be carried
out with some care. Equation (1) can be written as

δGR(iω) − δGR
∞ =

1
2π

∫ ∞

−∞
dω′

1
ω′2 + ω2

× (ω′δρ(ω′) + ωRe[δGR(ω′) − δGR
∞])

=
1
π

∫ ∞

−∞
dω′

ω′δρ(ω′)
ω′2 + ω2 ,

(22)

where in the second line we have used the property that the con-
tributions from the first and the second terms are equal, which
can be shown by evaluating the right-hand side of Eq. (1) using
the residue theorem with the contour closing in the lower half
plane. Subtracting Eq. (2) and −σω from this expression and
using Eq. (7) on the left-hand side, we get

−στJ =
2
π

∫ ∞

0

dω
ω3
[
δρ(ω) − σω] , (23)

in which the −σω term in the integrand is included to remove
the IR singularity. This is the third sum rule (sum rule 3) we
have derived in this paper.

Let us again check that this sum rule is satisfied at weak cou-
pling. The contribution from the transport peak is found to be

2
π

∫ ∞

0

dω
ω3
[
δρ(ω) − σω] = −T 2Cem

9
Ncτ

2, (24)

where we have used Eq. (11) and the expression of σ in the
relaxation time approximation. Taking into account τJ = τ,
we find that Eq. (24) is equal to the left-hand side of sum rule
3. The contribution from the continuum is much smaller than
that from the transport peak, due to the negative power of ω
in the integrand: From Eq. (13), the continuum contributes to
the sum rule as 2

∫ ∞
µ

dω
[
δρ(ω) − σω] /(πω3) ∼ σ/µ, where µ

is the IR cutoff. The one-loop result of Eq. (13) is reliable for
ω ≫ gT , while for ω ≤ gT the effect of thermal modification
of the quark spectrum and the vertex becomes important so that
the hard thermal loop resummation is necessary [26, 31]. It is
thus natural to set the IR cutoff to µ ∼ gT . With this order
estimate, the contribution from the continuum turns out to be
much smaller than −στJ ∼ e2g−8.

A comment on the sensitivity on the continuum/transport
peak of the sum rules is in order here. From the discussions
above, sum rule 1 was found to be equally sensitive to both of
them, at least in the weak coupling regime. Meanwhile, sum
rule 2 (3) is more sensitive to the continuum (transport peak)
because of positive (negative) power of ω in the integrand. This
suggests that, if one wishes to extract information of one of
these objects from the sum rules, one should use the most suit-
able one, which is most sensitive to the object of interest.

3. Application to Lattice QCD

Let us demonstrate that the sum rules we have derived can
be used to give constraints to the spectral ansatz used in fits to
lattice QCD data. As a first trial, we consider the simple5 ansatz
introduced in Ref. [13] (our convention differs from theirs by a
factor of two),

ρ(ω) = Cem
[
cBWρpeak(ω) + (1 + k)ρcont(ω)

]
, (25)

5A more complicated ansatz, which also contains information on vacuum
bound states, was introduced in Refs. [14, 16]. In these works, the sum rule
of Eq. (8) was furthermore used to constrain the parameters appearing in their
ansatz.

5

where

ρpeak(ω) ≡ 1
3

ωΓ/2
ω2 + (Γ/2)2 , (26)

ρcont(ω) ≡ ω2

4π

(
1 − 2nF

(ω
2

))
, (27)

correspond to the transport peak and the continuum in the weak
coupling limit. We note that, δρ(ω) can be obtained by subtract-
ing ρT=0(ω). Data for this function can be obtained from the
experimental (e+e− → hadrons) cross section (see for instance
the compilation of data given in the particle data group [32]),
or from zero temperature lattice calculations. In this paper, we
will however for simplicity confine ourselves to the averaged
form Cemω2(1 + k)/(4π)6. Equation (25) contains three param-
eters (cBW ,Γ, k) that need to be determined by fitting the data.
Sum rule 1 of Eq. (8) provides a constraint on these parameters:

cBW = (1 + k)T 2. (28)

This constraint may be used to reduce the number of fitting
parameters in the ansatz. Here, we simply check whether the
values of the parameters obtained from the fit [13] satisfy the
sum rule. The fitted values at T = 1.45Tc are k ≃ 0.047,Γ ≃
2.2T, cBW ≃ 1.2T 2, which give 1.2T 2 on the left-hand side of
Eq. (28) while 1.0T 2 is obtained on the right-hand side. We see
that, even though the agreement is not perfect, the fit satisfies
the constraint with reasonable precision.

The ansatz Eq. (25) can not be applied to the other two sum
rules, Eqs. (14) and (23), because it would cause a UV diver-
gence in sum rule 2 and an IR divergences in sum rule 3. There-
fore, to construct a spectral function that can satisfy all three
sum rules, an improved parametrization is necessary. We hence
propose the following ansatz (ansatz A):

ρ(ω) = Cem
[
cBWρpeak(ω)[1 − A(ω)] + A(ω)(1 + k)ρcont(ω)

]
,

(29)

where A(ω) ≡ tanh(ω2/∆2). As one can easily check, the cutoff
function A(ω) removes all IR and UV divergences in Eqs. (14)
and (23).

The values of Γ, cBW , k, and ∆ should be determined from
lattice data. To demonstrate that this functional form is fea-
sible, we have performed a simple trial analysis, making use
of the Euclidean vector correlator and second thermal moment
data provided in Ref. [13]. These data were also used to fit the
ansatz of Eq. (25), as explained above. We moreover employ
the sum rule 1 of Eq. (8) to constrain our fit, as it was done in
Ref. [14, 16]. Specifically, the constraints of the second ther-
mal moment and sum rule 1 first reduce the number of undeter-
mined parameters to two (Γ and ∆), which are then fitted to the
Euclidean vector correlator data. Following this procedure, we
have found that the best fit is obtained for very large values of
Γ, with values of ∆/T of the order of one. This means that the

6This ansatz could be improved by taking into account the lowest few reso-
nances of the spectrum, similar to Refs. [14, 16], or by making direct use of the
(e+e− → hadrons) cross section data.

transport peak at low energy is not generated by the Lorentzian
of Eq. (26), but by the function 1 − A(ω), with the width 2∆.
As will be shown in Fig. 3, these two functional forms are quite
alike and share many qualitative features. Quantitatively, our
best fit is obtained for,

k = 0.058,
2cBW/(TΓ) = 1.7,

Γ/T = infinity,
∆/T = 1.2,

(30)

which gives a χ2/d.o. f of 0.53. The respective (vacuum sub-
tracted) spectral function is shown in Fig. 3, together with the
fit result of Ref. [13], for which Eq. (25) was used.

