

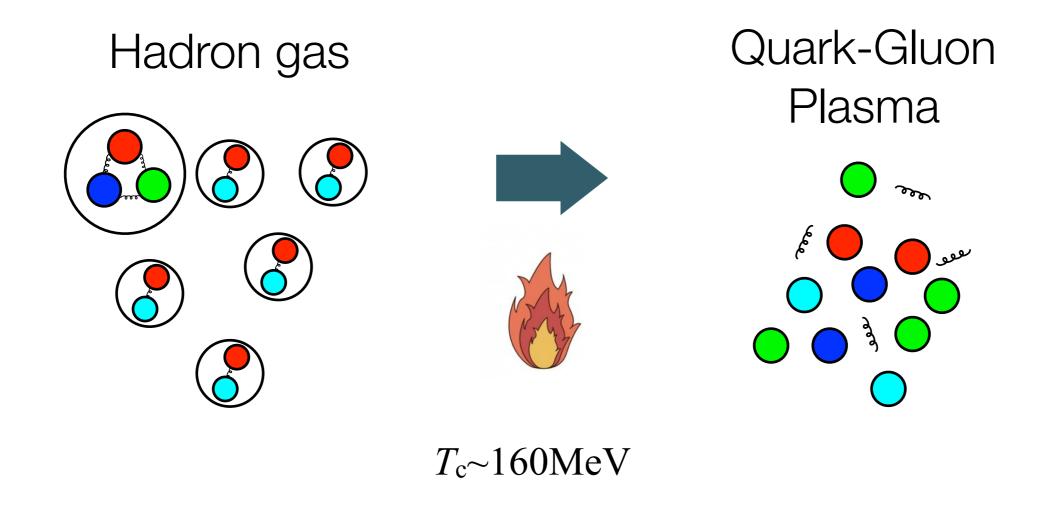
Exact Sum Rules for Vector Channel at Finite Temperature and its Applications in Lattice QCD Analysis

Daisuke Satow (Frankfurt)

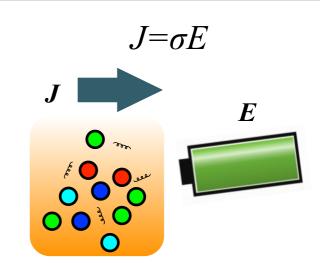
Collaborator: Philipp Gubler (Yonsei 💌)

P. Gubler and **D. S.**, arXiv:1602.08265 [hep-ph].

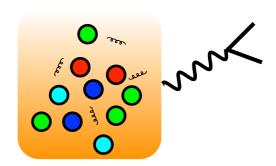
Deconfined phase



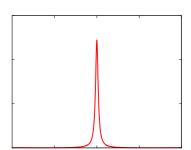
Electrical conductivity



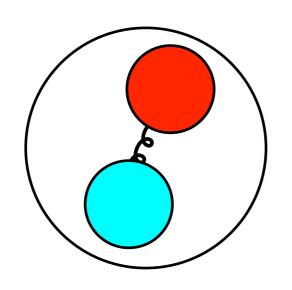
Dilepton production rate



 Vector meson spectrum at finite T



Vector spectral function contains all information of them.

