Heavy-flavour productions in the relativistic heavy ion collisions at the LHC

Shingo Sakai, Univ. of Tsukuba
Heavy Flavour (HF) in pp, p-Pb & Pb-Pb

- **Heavy-flavour (charm & beauty) production**
 - Initial hard scatterings \(M_{HF} >> \Lambda_{QCD} \)

- **pp collisions**
 - Test for perturbative QCD (pQCD)
 - Reference for heavy ion collisions (both experiment & theory)

- **Heavy ion collisions**
 - Created in initial parton-parton scatterings
 - Traverse and interact with the hot & dense QCD matter
 - A good probe to study properties of the QCD matter
 - Energy loss \(R_{AA} \), collectivity \(v_2 \), hadronization

- **pA collisions**
 - Control measurement for heavy ion collisions to disentangle initial from final state effects
 - Cold nuclear matter effect on heavy-flavour production
Energy Loss of heavy flavours

- **In-medium parton energy loss**
 - **Radiative energy loss** *(PLB 632, 81)*
 - gluon bremsstrahlung
 - smaller energy loss for heavy than for light quarks due to “dead cone” effect *(PLB 519 (2001) 199.)*
 - energy loss depends on the colour charge and is larger for gluons than for quarks
 - **Collisional energy loss** *(PLB 649, 139)*
 - energy loss via elastic scattering

- **Theoretical predictions:**
 - mass & colour charge dependence of energy loss
 - \(E_{\text{loss}}(g) > E_{\text{loss}}(u,d,s) > E_{\text{loss}}(c) > E_{\text{loss}}(b) \)

\[
R_{AA}^\pi < R_{AA}^D < R_{AA}^B
\]

Nuclear modification factor

\[
R_{AA}(p_T) = \frac{d N_{AA}/dp_T}{\langle T_{AA} \rangle \times d \sigma_{pp}/dp_T}
\]
Azimuthal anisotropy of Heavy flavours

- Elliptic flow
 \[\frac{dN}{d(\phi - \psi_{RP})} = \ldots + N_0(1+2v_2\cos(2(\phi - \psi_{RP}))) + \ldots \]

- Transfer initial spatial anisotropy to momentum anisotropy
 - macroscopic: hydro model
 => pressure gradient
 - microscopic
 => scattering in the medium

- Low \(p_T \)
 - coupling of heavy quarks with the medium and their thermalization

- Intermediate \(p_T \)
 - Hadronization mechanism (recombination)

- High \(p_T \)
 - Path-length dependence of energy loss

Initial spatial anisotropy

Momentum space anisotropy

of particle emission
Heavy-flavour results in pp collisions
Charm production in pp collisions

- D meson production mid- and forward-rapidity is in good agreement with pQCD calculations
 - upper side of the FONLL uncertainty band
 - various energies: 5.02, 7 and 13 TeV
 - from $p_T = 0$ to 100 GeV/c
B meson production is in good agreement with pQCD calculations
- FONLL is better agreement from low p_T to high p_T
- PYTHIA overestimates at lower p_T
- b-jet production is also well represented by a pQCD (NLO)
HF production in pp collisions

Productions of leptons (e, µ) from charm + beauty decays in different rapidity ranges are also well described by pQCD calculations.
Heavy-flavour results in p-Pb collisions
p-A collisions

- **Heavy-flavour in p-A collisions**
 - control measurement for heavy-ion collisions to disentangle initial (cold nuclear matter effects) from final state effects

- **Cold nuclear matter effects**
 - nuclear modification of Parton distribution Functions (PDF): shadowing or gluon saturation
 - K.J. Eskola et al., JHEP 0904(2009)65
 - H. Fuji & K. Watanabe, NPA 915 (2013) 1
 - energy loss
 - I. Vitev et al., PRC 75(2007) 064906
 - k_T broadening (Cronin enhancement)
 - multiple collisions
 - A.M. Glenn et al., PLB 644(2007)119

\[
R_{pPb}(p_T) = \frac{dN_{pPb}/dp_T}{\langle T_{AA} \rangle \times d\sigma_{pp}/dp_T}
\]
\(R_{pPb} \) of D mesons, B mesons and e\(^{HF} \) is consistent with unity
- No significant cold nuclear matter effects on heavy-flavour production
- Theoretical calculations with CNM effects are consistent with data
 - predict a small suppression at low \(p_T \) due to gluon saturation at low \(x \)
 - Possible enhancement due to radial flow is predicted small based on Blast-wave model [PLB 731 (2014) 51]
\[R_{pPb} \text{ of } c\text{-jets and } b\text{-jets at mid-rapidity} \]

CMS-HIN-15-012

- Measured c-jet cross section in p-Pb is consistent with PYTHIA simulation
- \(R_{pPb} \) of b-jet with PYTHIA-based estimation is consistent with unity
 - considering the uncertainty on the PYTHIA reference
D production at forward-backward rapidity

- D⁰ production at forward and backward rapidity
 - forward: p-going, 1.5 < y < -4
 - backward: Pb-going, -5 < y < -2.5
- Significant D⁰ production asymmetry in forward – backward rapidity regions
- Measurements are consistent with a theoretical calculation
 - NLO with CTEQM and EPS09NLO
B→J/Ψ production at forward-backward rapidity