Having the fitted and well behaved spectral function of
Eq. (29) at hand, we can now proceed to compute various quan-
tities of interest. First of all, one can easily extract the electrical
conductivity as

σ

T
= lim

ω→0

ρ(ω)
ωT

= Cem
2cBW

3TΓ
= 0.57 ×Cem,

(31)

which is about 50 % larger than the value reported in [13].
Next, we can check to what degree our spectral function sat-

isfies sum rule 2 of Eq. (16). As we have explained in Section
2.2, the difference between the sum rules of Eqs. (14) and (16)
corresponds to a non-exponentially suppressed UV tail of the
spectral function. As this tail is not included in the parametriza-
tion of Eq. (29), its integral should be compared to Eq. (16) and
not Eq. (14). Computing the integral with the values of Eq. (30),
we get

2
π

∫ ∞

0
dωωδρ(ω) = −0.59T 4, (32)

with Nf = 3. This value is marked as a cross on the lower
right corner in the second plot of Fig. 2. Note that the lattice
data of Ref. [13] are given at 1.45 Tc. For Tc, we have used
Tc = 270 MeV, suitable for quenched QCD. As can be seen in
this plot, the integrated value of Eq. (32) lies very close to the
leading order perturbative QCD result, showing that sum rule
2 can be satisfied with reasonable precision, if the condensates
on its right-hand-side approach the perturbative limit quickly
enough. To study this question in more detail, an explicit lattice
calculation of δ⟨T 00

f ⟩ will however be needed.
In this context, we note that one could try to construct a spec-

tral function that is consistent with the sum rule of Eq. (14). For
this purpose, one would need to include the above-mentioned
UV tail in the ansatz (ansatz B):

ρ(ω) = Cem
[
cBWρpeak(ω)[1 − A(ω)] + A(ω)(1 + k)ρcont(ω)

+ cUVθ(ω − ωmin)ρtail(ω)
]
,

(33)

where

ρtail(ω) ≡ 4CFπ2T 4

9ω2 αs(eΛQCD)[ln(ω/ΛQCD)]−ã−1. (34)
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Sum rule 3

Spectral function obtained by fit of lattice data

which results in1

GR(ω) = iωσ (1 + iτJω) + O(ω3), ρ(ω) = σω + O(ω3). (7)

We note that, σ = τJ = 0 at T = 0, so that GR here is actually
equal to δGR. The reason for σ = 0 is that even the lightest vec-
tor meson ( the ρ) has non-zero mass and its spectral strength
vanishes below the ππ threshold. Therefore the spectral weight
around ω = 0 is zero. τJ = 0 is obtained from the renormal-
ization condition for photon wave function. This is not the case
for the coefficients of order ω4 or higher. We also note that
this expression is correct only in the large Nc limit, in which
the coupling effect among the hydro modes is negligible [25].
Beyond this limit, a nonanalytic term (ω3/2) appears in ρ(ω).
Nevertheless, this does not affect the sum rules 1 and 2 we de-
rive in this work. Applying the UV and IR results of Eqs. (5),
(7), Eq. (2) becomes

0 =
∫ ∞

0

dω
ω
δρ(ω). (8)

This is the first sum rule (sum rule 1) to be discussed in this
paper. We should mention here that this is the |p| = 0 version
of the sum rule derived in Ref. [15].

Let us check that this sum rule is satisfied at weak coupling
and in the chiral limit (mf = 0). In this case, the spectral func-
tion consists of a transport peak at low energy (ω ∼ g4T ) and a
continuum in the high energy region (ω ∼ T ). We first evaluate
the former contribution, which can be described by the Boltz-
mann equation

Dn± f (k, X) − τ−1nF(|k|)
= ∓eq f (E + v × B) (X) · ∇kn± f (k, X),

(9)

where D ≡ v ·∂X + τ−1, n± f (k, X) is the distribution function for
the quark (anti-quark) with momentum k at point X, nF(|k|) ≡
[exp(|k|/T )+1]−1 is the distribution function at equilibrium, and
vµ ≡ (1, v) with v ≡ k/|k|. We have adopted here the relaxation
time approximation, which considerably simplifies the collision
term2. τ is called relaxation time, and its order of magnitude is
determined by collision effects. Since we are interested in the
retarded Green function, we only need the linearized equation:
Dδn± f (k, X) = ∓eq f E(X) · vn′F(|k|), where δn± f ≡ n± f − nF .
After performing the Fourier transformation X → p and setting
|p| = 0, this results in the solution

δn± f (k,ω) = ∓ieq f
E(ω) · v
ω + iτ−1 n′F(|k|). (10)

The induced current is given by j(ω) =
2eNc

∑
f q f
∫

d3kv
∑

s=±1 sδns f (k,ω)/(2π)3, where the factor 2

1 The real part of GR(ω) contains a UV divergence coming from the T = 0
part, so σ and τJ need to be defined for the renormalized version of GR(ω).
This divergence can be removed by the renormalization of the photon wave
function [23, 24].

2This is a very simple approximation, which was however found to work
well by solving the Boltzmann equation without relying on it [26]: The full
calculation produces a solution for ρ(ω)/ω that is an almost perfect Lorentzian,
which is also obtained by the relaxation time approximation [see Eq. (11)].

comes from the spin degeneracy of the quarks. This expression
and Eq. (10), together with the linear response relation of
Eq. (6), give us the following result for GR and the spectral
function:

GR(ω) = −T 2CemNc

9
ω

ω + iτ−1 , ρ(ω) =
T 2CemNc

9
ωτ−1

ω2 + τ−2 .

(11)

Here we have introduced the factor, Cem ≡ e2∑
f q2

f . We note
that this is reduced to Eq. (7) when ω ≪ τ−1, and we can iden-
tify3 σ = T 2CemNcτ/9 and τJ = τ. Its contribution to the sum
rule Eq. (8) reads

∫ ∞

0

dω
ω
δρ(ω) =

πT 2CemNc

18
, (12)

which is of order e2T 2, and independent of τ. Here the T = 0
component does not contribute because of the absence of the
transport peak in the vacuum.

Next, we evaluate the contribution from the continuum.
From a one-loop calculation [29], we have

ρ(ω) =
NcCem

12π
ω2
(
1 − 2nF

(ω
2

))
. (13)

The pair creation/annihilation process of the quark and the anti-
quark is responsible for this expression: one can see that by
rewriting the distribution function factor 1−2nF as [1−nF]2−n2

F .
The former (latter) term comes from the pair creation (annihi-
lation) process. It is noted that, after subtracting the T = 0 part,
the spectral function becomes negative. Performing the inte-
gral over ω, it is straightforward to see that its contribution to
the sum rule cancels the contribution from the transport peak,
Eq. (12), so that the sum rule Eq. (8) is satisfied.

2.2. Sum Rule 2
In a similar way (replacing GR with ω2GR in the deriva-

tion), we derive another sum rule which contains two more
powers of ω in the integrand. In analogy to the derivation of
sum rule 1, we get δGR2

0 − δGR2
∞ = 2

∫ ∞
0 dωωδρ(ω)/π, where

δGR2
∞ ≡ ω2δGR(ω)|ω→∞ and δGR2

0 ≡ ω2δGR(ω)|ω→0. By using
the UV/IR limits of GR, Eqs. (5) and (7), we obtain

2
π

∫ ∞

0
dωωδρ(ω) = −e2

∑

f

q2
f

[
2mf δ⟨ψ fψ f ⟩

+
1
12
δ
〈αs

π
G2
〉
+

8
3(4CF + Nf )

δ⟨T 00⟩
]
.

(14)

This is the second sum rule (sum rule 2)4 we discuss in this
work.