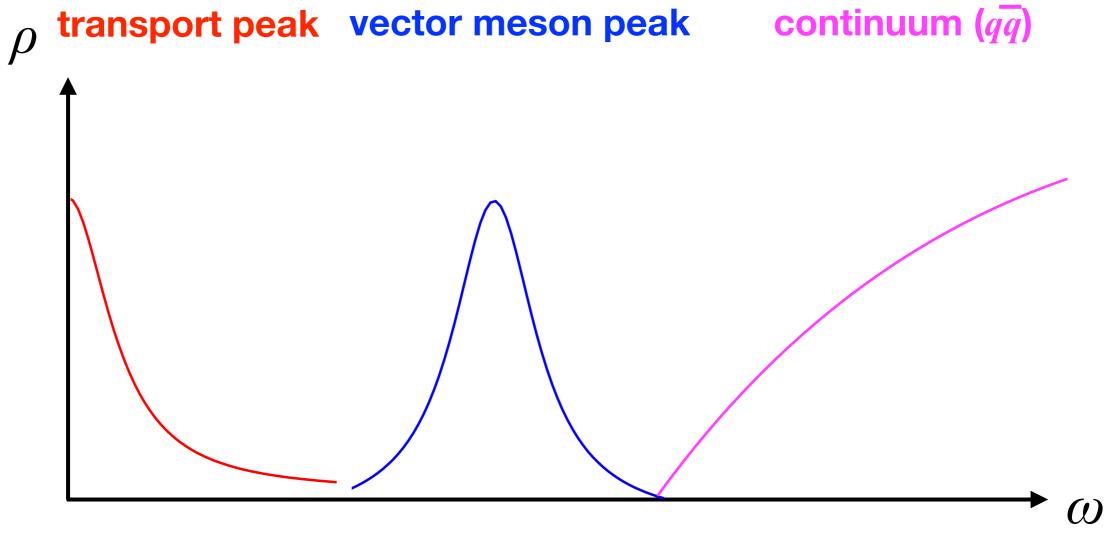


$$j^{\mu} \equiv e \sum_f q_f \overline{\psi}_f \gamma^{\mu} \psi_f$$
 f: flavor index, $q_{\rm f}$: electric charge

$$G^{R\mu\nu}(t,\mathbf{x}) \equiv i\theta(t)\langle [j^{\mu}(t,\mathbf{x}),j^{\nu}(0,\mathbf{0})]\rangle$$

$$\rho^{\mu\nu}(p)=\operatorname{Im}G^{R\mu\nu}(p)$$

Possible form of vector spectral function



Rich and complicated structure.

pQCD: E. Braaten and R. D. Pisarski, Nucl. Phys. B **339** 310 (1990).

AdS/CFT: S. Caron-Huot, P. Kovtun, G. D. Moore, A. Starinets and L. G. Yaffe, JHEP **0612**, 015 (2006).

PNJL model: C. A. Islam, S. Majumder, N. Haque and M. G. Mustafa, JHEP **1502**, 011 (2015).

Semi-QGP: **D. S.** and W. Weise, Phys. Rev. D **92** 056001 (2015).

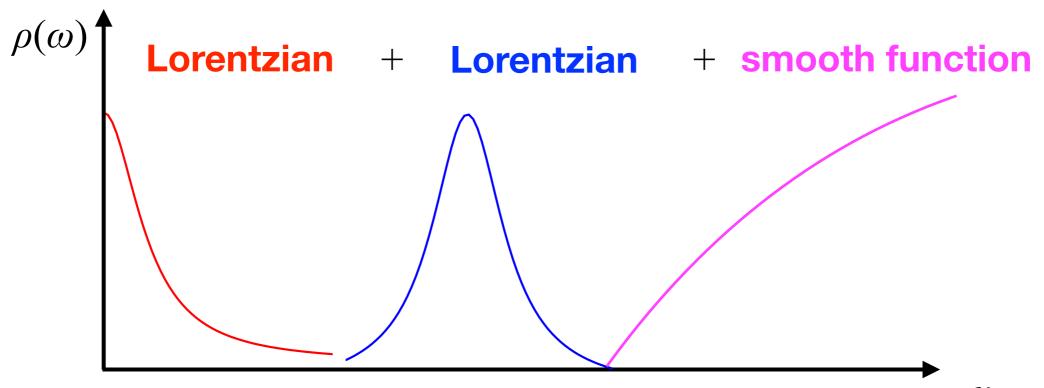
Sum rule: P. Gubler, W. Weise, Phys. Lett. B **751** 396 (2015).

Lattice QCD: H.-T. Ding et. al., Phys.Rev. D **83** 034504 (2011).

