Effect of magnetic field on photon production in AA collisions

Bronislav G. Zakharov

L.D.Landau Institute for Theoretical Physics, Moscow, Russia

XIIth Quark Confinement and the Hadron Spectrum, Thessaloniki, Greece, September 2, 2016

Based partly on: BGZ, arXiv:1607.04314

Mechanisms of photon emission in AA collisions due to magnetic field

The synchrotron $q \rightarrow \gamma q$ contribution may be large [K. Tuchin, Phys.Rev. C91, 014902 (2015)]. The Lorentz force is $\propto \cos \theta \Rightarrow$ large v_2 . Can the synchrotron mechanism resolve the "direct photon puzzle"? One should account for $m_q \sim gT$, $\hat{q} \neq 0$, and QGP expansion.

Pattern of $q \rightarrow \gamma q$ process in QGP with and without magnetic field The typical quark trajectories at the longitudinal scale $\sim L_f$

For B = 0 the typical quark scattering angle is small at $\Delta z \sim L_f$, and the collinear configurations dominate. For a QGP with magnetic field this picture will remain valid if

$$\frac{L_f}{R_L} \ll 1, \quad L_f \sim \min(L_1, L_2), \quad L_1 \sim \frac{2E_q(1-x)S_{LPM}}{m_q^2 x}, \quad L_2 \sim \left(\frac{24E_q x(1-x)}{f^2}\right)^{1/3}$$

 $f=z_qxeB,\,R_L=E_q/z_qeB.$ For $eB=cm_\pi^2$ $(c\lesssim1)$ at $x\sim0.5$ we have $L_1< L_2$ at $E_q\lesssim5$ GeV, and

$$\frac{L_f}{R_L} \sim z_q c \left(\frac{m_\pi}{T}\right)^{3/2} \left(\frac{m_\pi}{E_q}\right)^{1/2} \tag{1}$$

For c = 1 at $E_q \gtrsim 1$ GeV for u quark $L_f/R_L \lesssim 0.25(m_\pi/T)^{3/2}$.

$$rac{dN}{dtdVdec{k}} = rac{dN_{br}}{dtdVdec{k}} + rac{dN_{an}}{dtdVdec{k}}\,,$$

$$\frac{dN_{br}}{dtdVd\vec{k}} = \frac{d_{br}}{k^2(2\pi)^3} \sum_s \int_0^\infty dp p^2 n_F(p) [1 - n_F(p-k)] \theta(p-k) \frac{dP_{q \to \gamma q}^s(\vec{p}, \vec{k})}{dkdL},$$

$$\frac{dN_{an}}{dtdVd\vec{k}} = \frac{d_{an}}{(2\pi)^3} \sum_s \int_0^\infty dp n_F(p) n_F(k-p) \theta(k-p) \frac{dP_{\gamma \to q\bar{q}}^s(\vec{k},\vec{p})}{dpdL} \,.$$

 $d_{br} = 4N_c, \ d_{an} = 2, \ n_F(p) = 1/[\exp(p/T) + 1], \ dP^s_{q \to \gamma q}(\vec{p}, \vec{k})/dkdL$ is the probability distribution for $q_s \to \gamma q_s, \ dP^s_{\gamma \to q\bar{q}}(\vec{k}, \vec{p})/dpdL$ is the probability distribution for $\gamma \to q_s \bar{q}_s$ transition. In the small angle approximation $\vec{p} \parallel \vec{k}$. In AMY [P.B. Arnold, G.D. Moore, and L.G. Yaffe, JHEP **0112**, 009 (2001)] approach dP/dkdL in the QGP without magnetic field is expressed via solution of the integral equation The formulas of the AMY approach have been reproduced [P. Aurenche and BGZ, JETP Lett. **85**, 149 (2007)] in the light-cone path integral (LCPI) approach [BGZ, JETP Lett. **63**, 952 (1996)]. In the LCPI formalism dP/dxdL for $q \rightarrow \gamma q$ and $\gamma \rightarrow q\hat{q}$ are described by the diagrams

$$\frac{dP_{q \to \gamma q}}{dx dL} = 2 \operatorname{Re} \int_{0}^{\infty} dz \exp \left(-i \frac{z}{\lambda_{f}}\right) \hat{g}(x) \left[\mathcal{K}(\vec{\rho}_{2}, z | \vec{\rho}_{1}, 0) - \mathcal{K}_{\mathsf{vac}}(\vec{\rho}_{2}, z | \vec{\rho}_{1}, 0)\right] \bigg|_{\vec{\rho}_{1,2} = 0},$$

$$\lambda_f = 2M(x)/\epsilon^2 \text{ with } M(x) = E_q x(1-x), \ \epsilon^2 = m_q^2 x^2 + m_\gamma^2(1-x),$$
$$\hat{g}(x) = \frac{V(x)}{M^2(x)} \frac{\partial}{\partial \tilde{\sigma}} \cdot \frac{\partial}{\partial \tilde{\sigma}_\gamma}, \ V(x) = z_q^2 \alpha_{em}(1-x+x^2/2)/x.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● ◎ ● ●