3We note that collisional effects are essential for the evaluation of σ: If we
take the τ−1 → 0 limit, ρ(ω) will be proportional to ωδ(ω) and σ is proportional
to τ, which is infinitely large. This abnormal behavior indicates that collisions
are important in the small ω region.

4We note that this sum rule in the case of N f = 1 and Nc = 3 was derived in
Ref. [9]. However, the coefficient of T 00 in this reference is not the correct one
(Eq. (14)), but is equal to that in the expression (Eq. (16)), where the effect of
the mixing/rescaling of the energy-momentum tensor is neglected.
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We note that, σ = τJ = 0 at T = 0, so GR here is actually equal
to δGR. The reason for σ = 0 is that even the lightest vector me-
son (ρ) has finite mass, so that the spectral weight around ω = 0
is zero. τJ = 0 is obtained from the renormalization condition
for photon wave function. This is not the case for the coeffi-
cients that is of order or higher than ω4. We also note that this
expression is correct only in large Nc limit, in which the cou-
pling effect among the hydro modes is negligible [25]. Beyond
this limit, nonanalytic term (ω3/2) appears in ρ(ω). Neverthe-
less, it does not affect the sum rule 1 and 2 we derive. Applying
the UV and IR results of Eqs. (5), (7), Eq. (2) becomes

0 =
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dω
ω
δρ(ω). (8)

This is the first sum rule (sum rule 1) to be discussed in this
paper. We should mention here that this is the |p| = 0 version
of the sum rule derived in Ref. [15].

Let us check that this sum rule is satisfied at weak coupling
and in the chiral limit (mf = 0). In this case, the spectral func-
tion consists of a transport peak at low energy (ω ∼ g4T ) and a
continuum in the high energy region (ω ∼ T ). We first evaluate
the former contribution, which can be described by the Boltz-
mann equation

Dn± f (k, X) − τ−1nF(|k|)
= ∓eq f (E + v × B) (X) · ∇kn± f (k, X),

(9)

where D ≡ v ·∂X + τ−1, n± f (k, X) is the distribution function for
the quark (anti-quark) with momentum k at point X, nF(|k|) ≡
[exp(|k|/T )+1]−1 is the distribution function at equilibrium, and
vµ ≡ (1, v) with v ≡ k/|k|. We have adopted here the relaxation
time approximation, which considerably simplifies the collision
term2. τ is called relaxation time, and its order of magnitude is
determined by collision effects. Since we are interested in the
retarded Green function, we only need the linearized equation:
Dδn± f (k, X) = ∓eq f E(X) · vn′F(|k|), where δn± f ≡ n± f − nF .
After performing the Fourier transformation X → p and setting
|p| = 0, this results in the solution

δn± f (k,ω) = ∓ieq f
E(ω) · v
ω + iτ−1 n′F(|k|). (10)

The induced current is given by j(ω) =
2eNc

∑
f q f
∫

d3kv
∑

s=±1 sδns f (k,ω)/(2π)3, where the factor 2
comes from the spin degeneracy of the quarks. This expression
and Eq. (10), together with the linear response relation of

1 The real part of GR(ω) contains UV divergence coming from T = 0 part,
so τJ needs to be defined for renormalized GR(ω). Such divergence can be
removed by the renormalization of the photon wave function [23, 24].

2This is a very simple approximation, which was however found to work
well by solving the Boltzmann equation without relying on it [26]: The full
calculation produces a solution for ρ(ω)/ω that is an almost perfect Lorentzian,
which is also obtained by the relaxation time approximation [see Eq. (11)].

Eq. (6), give us the following result for GR and the spectral
function:
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(11)

Here we have introduced the factor, Cem ≡ e2∑
f q2

f . We note
that this is reduced to Eq. (7) when ω ≪ τ−1, and we can iden-
tify3 σ = T 2CemNcτ/9 and τJ = τ. Its contribution to the sum
rule Eq. (8) reads

∫ ∞

0

dω
ω
δρ(ω) =

πT 2CemNc

18
, (12)

which is of order e2T 2, and independent of τ. Here the T = 0
component does not contribute because of the absence of the
transport peak in the vacuum.

Next, we evaluate the contribution from the continuum.
From a one-loop calculation [29], we have

ρ(ω) =
NcCem

12π
ω2
(
1 − 2nF

(ω
2

))
. (13)

The pair creation/annihilation process of the quark and the anti-
quark is responsible for this expression: one can see that by
rewriting the distribution function factor 1−2nF as [1−nF]2−n2

F .
The former (latter) term comes from the pair creation (annihi-
lation) process. It is noted that, after subtracting the T = 0 part,
the spectral function becomes negative. Performing the inte-
gral over ω, it is straightforward to see that its contribution to
the sum rule cancels the contribution from the transport peak,
Eq. (12), so that the sum rule Eq. (8) is satisfied.

2.2. Sum Rule 2
In a similar way (replacing GR with ω2GR in the deriva-

tion), we derive another sum rule which contains two more
powers of ω in the integrand. In analogy to the derivation of
sum rule 1, we get δGR2

0 − δGR2
∞ = 2

∫ ∞
0 dωωδρ(ω)/π, where

δGR2
∞ ≡ ω2δGR(ω)|ω→∞ and δGR2

0 ≡ ω2δGR(ω)|ω→0. By using
the UV/IR limits of GR, Eqs. (5) and (7), we obtain

2
π
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0
dωωδρ(ω) = −e2

∑

f

q2
f

[
2mf δ⟨ψ fψ f ⟩

+
1
12
δ
〈αs

π
G2
〉
+
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This is the second sum rule (sum rule 2)4 we discuss in this
work.

3We note that collisional effects are essential for the evaluation of σ: If we
take the τ−1 → 0 limit, ρ(ω) will be proportional to ωδ(ω) and σ is proportional
to τ, which is infinitely large. This abnormal behavior indicates that collisions
are important in the small ω region.

4We note that this sum rule in the case of N f = 1 and Nc = 3 was derived in
Ref. [9]. However, the coefficient of T 00 in this reference is not the correct one
(Eq. (14)), but is equal to that in the expression (Eq. (16)), where the effect of
the mixing/rescaling of the energy-momentum tensor is neglected.
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Figure 2: The right-hand sides of Eq. (14) (upper plot) and Eq. (16) (lower
plot), divided by T 4 and shown as a function of temperature T . To extract
the temperature dependence of the condensates, lattice QCD data provided in
Ref. [30] were used. T 00

f in Eq. (16) was estimated within a free pion gas model,
reliable at low T , and leading order perturbative QCD, which should give the
correct behavior at high T . We used the value e2 = 0.092 for the plots. The
cross at the lower right side of the lower plot marks the of our fitted spectral
function given in Eq. (32). For details, see the main text of Section 3.

rule is satisfied only considering the contribution of the UV tail
in the above limits. Also, it is easy to see that such contribution
to the other two sum rules is negligible at weak coupling (with
order estimate ωmin ∼ T ).