There are several approaches: perturbation, holography, model, lattice...

But no conclusive results are obtained.

Even lattice QCD analysis needs an ansatz for the spectral function because it can not directly treat dynamical quantity.



Motivation

Is there any exact relation we can use for improvement?

Retarded Green function: $G^{R\mu\nu}(\omega, \mathbf{p})$

analyticity in upper ω plane

$$\delta G^R(0,\mathbf{p}) - \delta G^R_\infty(\mathbf{p}) = \frac{2}{\pi} \int_0^\infty d\omega \frac{\delta \rho(\omega,\mathbf{p})}{\omega}$$
 IR
$$\delta G^R(\omega) \equiv G^R(\omega) - G^R_{T=0}(\omega)$$
 remove UV divergence

Sum of spectral function is constrained by the UV/IR behaviors! (sum rule)

Zero momentum case

For simplicity, we consider p=0 case.

isotropy:
$$G_{ij}^{R}(\omega, \mathbf{0}) = \delta_{ij}G^{R}(\omega)$$

Only one independent component.

Asymptotic behavior—UV (OPE)

UV behavior: operator product expansion (OPE)

separation of scale: T, $\Lambda_{\rm QCD} << 1/x \sim \omega$

$$\langle j^{\mu}(x)j^{\nu}(0)\rangle = \sum_{i} C^{i}(x)\langle \mathcal{O}_{i}(x=0)\rangle_{T}$$

factorization:

High-energy information

information

Low-energy

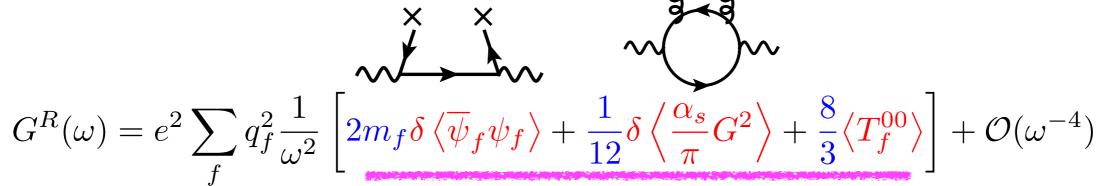
(ω dependent) (ω independent, static)

It can be **computed** perturbatively.

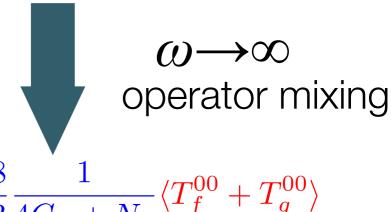
It contains **all** nonperturbative information.

Asymptotic behavior—UV (OPE)

Only *T*-dependent term was retained.



calculated from lattice.



$$\frac{1}{3} \frac{1}{4C_F + N_f} \langle T_f^{\circ \circ} + T_g^{\circ \circ} \rangle$$

$$C_F = (N^2_c - 1)/(2N_c)$$

$$\omega \rightarrow \infty$$

Asymptotic freedom



No $\alpha_{\rm s}$ correction in the coefficients!

Asymptotic behavior—IR (Hydro)

IR behavior: hydrodynamics

Assume the locality of the current:

$$\mathbf{j}(t, \mathbf{x}) = \mathbf{j}[\mathbf{E}(t, \mathbf{x}), \mathbf{B}(t, \mathbf{x})]$$

(Small frequency/wavelength of E, B justifies this assumption.)

