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Jet quenching in heavy-ion collisions
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Jet quenching, the generally expected picture

Mediums of different sizes are seen by the two jets → asymmetry, but that
might be naive.
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Jet quenching, problems of the naive picture

There is an implicit assumption

The energy loss is always the same at fixed medium size. Fluctuations
are small.

Is it true?

A recent Monte Carlo computation (Milhano and Zapp, EPJC 76:288
(2016)) shows that fluctuations could be the dominant mechanism
explaining dijet asymmetry.

In JHEP 1605 (2016) 008 we perform an analytic computation that
shows that fluctuations in the energy loss are of the order of the
average value.
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Fluctuations in size vs fluctuations in energy loss

Asymmetry due to different path
length.

Asymmetry due to fluctuations in the
energy loss.

To estimate the size of the fluctuations in energy is important to
understand the physics behind the dijet asymmetry.
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Where does the energy go?

The energy loss of the jet produces a lot of soft particles

How many of them?

What are the statistical properties of these particles and how are they
different/similar to what we can find in a jet in the vacuum?

Non-trivial consistency check of the energy loss mechanism.
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General picture

All the needed information from the medium is encoded in q̂ and the
length L.

Emission probability given by the BDMPS-Z theory.
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Medium-induced gluon emission: formation time

τf = t1 − t2 can not be infinitely large. By uncertainty relation
1
τf
∼ k2

⊥
2w .

In a medium, during a time τf , the acquired transverse momentum is
k2⊥ ∼ q̂τf .

τf ∼
√

2w
q̂
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Branching time

The probability of emitting a gluon with energy w during a time ∆t goes
like

P(w ,∆t) ∝ αs

√
q̂

w
∆t ,

the time after which it is almost sure that a gluon with energy w will have
been emitted is called the branching time τbr (w) = π

Ncαs
τf (w).

Soft gluons with τbr � L that will be emitted in abundantly.

Gluons with τbr ∼ L whose energy goes like w ∼ α2
s q̂L

2. The
emission of these gluons by the leading particle will dominate the
energy loss of the jet. These gluons will lose energy very quickly so
that most of the energy is lost at large angles at the end of the day.
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Multiple branching

Evolution equation of this type of cascade. Blaizot, Dominguez, Iancu and
Mehtar-Tani JHEP06(2014)075.

Miguel A. Escobedo (IPhT Saclay) Event-by-event 1st September, 2016 12 / 40



Democratic branching

When a parton branches in a way in which the two resulting partons have
a similar energy.

This will be a rare event for leading particles with energy higher than
α2
s q̂L

2.

For the typical gluons emitted by the leading particles (primary
gluons) and the subsequent gluons in the cascade democratic
branching is a very efficient mechanism of energy loss.

Blaizot, Iancu and Mehtar-Tani Phys.Rev.Lett 111, 052001
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The gluon spectrum

Energy density per unit x

D(x , t) = x〈
∑
i

δ(xi − x)〉

∂

∂τ
D(x , τ) =

∫
dz K(z)

[√
z

x
D
(x
z
, τ
)
− z√

x
D(x , τ)

]
where τ = αsNc

π

√
q̂
E t = t

τbr (E) .

Two cases:

τbr (E )� L. Interesting for LHC physics.

τbr (E ) ∼ L. Interesting to study the case in which the jet is
completely absorbed by the medium.

Baier, Mueller Schiff and Son Phys.Lett.B502(2001) 51-58.
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The gluon spectrum

With the initial condition D(x , 0) = δ(x − 1) there is an analytic solution
with an approximate kernel K → K0.

D(x , τ) =
τ√

x(1− x)3/2
exp{− πτ2

1− x
}

Blaizot, Iancu and Mehtar-Tani Phys.Rev.Lett 111, 052001
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The gluon spectrum
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The gluon spectrum
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The gluon spectrum
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The gluon spectrum

Miguel A. Escobedo (IPhT Saclay) Event-by-event 1st September, 2016 20 / 40



Average energy loss

Average energy inside the jet

〈X (τ)〉 =

∫ 1

0
dxD(x , τ) = e−πτ

2
,

Blaizot, Iancu and Mehtar-Tani, Phys.Rev.Lett 111(2013)052001
Where does the energy go?
There is a lower cut-off x0, below this energy the jet evolution equations
are not accurate due to thermalization effects.
Energy loss is the one that goes to modes with x < x0. Remarkably we
can compute it setting x0 = 0.

E(τ) = E
(

1− e−πτ
2
)
.
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Fluctuations in the energy loss

〈E2(t)〉 − 〈E(t)〉2 = E 2(〈X 2(t)〉 − 〈X (t)〉2) ,

We need a new ingredient, the average energy squared given by a pair of
gluons with energy fractions equal to x and x ′.