. 5 14

 ${\cal K}$ is the Green function of a Schrödinger equation with the Hamiltonian

$$\hat{\mathcal{H}} = -rac{1}{2M(x)} \left(rac{\partial}{\partialec{
ho}}
ight)^2 + v(ec{
ho}),$$

The potential v can be written as

$$v = v_f + v_m$$
,

where v_f is due to the fluctuating gluon fields of the QGP, and v_m is related to the mean electromagnetic field

$$v_m = -\vec{f}\,\vec{
ho}$$

with $\vec{f} = xz_q \vec{F}$, \vec{F} is transverse component (to the parton momentum) of the Lorentz force for a particle with charge *e*. The component v_f reads

$$v_f = -iP(x\rho)$$
.

$$P(\vec{\rho}) = g^2 C_F \int_{-\infty}^{\infty} dz [G(z, 0_{\perp}, z) - G(z, \vec{\rho}, z)], \quad G(x - y) = u_{\mu} u_{\nu} \langle \langle A^{\mu}(x) A^{\nu}(y) \rangle \rangle$$

 $u^{\mu} = (1, 0_{\perp}, 1)$ is the light-like four vector along the *z* axis.

In the HTL resummation scheme

$$P(\vec{\rho}) = \frac{g^2 C_F T}{(2\pi)^2} \int d\vec{q} [1 - \exp(i\vec{\rho}\vec{q})] C(\vec{q}) , \ C(\vec{q}) = \frac{m_D^2}{\vec{q}^2(\vec{q}^2 + m_D^2)}$$

[P. Aurenche, F. Gelis, and H. Zaraket, Phys. Rev. D**61**, 116001 (2000)]. Approximately $P(\rho) \propto \rho^2$ at $\rho \ll 1/m_D$. We work in the oscillator approximation

$$P(\rho) = C_p \rho^2 , \quad C_p = \hat{q} C_F / 4 C_A$$

We use $\hat{q} \propto T^3$ and set $\hat{q} = 0.2 \text{ GeV}^3$ at T = 250 MeV. It agrees with the qualitative pQCD calculations $\hat{q} \sim 2\varepsilon^{3/4} \approx 14T^3$ [R. Baier, Nucl. Phys. A**715**, 209 (2003)], and with the relation $\hat{q} \sim 1.25T^3s/\eta$ [A. Majumder, B. Muller, and X.-N. Wang, Phys. Rev. Lett. **99**, 192301 (2007)] if one takes $\eta/s = 1/4\pi$.

$$\hat{\mathcal{H}} = -\frac{1}{2M} \left(\frac{\partial}{\partial \vec{\rho}}\right)^2 + \frac{M \Omega^2 \vec{\rho}^2}{2} - \vec{f} \vec{\rho}, \ \Omega = \sqrt{-iC_{\rho} x^2/M}$$

$$\mathcal{K}(\vec{\rho}_2, z_2 | \vec{\rho}_1, z_1) = \frac{M\Omega}{2\pi i \sin(\Omega z)} \exp\left[i S_{cl}(\vec{\rho}_2, z_2 | \vec{\rho}_1, z_1)\right],$$

dP/dxdL depends on two dimensionless parameters $\kappa = \lambda_f |\Omega|$, $\phi = \vec{f}^2/M|\Omega|^3$

$$\frac{dP}{dxdL} = \frac{2V(x)\pi}{|\Omega|} [I_{osc}(\kappa) + I_1^s(\kappa,\phi) + I_2^s(\kappa,\phi)],$$

$$I_{osc}(\kappa) = \operatorname{Re} \int_0^\infty \frac{d\tau \exp(i\pi/4)}{\tau^2} \left(1 - \frac{\tau^2}{\sinh^2 \tau}\right) \exp\left(-\frac{(1+i)\tau}{\sqrt{2}\kappa}\right) \,,$$

$$I_1^s(\kappa,\phi) = \operatorname{Re} \int_0^\infty \frac{d\tau \exp(i\pi/4)}{\sinh^2 \tau} \left[1 - \exp(-U)\right] \exp\left(-\frac{(1+i)\tau}{\sqrt{2}\kappa}\right) \,,$$

$$I_2^s(\kappa,\phi) = \frac{\phi}{2} \operatorname{Re} \int_0^\infty d\tau \frac{(1-\cosh\tau)^2}{\sinh^3\tau} \exp\left(-\frac{(1+i)\tau}{\sqrt{2}\kappa} - U\right) \,,$$

$$U=rac{(1-i)\phi}{2\sqrt{2}}\left[au-2 anh(au/2)
ight]\,.$$

For $\gamma o q \bar{q} \ M(x) = E_\gamma x (1-x) \ \epsilon^2 = m_q^2 - m_\gamma^2 x (1-x), \ \vec{f} = z_q \vec{F}$, and

$$V(x) = z_q^2 \alpha_{em} N_c [x^2 + (1-x)^2]/2, \ \Omega = \sqrt{-iC_p/M}$$

We will use extremely optimistic magnetic field $eB = m_{\pi}^2$ in the QGP. However even $eB \sim 0.1 m_{\pi}^2$ is too optimistic.