Ohmic

$$\mathbf{j} = \sigma \mathbf{E} - \sigma \tau_J \partial_t \mathbf{E} + O(\partial^2 E)$$

 σ : Electric conductivity

Asymptotic behavior—IR (Hydro)

$$\mathbf{j} = \sigma \mathbf{E} - \sigma \tau_J \partial_t \mathbf{E}$$

linear response:
$$\mathbf{j}(\omega) = -G^R(\omega)\mathbf{A}(\omega)$$

$$\mathbf{E}=-\partial_t\mathbf{A}$$

$$G^{R}(\omega) = i\omega\sigma(1 + i\tau_{J}\omega) + O(\omega^{3})$$

Sum rule 1

$$\delta G^{R}(\omega) = e^{2} \sum_{f} q_{f}^{2} \frac{1}{\omega^{2}} \left[2m_{f} \delta \langle \overline{\psi}_{f} \psi_{f} \rangle + \frac{1}{12} \delta \langle \frac{\alpha_{s}}{\pi} G^{2} \rangle \right]$$

$$+ \frac{8}{3} \frac{\delta \langle T^{00} \rangle}{4C_{F} + N_{f}} \cdot \frac{\omega \rightarrow \infty}{\delta G^{R}(\omega) \rightarrow 0} \quad \text{irrelevant.}$$

$$G^{R}(\omega) = i\omega\sigma (1 + i\tau_{J}\omega)$$

$$G^{R}(\omega) = i\omega \sigma (1 + i\tau_{J}\omega)$$
 $\delta G^{R}(\omega) \rightarrow 0$ irrelevant.

$$\delta G^{R}(0, \mathbf{p}) - \delta G_{\infty}^{R}(\mathbf{p}) = \frac{2}{\pi} \int_{0}^{\infty} d\omega \frac{\delta \rho(\omega, \mathbf{p})}{\omega}$$

$$0 = \int_0^\infty \frac{d\omega}{\omega} \delta\rho(\omega) \quad \text{sum rule 1}$$

$$\delta\rho(\omega)=\rho(\omega)-\rho(\omega)_{T=0}$$

(Also obtained by current conservation: D. Bernecker and H. B. Meyer, Eur. Phys. J. A 47, 148 (2011)

Ansatz in lattice calculation

H.-T. Ding, A. Francis, O. Kaczmarek, F. Karsch, E. Laermann, W. Soeldner, Phys.Rev. D 83 034504 (2011).

ansatz:

transport peak

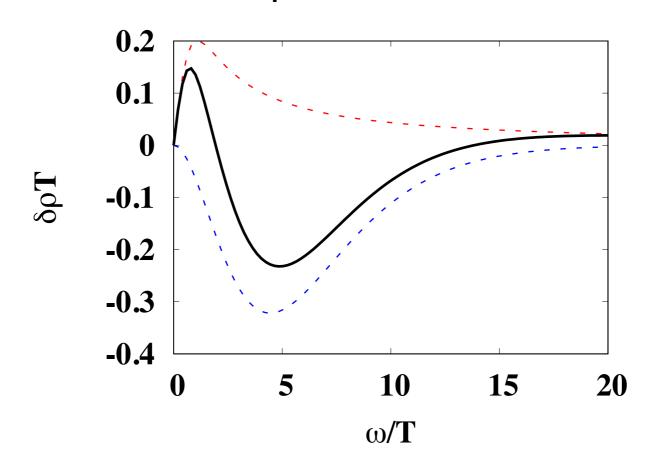
continuum

$$\rho(\omega) = C_{\text{em}} \left[3\chi c_{BW} \frac{\omega \Gamma/2}{\omega^2 + (\Omega/2)^2} + \frac{9}{4\pi} (1 + k) \omega^2 \left(\chi - 2n_F \left(\frac{\omega}{2} \right) \right) \right]$$

T=0 contribution is subtracted.

3 parameters.

 n_F : Fermi distribution



Ansatz in lattice calculation

Sum rule 1
$$0 = \int_0^\infty \frac{d\omega}{\omega} \delta\rho(\omega)$$

Transport peak and continuum should cancel. (We confirm it in the weak coupling case)

constraint:
$$\chi c_{BW} = (1+k)T^2$$

We can reduce independent parameters.