2.3. Sum Rule 3

In the sum rule to be discussed in this subsection, the inte-
grand of sum rule 1 is in essence divided by ω2. To avoid po-
tential IR divergences, the derivation however has to be carried
out with some care. Equation (1) can be written as

δGR(iω) − δGR
∞ =

1
2π

∫ ∞

−∞
dω′

1
ω′2 + ω2

× (ω′δρ(ω′) + ωRe[δGR(ω′) − δGR
∞])

=
1
π

∫ ∞

−∞
dω′

ω′δρ(ω′)
ω′2 + ω2 ,

(22)

where in the second line we have used the property that the con-
tributions from the first and the second terms are equal, which
can be shown by evaluating the right-hand side of Eq. (1) using
the residue theorem with the contour closing in the lower half
plane. Subtracting Eq. (2) and −σω from this expression and
using Eq. (7) on the left-hand side, we get

−στJ =
2
π

∫ ∞

0

dω
ω3
[
δρ(ω) − σω] , (23)

in which the −σω term in the integrand is included to remove
the IR singularity. This is the third sum rule (sum rule 3) we
have derived in this paper.

Let us again check that this sum rule is satisfied at weak cou-
pling. The contribution from the transport peak is found to be

2
π

∫ ∞

0

dω
ω3
[
δρ(ω) − σω] = −T 2Cem

9
Ncτ

2, (24)

where we have used Eq. (11) and the expression of σ in the
relaxation time approximation. Taking into account τJ = τ,
we find that Eq. (24) is equal to the left-hand side of sum rule
3. The contribution from the continuum is much smaller than
that from the transport peak, due to the negative power of ω
in the integrand: From Eq. (13), the continuum contributes to
the sum rule as 2

∫ ∞
µ

dω
[
δρ(ω) − σω] /(πω3) ∼ σ/µ, where µ

is the IR cutoff. The one-loop result of Eq. (13) is reliable for
ω ≫ gT , while for ω ≤ gT the effect of thermal modification
of the quark spectrum and the vertex becomes important so that
the hard thermal loop resummation is necessary [26, 31]. It is
thus natural to set the IR cutoff to µ ∼ gT . With this order
estimate, the contribution from the continuum turns out to be
much smaller than −στJ ∼ e2g−8.

A comment on the sensitivity on the continuum/transport
peak of the sum rules is in order here. From the discussions
above, sum rule 1 was found to be equally sensitive to both of
them, at least in the weak coupling regime. Meanwhile, sum
rule 2 (3) is more sensitive to the continuum (transport peak)
because of positive (negative) power of ω in the integrand. This
suggests that, if one wishes to extract information of one of
these objects from the sum rules, one should use the most suit-
able one, which is most sensitive to the object of interest.

3. Application to Lattice QCD

Let us demonstrate that the sum rules we have derived can
be used to give constraints to the spectral ansatz used in fits to
lattice QCD data. As a first trial, we consider the simple5 ansatz
introduced in Ref. [13] (our convention differs from theirs by a
factor of two),

ρ(ω) = Cem
[
cBWρpeak(ω) + (1 + k)ρcont(ω)

]
, (25)

5A more complicated ansatz, which also contains information on vacuum
bound states, was introduced in Refs. [14, 16]. In these works, the sum rule
of Eq. (8) was furthermore used to constrain the parameters appearing in their
ansatz.
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of the sum rule derived in Ref. [15].

Let us check that this sum rule is satisfied at weak coupling
and in the chiral limit (mf = 0). In this case, the spectral func-
tion consists of a transport peak at low energy (ω ∼ g4T ) and a
continuum in the high energy region (ω ∼ T ). We first evaluate
the former contribution, which can be described by the Boltz-
mann equation

Dn± f (k, X) − τ−1nF(|k|)
= ∓eq f (E + v × B) (X) · ∇kn± f (k, X),

(9)

where D ≡ v ·∂X + τ−1, n± f (k, X) is the distribution function for
the quark (anti-quark) with momentum k at point X, nF(|k|) ≡
[exp(|k|/T )+1]−1 is the distribution function at equilibrium, and
vµ ≡ (1, v) with v ≡ k/|k|. We have adopted here the relaxation
time approximation, which considerably simplifies the collision
term2. τ is called relaxation time, and its order of magnitude is
determined by collision effects. Since we are interested in the
retarded Green function, we only need the linearized equation:
Dδn± f (k, X) = ∓eq f E(X) · vn′F(|k|), where δn± f ≡ n± f − nF .
After performing the Fourier transformation X → p and setting
|p| = 0, this results in the solution

δn± f (k,ω) = ∓ieq f
E(ω) · v
ω + iτ−1 n′F(|k|). (10)

The induced current is given by j(ω) =
2eNc

∑
f q f
∫

d3kv
∑

s=±1 sδns f (k,ω)/(2π)3, where the factor 2
comes from the spin degeneracy of the quarks. This expression
and Eq. (10), together with the linear response relation of

1 The real part of GR(ω) contains UV divergence coming from T = 0 part,
so τJ needs to be defined for renormalized GR(ω). Such divergence can be
removed by the renormalization of the photon wave function [23, 24].

2This is a very simple approximation, which was however found to work
well by solving the Boltzmann equation without relying on it [26]: The full
calculation produces a solution for ρ(ω)/ω that is an almost perfect Lorentzian,
which is also obtained by the relaxation time approximation [see Eq. (11)].
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f . We note
that this is reduced to Eq. (7) when ω ≪ τ−1, and we can iden-
tify3 σ = T 2CemNcτ/9 and τJ = τ. Its contribution to the sum
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which is of order e2T 2, and independent of τ. Here the T = 0
component does not contribute because of the absence of the
transport peak in the vacuum.

Next, we evaluate the contribution from the continuum.
From a one-loop calculation [29], we have

ρ(ω) =
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. (13)

The pair creation/annihilation process of the quark and the anti-
quark is responsible for this expression: one can see that by
rewriting the distribution function factor 1−2nF as [1−nF]2−n2

F .
The former (latter) term comes from the pair creation (annihi-
lation) process. It is noted that, after subtracting the T = 0 part,
the spectral function becomes negative. Performing the inte-
gral over ω, it is straightforward to see that its contribution to
the sum rule cancels the contribution from the transport peak,
Eq. (12), so that the sum rule Eq. (8) is satisfied.

2.2. Sum Rule 2
In a similar way (replacing GR with ω2GR in the deriva-

tion), we derive another sum rule which contains two more
powers of ω in the integrand. In analogy to the derivation of
sum rule 1, we get δGR2

0 − δGR2
∞ = 2

∫ ∞
0 dωωδρ(ω)/π, where

δGR2
∞ ≡ ω2δGR(ω)|ω→∞ and δGR2

0 ≡ ω2δGR(ω)|ω→0. By using
the UV/IR limits of GR, Eqs. (5) and (7), we obtain
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This is the second sum rule (sum rule 2)4 we discuss in this
work.

3We note that collisional effects are essential for the evaluation of σ: If we
take the τ−1 → 0 limit, ρ(ω) will be proportional to ωδ(ω) and σ is proportional
to τ, which is infinitely large. This abnormal behavior indicates that collisions
are important in the small ω region.