Model of the fireball

Even for a very fast thermalization of the glasma color fields at $\tau \sim 1/Q_s$ one can apply the formulas obtained for the equilibrium QGP only at $\tau \gtrsim 0.2 - 0.5$ fm. We describe the QGP fireball at $\tau > \tau_0$ in the Bjorken model with $s \propto 1/\tau$, and take $s \propto \tau$ at $\tau < \tau_0 = 0.5$ fm. We take Gaussian rapidity distribution that gives at $\tau > \tau_0$

$$s(\tau, ec{
ho}, Y, ec{b}) = rac{1}{ au} rac{dS(ec{
ho}, Y = 0, ec{b})}{dec{
ho}dY} \exp\left(-Y^2/2\sigma_Y^2
ight)$$

with $\sigma_Y = 2.63$ for Au+Au collisions at $\sqrt{s} = 0.2$ TeV. We take $dS/d\vec{\rho}dY = CdN_{ch}/d\vec{\rho}d\eta$ with C = 7.67 [B. Müller and K. Rajagopal, Eur. Phys. J. C43, 15 (2005)]. We use the two component wounded nucleon Glauber model (with $\alpha = 0.135$ for Au+Au collisions at $\sqrt{s} = 0.2$ TeV)

$$\frac{dN_{ch}(\vec{\rho},\vec{b})}{d\eta d\vec{\rho}} = \frac{dN_{ch}^{pp}}{d\eta} \left[\frac{(1-\alpha)}{2} \frac{dN_{part}(\vec{\rho},\vec{b})}{d\vec{\rho}} + \alpha \frac{dN_{coll}(\vec{\rho},\vec{b})}{d\vec{\rho}} \right] \,,$$

To determine T we use s(T) from the lattice calculations [S. Borsanyi *et al.*, JHEP **1011**, 077 (2010)].

Presently, there is no consensus on the magnitude of the electromagnetic fields in the QGP. Our calculations [BGZ, 2014] show that the induced currents cannot generate the classical field at all.

eB_{y}/m_{π}^{2} vs t at the center of the fireball for AA collisions

Magnetic field with (solid) and without (dotted) account for the induced currents [BGZ, Phys. Lett. B737 (2014) 262]. Results obtained by solving Maxwell's equations with the initial condition $F_{\mu\nu}^{\mu\nu} = 0$ at $\tau = R_A/\gamma$. The conductivity is from the lattice calculations for $N_f = 3$ [A. Amato *et al.*, arXiv:1310.7466] that give $\sigma/(e^2 \sum z_q^2)T$ which rises smoothly from ~ 0.07 at T = 150 MeV to ~ 0.32 at T = 350 MeV.

x-dependence of B_y , $E_{x,z}$ in Au+Au collisions at $\sqrt{s} = 0.2$ TeV and in Pb+Pb collisions at $\sqrt{s} = 2.76$ TeV at b = 6 fm

 $\int dV(E^2 + B^2)/2 \ll \langle k \rangle \Rightarrow N_k \ll 1$, i.e. induced fields are in a deep quantum regime.

イロト イポト イヨト イヨト

dP/dxdL for $q ightarrow \gamma q$ and $\gamma ightarrow q ar q$ at $E_{q,\gamma} = 2$ GeV

dP/dxdL for $q \rightarrow \gamma q$ (upper) and $\gamma \rightarrow q\bar{q}$ (lower) for u quark at $eB = m_{\pi}^2$. Solid: the synchrotron contribution with account for multiple scattering ($\hat{q} \neq 0$), dashed: the pure synchrotron contribution ($\hat{q} = 0$), dotted: the contribution of multiple scattering.

イロト イポト イヨト イヨト

Solid: the sum of the synchrotron contributions from $q \rightarrow \gamma q$ and $q\bar{q} \rightarrow \gamma$ processes calculated with $\hat{q} \neq 0$,

dashed: the same as solid but for $\hat{q} = 0$,

dotted: the contribution from $q \rightarrow \gamma q$ and $q\bar{q} \rightarrow \gamma$ processes due to quark multiple scattering alone,

dot-dashed: the sum of the contributions from $q \rightarrow \gamma q$ and $q\bar{q} \rightarrow \gamma$ processes due to quark multiple scattering and the contribution of the LO 2 \rightarrow 2 processes. The data are from PHENIX.

Summary

- We have developed a formalism for evaluation of the photon emission from the QGP with external electromagnetic field due to the collinear processes q → γq and qq̄ → γ. Within this formalism we have studied the effect of magnetic field on the photon emission rate from the QGP in AA collisions for a realistic model of the plasma fireball.
- We showed that that multiple scattering reduces considerably the effect of magnetic field.
- We found that even for an extremely optimistic assumption on the magnitude of magnetic field $(eB \sim m_{\pi}^2)$ the effect of magnetic field on the photon emission in AA collisions is very small. For more realistic fields $(eB \sim 0.1m_{\pi}^2)$ the effect is practically negligible.

 \Rightarrow The synchrotron mechanism cannot lead to a considerable azimuthal asymmetry in the photon emission rate in *AA* collisions, and cannot resolve the direct photon puzzle.