Also done in

Sum rule 2

$$\frac{\delta\rho}{\omega}\times\omega^2$$

Sum rule for $\omega \rho$, not ρ/ω

UV
$$\omega^{2} \times \delta G^{R}(\omega) = e^{2} \sum_{f} q_{f}^{2} \frac{1}{\omega^{2}} \left[2m_{f} \delta \langle \overline{\psi}_{f} \psi_{f} \rangle + \frac{1}{12} \delta \langle \frac{\alpha_{s}}{\pi} G^{2} \rangle + \frac{8}{3} \frac{\delta \langle T^{00} \rangle}{4C_{F} + N_{f}} \right] \cdot \times \omega^{2}$$
 relevant.

IR

irrelevant.

$$\frac{2}{\pi} \int_0^\infty d\omega \omega \delta \rho(\omega) = -e^2 \sum_f q_f^2 \Big[2m_f \delta \langle \overline{\psi}_f \psi_f \rangle \qquad \text{sum rule 2}$$
$$+ \frac{1}{12} \delta \left\langle \frac{\alpha_s}{\pi} G^2 \right\rangle + \frac{8}{3(4C_F + N_f)} \delta \langle T^{00} \rangle \Big].$$

Expectation values of operators appear.

Sum rule 3

$$\frac{\delta \rho}{\omega}$$
 / ω^2

$\frac{\delta\rho}{\omega}$ / ω^2 Sum rule for ρ/ω^3 , not ρ/ω

UV

irrelevant.

$$G^{R}(\omega)/\omega^{2} = i\omega\sigma(1 + i\tau_{J}\omega)/\omega^{2}$$

$$-\sigma\tau_{J} = \frac{2}{\pi} \int_{0}^{\infty} \frac{d\omega}{\omega^{3}} \left[\delta\rho(\omega) - \sigma\omega \right] \quad \text{sum rule 3}$$

Transport coefficients appear.

Ansatz in lattice calculation

 $\sim \omega^2$

$$\rho(\omega) = C_{\rm em} \left[c_{BW} \rho_{\rm peak}(\omega) + (1+k) \rho_{\rm cont}(\omega) \right]$$

H.-T. Ding, A. Francis, O. Kaczmarek, F. Karsch, E. Laermann, W. Soeldner, Phys.Rev. D 83 034504 (2011).

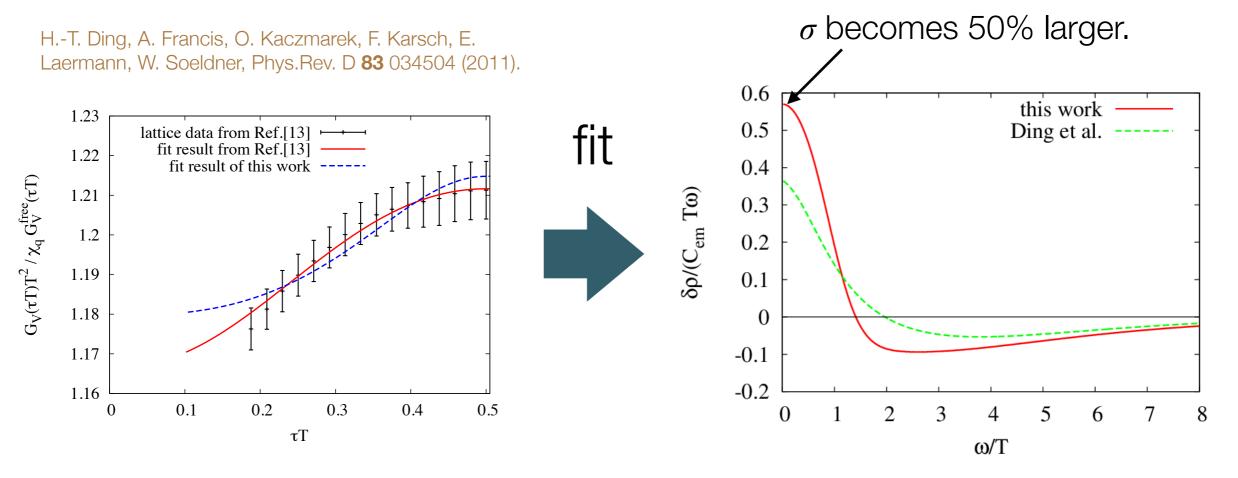
sum rule 3

$$-\sigma\tau_J = \frac{2}{\pi} \int_0^\infty \frac{d\omega}{\omega^3} [\delta\rho(\omega) - \sigma\omega]$$