4We note that this sum rule in the case of N f = 1 and Nc = 3 was derived in
Ref. [9]. However, the coefficient of T 00 in this reference is not the correct one
(Eq. (14)), but is equal to that in the expression (Eq. (16)), where the effect of
the mixing/rescaling of the energy-momentum tensor is neglected.
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which results in1

GR(ω) = iωσ (1 + iτJω) + O(ω3), ρ(ω) = σω + O(ω3). (7)

We note that, σ = τJ = 0 at T = 0, so that GR here is actually
equal to δGR. The reason for σ = 0 is that even the lightest vec-
tor meson ( the ρ) has non-zero mass and its spectral strength
vanishes below the ππ threshold. Therefore the spectral weight
around ω = 0 is zero. τJ = 0 is obtained from the renormal-
ization condition for photon wave function. This is not the case
for the coefficients of order ω4 or higher. We also note that
this expression is correct only in the large Nc limit, in which
the coupling effect among the hydro modes is negligible [25].
Beyond this limit, a nonanalytic term (ω3/2) appears in ρ(ω).
Nevertheless, this does not affect the sum rules 1 and 2 we de-
rive in this work. Applying the UV and IR results of Eqs. (5),
(7), Eq. (2) becomes

0 =
∫ ∞

0

dω
ω
δρ(ω). (8)

This is the first sum rule (sum rule 1) to be discussed in this
paper. We should mention here that this is the |p| = 0 version
of the sum rule derived in Ref. [15].

Let us check that this sum rule is satisfied at weak coupling
and in the chiral limit (mf = 0). In this case, the spectral func-
tion consists of a transport peak at low energy (ω ∼ g4T ) and a
continuum in the high energy region (ω ∼ T ). We first evaluate
the former contribution, which can be described by the Boltz-
mann equation

Dn± f (k, X) − τ−1nF(|k|)
= ∓eq f (E + v × B) (X) · ∇kn± f (k, X),

(9)

where D ≡ v ·∂X + τ−1, n± f (k, X) is the distribution function for
the quark (anti-quark) with momentum k at point X, nF(|k|) ≡
[exp(|k|/T )+1]−1 is the distribution function at equilibrium, and
vµ ≡ (1, v) with v ≡ k/|k|. We have adopted here the relaxation
time approximation, which considerably simplifies the collision
term2. τ is called relaxation time, and its order of magnitude is
determined by collision effects. Since we are interested in the
retarded Green function, we only need the linearized equation:
Dδn± f (k, X) = ∓eq f E(X) · vn′F(|k|), where δn± f ≡ n± f − nF .
After performing the Fourier transformation X → p and setting
|p| = 0, this results in the solution

δn± f (k,ω) = ∓ieq f
E(ω) · v
ω + iτ−1 n′F(|k|). (10)

The induced current is given by j(ω) =
2eNc

∑
f q f
∫

d3kv
∑

s=±1 sδns f (k,ω)/(2π)3, where the factor 2

1 The real part of GR(ω) contains a UV divergence coming from the T = 0
part, so σ and τJ need to be defined for the renormalized version of GR(ω).
This divergence can be removed by the renormalization of the photon wave
function [23, 24].

2This is a very simple approximation, which was however found to work
well by solving the Boltzmann equation without relying on it [26]: The full
calculation produces a solution for ρ(ω)/ω that is an almost perfect Lorentzian,
which is also obtained by the relaxation time approximation [see Eq. (11)].
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the spectral function becomes negative. Performing the inte-
gral over ω, it is straightforward to see that its contribution to
the sum rule cancels the contribution from the transport peak,
Eq. (12), so that the sum rule Eq. (8) is satisfied.

2.2. Sum Rule 2
In a similar way (replacing GR with ω2GR in the deriva-

tion), we derive another sum rule which contains two more
powers of ω in the integrand. In analogy to the derivation of
sum rule 1, we get δGR2

0 − δGR2
∞ = 2

∫ ∞
0 dωωδρ(ω)/π, where

δGR2
∞ ≡ ω2δGR(ω)|ω→∞ and δGR2

0 ≡ ω2δGR(ω)|ω→0. By using
the UV/IR limits of GR, Eqs. (5) and (7), we obtain

2
π

∫ ∞

0
dωωδρ(ω) = −e2

∑

f

q2
f

[
2mf δ⟨ψ fψ f ⟩

+
1
12
δ
〈αs

π
G2
〉
+

8
3(4CF + Nf )

δ⟨T 00⟩
]
.

(14)

This is the second sum rule (sum rule 2)4 we discuss in this
work.

3We note that collisional effects are essential for the evaluation of σ: If we
take the τ−1 → 0 limit, ρ(ω) will be proportional to ωδ(ω) and σ is proportional
to τ, which is infinitely large. This abnormal behavior indicates that collisions
are important in the small ω region.

4We note that this sum rule in the case of N f = 1 and Nc = 3 was derived in
Ref. [9]. However, the coefficient of T 00 in this reference is not the correct one
(Eq. (14)), but is equal to that in the expression (Eq. (16)), where the effect of
the mixing/rescaling of the energy-momentum tensor is neglected.

3

Check at weak coupling

Check Transport peak with Boltzmann eq.
relaxation time approximation

τ ~ (g4T ln(1/g))-1: relaxation time
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Continuum:

1-nF(ω/2)

1-nF(ω/2)

ω
nF(ω/2)

nF(ω/2)

—

[1-nF]2-[nF]2=1-2nF

ω

which results in1

GR(ω) = iωσ (1 + iτJω) + O(ω3), ρ(ω) = σω + O(ω3). (7)

We note that, σ = τJ = 0 at T = 0, so that GR here is actually
equal to δGR. The reason for σ = 0 is that even the lightest vec-
tor meson ( the ρ) has non-zero mass and its spectral strength
vanishes below the ππ threshold. Therefore the spectral weight
around ω = 0 is zero. τJ = 0 is obtained from the renormal-
ization condition for photon wave function. This is not the case
for the coefficients of order ω4 or higher. We also note that
this expression is correct only in the large Nc limit, in which
the coupling effect among the hydro modes is negligible [25].
Beyond this limit, a nonanalytic term (ω3/2) appears in ρ(ω).
Nevertheless, this does not affect the sum rules 1 and 2 we de-
rive in this work. Applying the UV and IR results of Eqs. (5),
(7), Eq. (2) becomes

0 =
∫ ∞

0

dω
ω
δρ(ω). (8)

This is the first sum rule (sum rule 1) to be discussed in this
paper. We should mention here that this is the |p| = 0 version
of the sum rule derived in Ref. [15].

Let us check that this sum rule is satisfied at weak coupling
and in the chiral limit (mf = 0). In this case, the spectral func-
tion consists of a transport peak at low energy (ω ∼ g4T ) and a
continuum in the high energy region (ω ∼ T ). We first evaluate
the former contribution, which can be described by the Boltz-
mann equation

Dn± f (k, X) − τ−1nF(|k|)
= ∓eq f (E + v × B) (X) · ∇kn± f (k, X),

(9)

where D ≡ v ·∂X + τ−1, n± f (k, X) is the distribution function for
the quark (anti-quark) with momentum k at point X, nF(|k|) ≡
[exp(|k|/T )+1]−1 is the distribution function at equilibrium, and
vµ ≡ (1, v) with v ≡ k/|k|. We have adopted here the relaxation
time approximation, which considerably simplifies the collision
term2. τ is called relaxation time, and its order of magnitude is
determined by collision effects. Since we are interested in the
retarded Green function, we only need the linearized equation:
Dδn± f (k, X) = ∓eq f E(X) · vn′F(|k|), where δn± f ≡ n± f − nF .
After performing the Fourier transformation X → p and setting
|p| = 0, this results in the solution

δn± f (k,ω) = ∓ieq f
E(ω) · v
ω + iτ−1 n′F(|k|). (10)

The induced current is given by j(ω) =
2eNc

∑
f q f
∫

d3kv
∑

s=±1 sδns f (k,ω)/(2π)3, where the factor 2

1 The real part of GR(ω) contains a UV divergence coming from the T = 0
part, so σ and τJ need to be defined for the renormalized version of GR(ω).
This divergence can be removed by the renormalization of the photon wave
function [23, 24].