B→J/Ψ production at 1.5 < η < 4.0 (forward) and -5 < η < -2.5 (backward)

- R_{FB} of B→J/Ψ is asymmetry
 - backward yield is suppressed w.r.t. forward yield
- R_{FB} of B→J/Ψ is larger than R_{FB} of prompt J/Ψ
 - indicate cold nuclear matter effect is less pronounced for b hadrons
Heavy-flavour results in Pb-Pb collisions
D mesons in central Pb-Pb collisions

- Strong suppression of D mesons production
 - similar magnitude of suppression in 2.76 and 5.02 TeV
 - suppression observed up to 100 GeV/c at 5.02 TeV
 - D_s tends to larger: a hint of recombination process
- Suggest significant energy loss of charm in the medium
Strong suppression of e^{HF} ($|y|<0.6$) & μ^{HF} ($2.5<y<4$) in central collisions
- similar suppression of e^{HF} & μ^{HF} in different rapidity regions
- less suppression in mid-central collisions in both rapidity regions
- high p_T: large contribution from beauty
- Suggest significant energy loss of charm and beauty in the medium
R_{AA} of B meson decays ($B\to e$ & $B\to J/\Psi$)

- Suppression of $B\to e$ and $B\to J/\Psi$ at high p_T
 - lower p_T: tends to follow binary scaling (consistent with unity)
 - high p_T (> 3 GeV/c): $R_{AA} \sim 0.4$-0.5
- Suggestions of beauty energy loss in the dense QCD matter
- The magnitude of D meson suppression is similar to charged particles (π) within uncertainties
 - can’t conclude on the expectation: $R_{AA}^{D} > R_{AA}^{\pi}$
- R_{AA} of D meson is smaller than R_{AA} of B->J/Ψ
 - indication of smaller energy loss of beauty than charm
- Heavy-flavour jets: allow to address energy loss at parton level
- Observed strong suppression of b-jets in most-central collisions
 - similar magnitude of suppression to inclusive jet
 - high p_T b-jets: largely comes from gluon splitting
Imbalance of pairs of b jets

- Sub-leading recoil jets
 - larger path-length, primary b-jets from flavour creation
- Toward increasing imbalance with increasing centrality
 - similar imbalance as inclusive dijet
Non zero D v_2 at low p_T
- Tends to get large from central (0-10%) to mid-central (30-50%)
 - Hydrodynamical behavior
- Consistent with charged particle v_2
- Charm quarks participate to the collective motion of the system
Azimuthal anisotropy of e^{HF} and μ^{HF}

- Non-zero v_2 of e^{HF} at $|y|<0.7$ and μ^{HF} at $2.5<y<4$
 - the magnitude is compatible in mid- and forward-rapidities
- v_2 of e^{HF} measured from $p_T > 0.5$ GeV/c
 - similar p_T dependence to other light hadron v_2
- v_2 at high p_T e^{HF} and μ^{HF} reflects beauty
- Charm quarks participate to the collective motion of the system
Comparison with models (1)

JHEP09(2012)112

- Theoretical calculations
 - initial: with/without cold nuclear matter from PDF
 - medium modeling: Hydro, Glauber, parton transportation
 - interaction: radiative, collisional, resonant interaction
 - hadronization: fragmentation, coalescence
- Models represent R_{AA} of D mesons, e^{HF} and μ^{HF}
 - mid- and forward-rapidity regions
 - high p_T leptons (e, μ) mainly from beauty decay

Theoretical calculations
- initial: with/without cold nuclear matter from PDF
- medium modeling: Hydro, Glauber, parton transportation
- interaction: radiative, collisional, resonant interaction
- hadronization: fragmentation, coalescence
- Models represent R_{AA} of D mesons, e^{HF} and μ^{HF}
 - mid- and forward-rapidity regions
 - high p_T leptons (e, μ) mainly from beauty decay
Comparison with models (2)

Theoretical calculations
- initial: with/without cold nuclear matter from PDF
- medium modeling: Hydro, Glauber, parton transportation
- interaction: radiative, collisional, resonant interaction
- hadronization: fragmentation, coalescence

Large suppression and non-zero v_2 (at low p_T) are represented by models, but simultaneous reproduction of the R_{AA} and v_2 is challenging
Comparison with models (3)

- **Experimental result**
 - $R_{AA}(D) < R_{AA}(B\rightarrow J/\Psi)$

- **Theoretical model**
 - radiative + collisional energy loss
 - used two masses (charm and beauty) for calculating $B\rightarrow J/\Psi$ R_{AA}
 - result using beauty mass well represents centrality dependence of $R_{AA}(B\rightarrow J/\Psi)$
 - the difference between D meson and $B\rightarrow J/\Psi$ is mainly from mass in this model
Summary

- **Heavy-flavour measurements at LHC**
 - D, B, leptons from heavy flavours, c-jet and b-jet
 - The productions are well described by pQCD calculations in pp collisions

- **Pb-Pb collisions**
 - Strong suppression of heavy-flavour yield
 - Clear indication for substantial energy loss of charm and beauty in the hot and dense matter
 - Not observed such suppression in pPb
 - Results indicate beauty lose smaller energy than charm
 - Non-zero & centrality dependence of v_2
 - Suggest strong re-interaction in the medium
 - Heavy flavours observed to be significantly affected by hot and dense QCD medium