Contribution from the continuum contains IR divergence. More sophisticated ansatz is necessary.

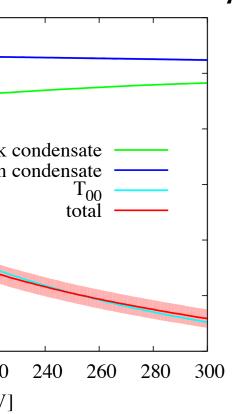
Connect the two regions smoothly.



Ansatz in lattice calculation

Spectral function obtained by fit of lattice data

$$\rho(\omega) = C_{\rm em} \left[c_{BW} \rho_{\rm peak}(\omega) [1 - A(\omega)] + A(\omega) (1 + k) \rho_{\rm cont}(\omega) \right]$$



$$-\sigma\tau_J = \frac{2}{\pi} \int_0^\infty \frac{d\omega}{\omega^3} \left[\delta\rho(\omega) - \sigma\omega \right]$$

$$\tau_J = 0.067 C_{\rm em} / T$$

$$C_{\rm em} \equiv e^2 \sum_f q_f^2$$

 τ_J is evaluated for the first time.

Summary

 We <u>derived three exact sum rules</u> in vector channel <u>at finite temperature</u> by using <u>OPE (UV)</u> and <u>hydrodynamics (IR).</u>

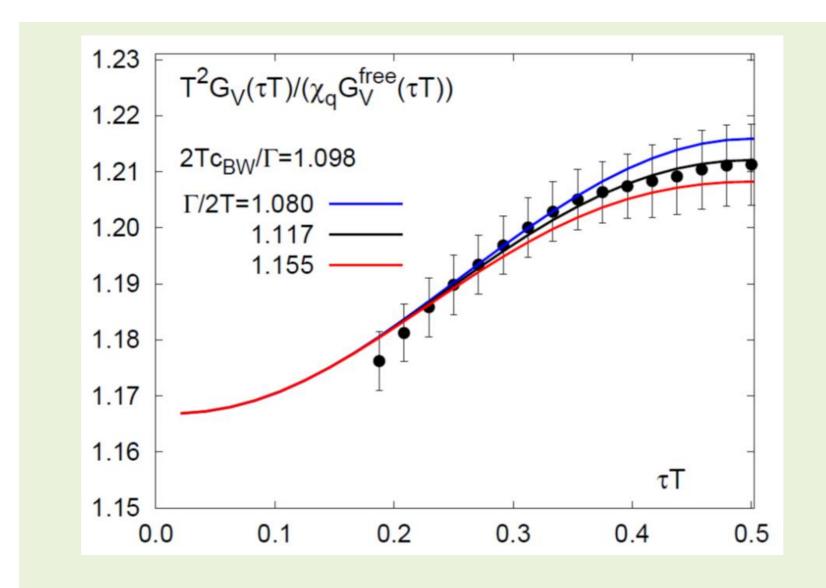
1:
$$0 = \int_0^\infty \frac{d\omega}{\omega} \delta\rho(\omega)$$

2:
$$\frac{2}{\pi} \int_0^\infty d\omega \omega \delta \rho(\omega) = -e^2 \sum_f q_f^2 \Big[2m_f \delta \langle \overline{\psi}_f \psi_f \rangle + \frac{1}{12} \delta \left\langle \frac{\alpha_s}{\pi} G^2 \right\rangle + \frac{8}{3(4C_F + N_f)} \delta \langle T^{00} \rangle \Big].$$