2This is a very simple approximation, which was however found to work
well by solving the Boltzmann equation without relying on it [26]: The full
calculation produces a solution for ρ(ω)/ω that is an almost perfect Lorentzian,
which is also obtained by the relaxation time approximation [see Eq. (11)].

comes from the spin degeneracy of the quarks. This expression
and Eq. (10), together with the linear response relation of
Eq. (6), give us the following result for GR and the spectral
function:

GR(ω) = −T 2CemNc

9
ω

ω + iτ−1 , ρ(ω) =
T 2CemNc

9
ωτ−1

ω2 + τ−2 .

(11)

Here we have introduced the factor, Cem ≡ e2∑
f q2

f . We note
that this is reduced to Eq. (7) when ω ≪ τ−1, and we can iden-
tify3 σ = T 2CemNcτ/9 and τJ = τ. Its contribution to the sum
rule Eq. (8) reads

∫ ∞

0

dω
ω
δρ(ω) =

πT 2CemNc

18
, (12)

which is of order e2T 2, and independent of τ. Here the T = 0
component does not contribute because of the absence of the
transport peak in the vacuum.

Next, we evaluate the contribution from the continuum.
From a one-loop calculation [29], we have

ρ(ω) =
NcCem

12π
ω2
(
1 − 2nF

(ω
2

))
. (13)

The pair creation/annihilation process of the quark and the anti-
quark is responsible for this expression: one can see that by
rewriting the distribution function factor 1−2nF as [1−nF]2−n2

F .
The former (latter) term comes from the pair creation (annihi-
lation) process. It is noted that, after subtracting the T = 0 part,
the spectral function becomes negative. Performing the inte-
gral over ω, it is straightforward to see that its contribution to
the sum rule cancels the contribution from the transport peak,
Eq. (12), so that the sum rule Eq. (8) is satisfied.

2.2. Sum Rule 2
In a similar way (replacing GR with ω2GR in the deriva-

tion), we derive another sum rule which contains two more
powers of ω in the integrand. In analogy to the derivation of
sum rule 1, we get δGR2

0 − δGR2
∞ = 2

∫ ∞
0 dωωδρ(ω)/π, where

δGR2
∞ ≡ ω2δGR(ω)|ω→∞ and δGR2

0 ≡ ω2δGR(ω)|ω→0. By using
the UV/IR limits of GR, Eqs. (5) and (7), we obtain

2
π

∫ ∞

0
dωωδρ(ω) = −e2

∑

f

q2
f

[
2mf δ⟨ψ fψ f ⟩

+
1
12
δ
〈αs

π
G2
〉
+

8
3(4CF + Nf )

δ⟨T 00⟩
]
.

(14)

This is the second sum rule (sum rule 2)4 we discuss in this
work.

3We note that collisional effects are essential for the evaluation of σ: If we
take the τ−1 → 0 limit, ρ(ω) will be proportional to ωδ(ω) and σ is proportional
to τ, which is infinitely large. This abnormal behavior indicates that collisions
are important in the small ω region.

4We note that this sum rule in the case of N f = 1 and Nc = 3 was derived in
Ref. [9]. However, the coefficient of T 00 in this reference is not the correct one
(Eq. (14)), but is equal to that in the expression (Eq. (16)), where the effect of
the mixing/rescaling of the energy-momentum tensor is neglected.

3

ρ(ω)

Check at weak coupling
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which results in1

GR(ω) = iωσ (1 + iτJω) + O(ω3), ρ(ω) = σω + O(ω3). (7)

We note that, σ = τJ = 0 at T = 0, so that GR here is actually
equal to δGR. The reason for σ = 0 is that even the lightest vec-
tor meson ( the ρ) has non-zero mass and its spectral strength
vanishes below the ππ threshold. Therefore the spectral weight
around ω = 0 is zero. τJ = 0 is obtained from the renormal-
ization condition for photon wave function. This is not the case
for the coefficients of order ω4 or higher. We also note that
this expression is correct only in the large Nc limit, in which
the coupling effect among the hydro modes is negligible [25].
Beyond this limit, a nonanalytic term (ω3/2) appears in ρ(ω).
Nevertheless, this does not affect the sum rules 1 and 2 we de-
rive in this work. Applying the UV and IR results of Eqs. (5),
(7), Eq. (2) becomes

0 =
∫ ∞

0

dω
ω
δρ(ω). (8)

This is the first sum rule (sum rule 1) to be discussed in this
paper. We should mention here that this is the |p| = 0 version
of the sum rule derived in Ref. [15].

Let us check that this sum rule is satisfied at weak coupling
and in the chiral limit (mf = 0). In this case, the spectral func-
tion consists of a transport peak at low energy (ω ∼ g4T ) and a
continuum in the high energy region (ω ∼ T ). We first evaluate
the former contribution, which can be described by the Boltz-
mann equation

Dn± f (k, X) − τ−1nF(|k|)
= ∓eq f (E + v × B) (X) · ∇kn± f (k, X),

(9)

where D ≡ v ·∂X + τ−1, n± f (k, X) is the distribution function for
the quark (anti-quark) with momentum k at point X, nF(|k|) ≡
[exp(|k|/T )+1]−1 is the distribution function at equilibrium, and
vµ ≡ (1, v) with v ≡ k/|k|. We have adopted here the relaxation
time approximation, which considerably simplifies the collision
term2. τ is called relaxation time, and its order of magnitude is
determined by collision effects. Since we are interested in the
retarded Green function, we only need the linearized equation:
Dδn± f (k, X) = ∓eq f E(X) · vn′F(|k|), where δn± f ≡ n± f − nF .
After performing the Fourier transformation X → p and setting
|p| = 0, this results in the solution

δn± f (k,ω) = ∓ieq f
E(ω) · v
ω + iτ−1 n′F(|k|). (10)

The induced current is given by j(ω) =
2eNc

∑
f q f
∫

d3kv
∑

s=±1 sδns f (k,ω)/(2π)3, where the factor 2

1 The real part of GR(ω) contains a UV divergence coming from the T = 0
part, so σ and τJ need to be defined for the renormalized version of GR(ω).
This divergence can be removed by the renormalization of the photon wave
function [23, 24].