D(2)(x , x ′, t) = xx ′〈
∑
i 6=j

δ(xi − x)δ(xj − x ′)〉 ,

with this we can compute 〈X 2(t)〉

〈X 2(t)〉 =

∫ 1

0
dxxD(x , t) +

∫ 1

0
dx

∫ 1

0
dx ′D(2)(x , x ′, t) .

Escobedo and Iancu, JHEP 1605 (2016) 008
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D(2)

For the initial condition D(2)(x , x ′, 0) = 0

Intuitively

Compute all the branchings that happen at any τ ′ between 0 and τ .

Evolve independently the results of these branching.

Integrate for all τ ′.
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Analytic solution of D(2)

D(2)(x , x ′, τ) =

∫ τ

0
dτ ′(2τ − τ ′) e

−π(2τ−τ ′)2
1−x−x′

√
xx ′(1− x − x ′)3/2

,

The integrand is the contribution to D(2) of all the branchings that
happened at τ ′.

D(2)(x , x ′, τ) =
1

2π

1√
xx ′(1− x − x ′)

[
e
− πτ2

1−x−x′ − e
− 4πτ2

1−x−x′

]
.
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Plot of D(2)
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Plot of D(2)
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Plot of D(2)

Miguel A. Escobedo (IPhT Saclay) Event-by-event 1st September, 2016 28 / 40



Plot of D(2)
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Fluctuations in energy

〈E2(t)〉 − 〈E(t)〉2 = E 2σ2ε(t)

σ2ε(τ) = 2πτ
[
erf(
√
πτ)− erf(2

√
πτ)
]

+ 2e−πτ
2 − e−4πτ

2 − e−2πτ
2

=
1

3
π2τ4 − 11

15
π3τ6 +O(τ8) .

There are terms that go like τ and τ2 in the intermediate steps but they
cancel out when computing the variance.
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Fluctuations in energy

Miguel A. Escobedo (IPhT Saclay) Event-by-event 1st September, 2016 31 / 40



Fluctuations in energy and fluctuations in size

Average of all back-to-back jets created in a heavy-ion collision with initial
energy E taking into account both fluctuations in energy and in size

〈E1 − E2〉2 = (Ncαs q̂)2(〈L21〉 − 〈L22〉)2

σ2E1−E2
= 〈(E1−E2)2〉−〈E1−E2〉2 = (Ncαs q̂)2

[
1

3
(〈L41〉+ 〈L42〉) + σ2L21

+ σ2L22

]
The dijet asymmetry is produced

Fluctuations of the energy loss that are present even if the size is
fixed.

Fluctuations in the size of the medium seen by the jet.
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Computation of D(n)

〈En〉 and 〈Nn〉 can be computed if you know D(n).
Recently we have found a exact expression for these quantities

D(n)(x1, · · · , xn|τ) =
(n!)2

2n−1n

(1−
∑n

i=1 xi )
n−3
2

√
x1 · · · xn

hn

 τ√
1−

∑n
j=1 xj

 ,

where

hn(l) =

∫ l

0
dln−1 · · ·

∫ l2

0
dl1(nl −

n−1∑
i=1

li )e
−π(nl−

∑n−1
j=1 lj )

2

.

Time dependence enters only through the combination l = τ√
1−

∑n
j=1 xj

.
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The small τ limit

For all l2 � 1
n2π

D(n)(x1, · · · , xn|τ) ∼ (n + 1)!

2n(1−
∑n

i=1 xi )
3
2
√
x1 · · · xn

τn

Using that at x0 � τ2 the number of particles is dominated by low x

Cp =
〈Np〉
〈N〉p

=
(p + 1)!

2p

the property that Cp is a constant is called KNO scaling, moreover these
values of Cp correspond to a negative binomial with parameter k = 2.
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KNO scaling, the negative binomial distribution and jet
physics

Probability of having n successful attempts in a Bernoulli trial before
having k failures.

A jet in the vacuum also fulfils KNO scaling and can be
approximately described by a negative binomial with k = 3.
(Dokshitzer, Khoze, Mueller and Troian Basics of perturbative QCD).

At small times the distribution of gluons generated by medium jet
radiations is significantly more correlated and with more fluctuations
than that of a vacuum jet cascade.
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The large τ limit

D(n) are dominated by branchings that happen at times very close to τ
because the effect of the other branchings are already exponentially
suppressed.

D(n)(x1, · · · , xn|τ) =
n!e
− πτ2

1−
∑n

i=1
xi (1−

∑n
i=1 xi )

n−5/2

(4π)n−1τn−2
√
x1 · · · xn
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Example, D(3)

D(3)(x1, x2, x3|τ) =
3

√
x1x2x3

h3

(
τ√

1− x1 − x2 − x3

)
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Conclusions

Fluctuations are large.

The standard deviation of the energy loss is of the order of its
average.

At extremely small times the gluons emitted by the jet can be
described by a negative binomial distribution and fulfils KNO scaling.

Correlations and fluctuations in the number of particles are large and
bigger that what is found in a jet vacuum cascade.
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