3:
$$-\sigma \tau_J = \frac{2}{\pi} \int_0^\infty \frac{d\omega}{\omega^3} \left[\delta \rho(\omega) - \sigma \omega \right]$$

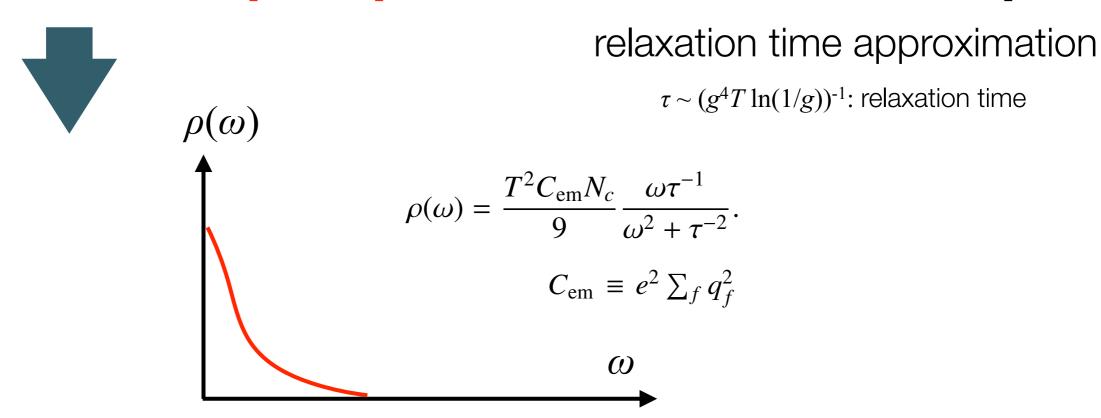
• We used our sum rules to improve the ansatz used in the lattice calculation, and evaluate τ_J .

Back Up



H.T. Ding et al., Phys. Rev. D 83, 034504 (2011).

Check Transport peak with Boltzmann eq.

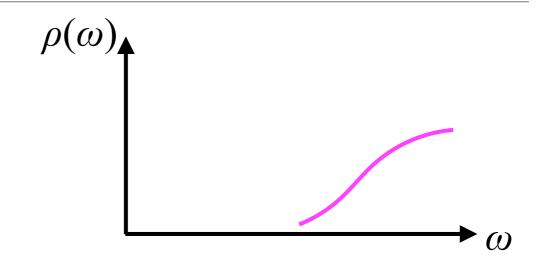


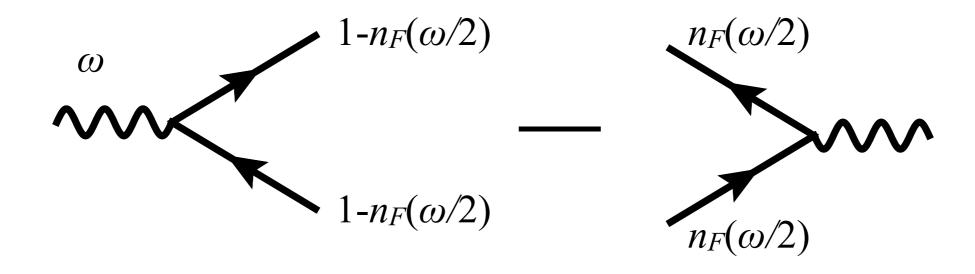
Transport peak. (Lorentzian)

$$\int_0^\infty \frac{d\omega}{\omega} \delta\rho(\omega) = \frac{\pi T^2 C_{\rm em} N_c}{18}$$