2This is a very simple approximation, which was however found to work
well by solving the Boltzmann equation without relying on it [26]: The full
calculation produces a solution for ρ(ω)/ω that is an almost perfect Lorentzian,
which is also obtained by the relaxation time approximation [see Eq. (11)].

comes from the spin degeneracy of the quarks. This expression
and Eq. (10), together with the linear response relation of
Eq. (6), give us the following result for GR and the spectral
function:

GR(ω) = −T 2CemNc

9
ω

ω + iτ−1 , ρ(ω) =
T 2CemNc

9
ωτ−1

ω2 + τ−2 .

(11)

Here we have introduced the factor, Cem ≡ e2∑
f q2

f . We note
that this is reduced to Eq. (7) when ω ≪ τ−1, and we can iden-
tify3 σ = T 2CemNcτ/9 and τJ = τ. Its contribution to the sum
rule Eq. (8) reads

∫ ∞

0

dω
ω
δρ(ω) =

πT 2CemNc

18
, (12)

which is of order e2T 2, and independent of τ. Here the T = 0
component does not contribute because of the absence of the
transport peak in the vacuum.

Next, we evaluate the contribution from the continuum.
From a one-loop calculation [29], we have

ρ(ω) =
NcCem

12π
ω2
(
1 − 2nF

(ω
2

))
. (13)

The pair creation/annihilation process of the quark and the anti-
quark is responsible for this expression: one can see that by
rewriting the distribution function factor 1−2nF as [1−nF]2−n2

F .
The former (latter) term comes from the pair creation (annihi-
lation) process. It is noted that, after subtracting the T = 0 part,
the spectral function becomes negative. Performing the inte-
gral over ω, it is straightforward to see that its contribution to
the sum rule cancels the contribution from the transport peak,
Eq. (12), so that the sum rule Eq. (8) is satisfied.

2.2. Sum Rule 2
In a similar way (replacing GR with ω2GR in the deriva-

tion), we derive another sum rule which contains two more
powers of ω in the integrand. In analogy to the derivation of
sum rule 1, we get δGR2

0 − δGR2
∞ = 2

∫ ∞
0 dωωδρ(ω)/π, where

δGR2
∞ ≡ ω2δGR(ω)|ω→∞ and δGR2

0 ≡ ω2δGR(ω)|ω→0. By using
the UV/IR limits of GR, Eqs. (5) and (7), we obtain

2
π
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0
dωωδρ(ω) = −e2

∑
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+
1
12
δ
〈αs

π
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〉
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3(4CF + Nf )

δ⟨T 00⟩
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(14)

This is the second sum rule (sum rule 2)4 we discuss in this
work.

3We note that collisional effects are essential for the evaluation of σ: If we
take the τ−1 → 0 limit, ρ(ω) will be proportional to ωδ(ω) and σ is proportional
to τ, which is infinitely large. This abnormal behavior indicates that collisions
are important in the small ω region.

4We note that this sum rule in the case of N f = 1 and Nc = 3 was derived in
Ref. [9]. However, the coefficient of T 00 in this reference is not the correct one
(Eq. (14)), but is equal to that in the expression (Eq. (16)), where the effect of
the mixing/rescaling of the energy-momentum tensor is neglected.
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which results in1

GR(ω) = iωσ (1 + iτJω) + O(ω3), ρ(ω) = σω + O(ω3). (7)

We note that, σ = τJ = 0 at T = 0, so that GR here is actually
equal to δGR. The reason for σ = 0 is that even the lightest vec-
tor meson ( the ρ) has non-zero mass and its spectral strength
vanishes below the ππ threshold. Therefore the spectral weight
around ω = 0 is zero. τJ = 0 is obtained from the renormal-
ization condition for photon wave function. This is not the case
for the coefficients of order ω4 or higher. We also note that
this expression is correct only in the large Nc limit, in which
the coupling effect among the hydro modes is negligible [25].
Beyond this limit, a nonanalytic term (ω3/2) appears in ρ(ω).
Nevertheless, this does not affect the sum rules 1 and 2 we de-
rive in this work. Applying the UV and IR results of Eqs. (5),
(7), Eq. (2) becomes

0 =
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0
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This is the first sum rule (sum rule 1) to be discussed in this
paper. We should mention here that this is the |p| = 0 version
of the sum rule derived in Ref. [15].

Let us check that this sum rule is satisfied at weak coupling
and in the chiral limit (mf = 0). In this case, the spectral func-
tion consists of a transport peak at low energy (ω ∼ g4T ) and a
continuum in the high energy region (ω ∼ T ). We first evaluate
the former contribution, which can be described by the Boltz-
mann equation

Dn± f (k, X) − τ−1nF(|k|)
= ∓eq f (E + v × B) (X) · ∇kn± f (k, X),

(9)

where D ≡ v ·∂X + τ−1, n± f (k, X) is the distribution function for
the quark (anti-quark) with momentum k at point X, nF(|k|) ≡
[exp(|k|/T )+1]−1 is the distribution function at equilibrium, and
vµ ≡ (1, v) with v ≡ k/|k|. We have adopted here the relaxation
time approximation, which considerably simplifies the collision
term2. τ is called relaxation time, and its order of magnitude is
determined by collision effects. Since we are interested in the
retarded Green function, we only need the linearized equation:
Dδn± f (k, X) = ∓eq f E(X) · vn′F(|k|), where δn± f ≡ n± f − nF .
After performing the Fourier transformation X → p and setting
|p| = 0, this results in the solution

δn± f (k,ω) = ∓ieq f
E(ω) · v
ω + iτ−1 n′F(|k|). (10)

The induced current is given by j(ω) =
2eNc

∑
f q f
∫

d3kv
∑

s=±1 sδns f (k,ω)/(2π)3, where the factor 2

1 The real part of GR(ω) contains a UV divergence coming from the T = 0
part, so σ and τJ need to be defined for the renormalized version of GR(ω).
This divergence can be removed by the renormalization of the photon wave
function [23, 24].

2This is a very simple approximation, which was however found to work
well by solving the Boltzmann equation without relying on it [26]: The full
calculation produces a solution for ρ(ω)/ω that is an almost perfect Lorentzian,
which is also obtained by the relaxation time approximation [see Eq. (11)].

comes from the spin degeneracy of the quarks. This expression
and Eq. (10), together with the linear response relation of
Eq. (6), give us the following result for GR and the spectral
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that this is reduced to Eq. (7) when ω ≪ τ−1, and we can iden-
tify3 σ = T 2CemNcτ/9 and τJ = τ. Its contribution to the sum
rule Eq. (8) reads
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, (12)

which is of order e2T 2, and independent of τ. Here the T = 0
component does not contribute because of the absence of the
transport peak in the vacuum.

Next, we evaluate the contribution from the continuum.
From a one-loop calculation [29], we have
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NcCem

12π
ω2
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1 − 2nF
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. (13)

The pair creation/annihilation process of the quark and the anti-
quark is responsible for this expression: one can see that by
rewriting the distribution function factor 1−2nF as [1−nF]2−n2

F .
The former (latter) term comes from the pair creation (annihi-
lation) process. It is noted that, after subtracting the T = 0 part,
the spectral function becomes negative. Performing the inte-
gral over ω, it is straightforward to see that its contribution to
the sum rule cancels the contribution from the transport peak,
Eq. (12), so that the sum rule Eq. (8) is satisfied.