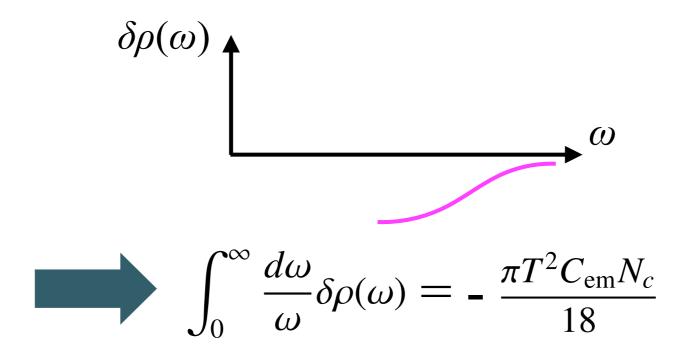
Continuum:

$$\rho(\omega) = \frac{N_c C_{\rm em}}{12\pi} \omega^2 \left(1 - 2n_F \left(\frac{\omega}{2} \right) \right).$$





$$[1-n_F]^2-[n_F]^2=1-2n_F$$



It cancels the transport peak, so that the sum becomes zero!

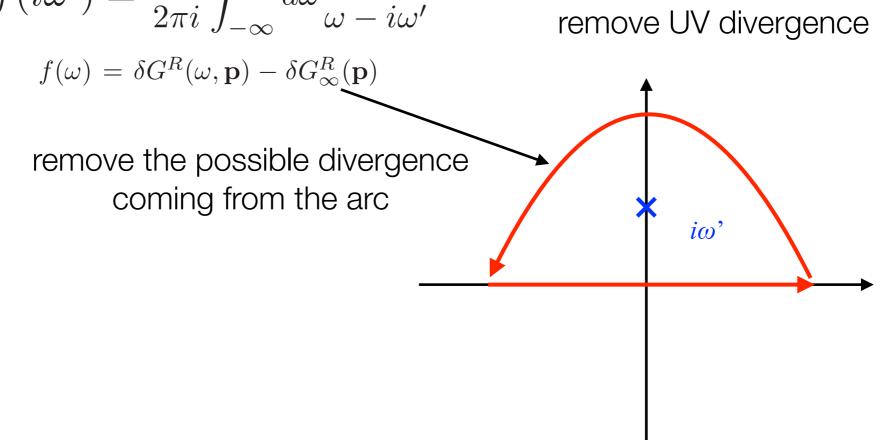
The sum rule 1 is satisfied.

$$G^{R\mu\nu}(\omega, \mathbf{p}) = i \int dt \int d^3\mathbf{x} e^{i\omega t - i\mathbf{p}\cdot\mathbf{x}} \theta(t) \langle [j^{\mu}(t, \mathbf{x}), j^{\nu}(0, \mathbf{0})] \rangle.$$

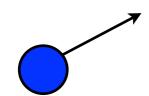
analytic in upper ω plane

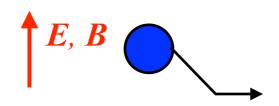
$$f(i\omega') = \frac{1}{2\pi i} \int_{-\infty}^{\infty} d\omega \frac{f(\omega)}{\omega - i\omega'}$$

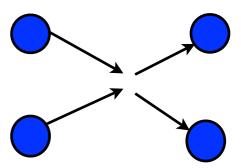
 $\delta G^R(\omega) \equiv G^R(\omega) - G^R_{T=0}(\omega)$



Check Transport peak with Boltzmann eq.







drift term

external force term

collision term

$$v \cdot \partial_X n_{\pm}(\mathbf{k}, X) \pm e(\mathbf{E} + \mathbf{v} \times \mathbf{B})(X) \cdot \nabla_k n_{\pm}(\mathbf{k}, X) = C[f]$$

 $n_{\pm}(\mathbf{k}, X)$: (anti-) quark distribution function $v=(1, \mathbf{k}/|\mathbf{k}|)$: 4-velocity

relaxation time approximation

$$C[f] = \tau^{-1}(n_{\pm} - n^{(eq)}_{\pm})$$

 $\tau \sim (g^4 T \ln(1/g))^{-1}$: relaxation time