2.2. Sum Rule 2
In a similar way (replacing GR with ω2GR in the deriva-

tion), we derive another sum rule which contains two more
powers of ω in the integrand. In analogy to the derivation of
sum rule 1, we get δGR2

0 − δGR2
∞ = 2

∫ ∞
0 dωωδρ(ω)/π, where

δGR2
∞ ≡ ω2δGR(ω)|ω→∞ and δGR2

0 ≡ ω2δGR(ω)|ω→0. By using
the UV/IR limits of GR, Eqs. (5) and (7), we obtain
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This is the second sum rule (sum rule 2)4 we discuss in this
work.

3We note that collisional effects are essential for the evaluation of σ: If we
take the τ−1 → 0 limit, ρ(ω) will be proportional to ωδ(ω) and σ is proportional
to τ, which is infinitely large. This abnormal behavior indicates that collisions
are important in the small ω region.

4We note that this sum rule in the case of N f = 1 and Nc = 3 was derived in
Ref. [9]. However, the coefficient of T 00 in this reference is not the correct one
(Eq. (14)), but is equal to that in the expression (Eq. (16)), where the effect of
the mixing/rescaling of the energy-momentum tensor is neglected.
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It cancels the transport peak, so that the sum 
becomes zero! 

The sum rule 1 is satisfied.

ω

δρ(ω)

T=0 contribution is subtracted.

1-2nF

Check at weak coupling
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Sum rules on electromagnetic spectral function (longitudinal/transverse)

Daisuke Satow
(Dated: November 9, 2015)

PACS numbers:

I. INTRODUCTION

There are three scales at finite temperature/density:

• Hydro scale (p ≪ Λ)

• Kinetic scale (Λ ≪ p ! T )

• Vacuum scale (p ≫ T )

In the first scale, the hydrodynamics is reliable while the OPE is expected to work in the third scale. We will fully
use these asymptotic behaviors in the UV and IR regions, by using sum rules.
The spectral function in the electromagnetic current sector is relevant to

• electric conductivity

• dilepton production rate

• vector meson spectrum

They are important quantities in the heavy ion collision.

II. CONVENTIONS

The retarded function of momentum reads

GRµν(t,x) ≡ iθ(t)⟨[jµ(t,x), jν(0,0)]⟩, (2.1)

GRµν(ω,p) = i

∫

dt

∫

d3xeiωt−ip·xθ(t)⟨[jµ(t,x), jν(0,0)]⟩. (2.2)

Here jµ ≡ e
∑

f qfψfγ
µψf is the electromagnetic current, where f is the index for the flavor. It can decomposed into

longitudinal and transverse components as

GRµν (ω,p) = Pµν
L (p)GR

L(ω,p) + Pµν
T (p)GR

T (ω,p), (2.3)

where Pµν
L (p) ≡ −gµν + pµpν/p2 − Pµν

T (p) and P ij
T (p) ≡ δij − pipj/|p|2. To obtain sum rule, it is convenient to focus

on the diagonal components. When p ∝ ẑ, we have

GR00(ω,p) =
p2

p2
GR

L(ω,p), (2.4)

GR33(ω,p) =
ω2

p2
GR

L(ω,p), (2.5)

GR11(ω,p) = GR22(ω,p) = GR
T (ω,p), (2.6)

At |p| = 0, GR
L(ω) = GR

T (ω) = GR(ω), so that GRµν(ω,p) = − [gµν − nµnν ]GR(ω), where nµ ≡ (1,0).

analytic in upper ω plane

3

IV. HIGH ENERGY BEHAVIOR

According to Philipp’s note, we get DS: To be confirmed.

GRL(ω,p) = Ap2 ln(−p2/µ2) +B + Cmf ⟨qfqf ⟩
1

p2
+D⟨GµνGµν⟩

1

p2
+ EL(T )

1

p2
+

(

ln p2

p2
term

)

, (4.1)

GRT (ω,p) = Ap2 ln(−p2/µ2) +B + Cmf ⟨qfqf ⟩
1

p2
+D⟨GµνGµν⟩

1

p2
+ ET (T )

ω2 + p2

p4
+

(

ln p2

p2
term

)

. (4.2)

The A, B terms do not depend on T , so they do not appear in our sum rule.

V. SUM RULES

We follow the method introduced in Ref. [3]. Suppose that we have a function f(ω) which is analytic in the upper
plane of ω and goes to zero at |ω| → ∞ quickly. Then, by using the residue theorem,

f(iω′) =
1

2πi

∫

C
dω

f(ω)

ω − iω′

=
1

2πi

∫ ∞

−∞

dω
f(ω)

ω − iω′
,

(5.1)

where C is the contour drawn in Fig. ??. At ω′ → 0, it becomes

f(0) =
1

2πi
P

∫ ∞

−∞

dω
f(ω)

ω
+

1

2
f(0), (5.2)

where the last term appeared because in this limit, the pole crosses the contour C.
Now we define δGR(ω) ≡ GR(ω) − GR

T=0(ω), to treat the medium and the vacuum parts separately. Here GR

is a retarded Green function in arbitrary channel. We consider the case that f(ω) = δGR(ω,p) − δGR
∞(p), where

δGR
∞ ≡ limω→i∞ δGR(ω) was subtracted to make it sure that f(ω) converges at infinity |ω|. Now let us see the real

and the imaginary parts separately. From Eq. (A4), the parity of the diagonal component of the retarded Green
function, GRµµ, is determined. By using it, Eq. (5.2) becomes

δGR(0,p)− δGR
∞(p) =

2

π

∫ ∞

0
dω
δρ(ω,p)

ω
, (5.3)

where we have introduced δρ(ω,p) ≡ ImδGR(ω,p). We note that, when |p| is small enough, the first term in the left-
hand side contains the information of the hydrodynamics while the second term contains the information of ultraviolet
sector, which is given by the operator product expansion (OPE). We emphasize that this equation is exact as long as
the hydrodynamics describes the behavior at low energy correctly.

A. Longitudinal component

1. Zeroth moment

Here let us focus on the 00-component, GR00(ω,p). Then, from Eq. (3.12),

GR00(0,p) =
σ

D
. (5.4)

On the other hand, δGRL
∞ (p) is given by OPE (Eq. (4.1)). GR00(ω,p) is obtained from this expression by using
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This is the sum rule at zeroth moment. We note that the left-hand side does not contain |p| dependence while the
right-hand side generally depend on |p|. We also note that the left-hand side does not contain the information of
transport coefficient. This can be understood because, the integration over Lorentzian just gives the residue of it, and
does not give the information of the width, transport coefficient. To get the information of the width, we need to go
to sum rule at higher moment.
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The A, B terms do not depend on T , so they do not appear in our sum rule.
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Check at weak coupling

30

v · @Xn±(k, X)± e(E+ v ⇥B)(X) ·rkn±(k, X) = C[f ]

relaxation time approximation

drift term

n±(k, X): (anti-) quark distribution function 
v=(1, k/|k|): 4-velocity

τ ~ (g4T ln(1/g))-1: relaxation time

E, B

external force term collision term

Check Transport peak with Boltzmann eq.

C[f]=τ-1(n±-n(eq)±)


