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Mechanisms of photon emission in AA collisions due to magnetic field

The synchrotron q → γq contribution may be large [K. Tuchin,

Phys.Rev. C91, 014902 (2015)]. The Lorentz force is ∝ cos θ ⇒ large
v2. Can the synchrotron mechanism resolve the “direct photon
puzzle”? One should account for mq ∼ gT , q̂ 6= 0, and QGP
expansion.
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Conformal anomaly as a source of pho-
tons in AA collisions [ G. Basar, D.E. Kharzeev,

V. Skokov Phys.Rev.Lett. 109, 202303 (2012)]. Also
gives large v2.
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Pattern of q → γq process in QGP with and without magnetic field

The typical quark trajectories at the longitudinal scale ∼ Lf

B = 0 nonzero B

For B = 0 the typical quark scattering angle is small at ∆z ∼ Lf , and the collinear
configurations dominate. For a QGP with magnetic field this picture will remain valid
if

Lf

RL
� 1 , Lf ∼ min(L1, L2) , L1 ∼

2Eq(1− x)SLPM

m2
qx

, L2 ∼
(

24Eqx(1− x)

f 2

)1/3

f = zqxeB, RL = Eq/zqeB. For eB = cm2
π (c ∼< 1) at x ∼ 0.5 we have L1 < L2 at

Eq ∼< 5 GeV, and

Lf

RL
∼ zqc

(mπ
T

)3/2
(
mπ

Eq

)1/2

(1)

For c = 1 at Eq ∼> 1 GeV for u quark Lf /RL ∼< 0.25(mπ/T )3/2.
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Photon emission rate for q → γq, qq̄ → γ processes

dN

dtdVd~k
=

dNbr

dtdVd~k
+

dNan

dtdVd~k
,

dNbr

dtdVd~k
=

dbr

k2(2π)3

∑
s

∫ ∞
0

dpp2nF (p)[1− nF (p − k)]θ(p − k)
dPs

q→γq(~p, ~k)

dkdL
,

dNan

dtdVd~k
=

dan

(2π)3

∑
s

∫ ∞
0

dpnF (p)nF (k − p)θ(k − p)
dPs
γ→qq̄(~k, ~p)

dpdL
.

dbr = 4Nc , dan = 2, nF (p) = 1/[exp(p/T ) + 1], dPs
q→γq(~p, ~k)/dkdL is the probability

distribution for qs → γqs , dPs
γ→qq̄(~k, ~p)/dpdL is the probability distribution for

γ → qs q̄s transition. In the small angle approximation ~p ‖ ~k.
In AMY [P.B. Arnold, G.D. Moore, and L.G. Yaffe, JHEP 0112, 009 (2001)] approach
dP/dkdL in the QGP without magnetic field is expressed via solution of the integral
equation
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The formulas of the AMY approach have been reproduced [P. Aurenche and BGZ,
JETP Lett. 85, 149 (2007)] in the light-cone path integral (LCPI) approach [BGZ,
JETP Lett. 63, 952 (1996)]. In the LCPI formalism dP/dxdL for q → γq and γ → qq̂
are described by the diagrams

q → γq γ → qq̄

dPq→γq

dxdL
= 2Re

∞∫
0

dz exp

(
−i

z

λf

)
ĝ(x) [K(~ρ2, z|~ρ1, 0)−Kvac (~ρ2, z|~ρ1, 0)]

∣∣∣∣
~ρ1,2=0

,

λf = 2M(x)/ε2 with M(x) = Eqx(1− x), ε2 = m2
qx

2 + m2
γ(1− x),

ĝ(x) = V (x)

M2(x)
∂
∂~ρ1
· ∂
∂~ρ2

, V (x) = z2
qαem(1− x + x2/2)/x .
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K is the Green function of a Schrödinger equation with the Hamiltonian

Ĥ = −
1

2M(x)

(
∂

∂~ρ

)2

+ v(~ρ) ,

The potential v can be written as

v = vf + vm ,

where vf is due to the fluctuating gluon fields of the QGP, and vm is related to the
mean electromagnetic field

vm = −~f ~ρ

with ~f = xzq~F , ~F is transverse component (to the parton momentum) of the Lorentz
force for a particle with charge e. The component vf reads

vf = −iP(xρ) .

P(~ρ) = g2CF

∞∫
−∞

dz[G(z, 0⊥, z)− G(z, ~ρ, z)] , G(x − y) = uµuν〈〈Aµ(x)Aν(y)〉〉

uµ = (1, 0⊥, 1) is the light-like four vector along the z axis.
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In the HTL resummation scheme

P(~ρ) =
g2CFT

(2π)2

∫
d~q[1− exp(i~ρ~q)]C(~q) , C(~q) =

m2
D

~q2(~q2 + m2
D)

[P. Aurenche, F. Gelis, and H. Zaraket, Phys. Rev. D61, 116001 (2000)].
Approximately P(ρ) ∝ ρ2 at ρ� 1/mD . We work in the oscillator approximation

P(ρ) = Cpρ
2 , Cp = q̂CF /4CA

We use q̂ ∝ T 3 and set q̂ = 0.2 GeV3 at T = 250 MeV. It agrees with the qualitative
pQCD calculations q̂ ∼ 2ε3/4 ≈ 14T 3 [R. Baier, Nucl. Phys. A715, 209 (2003)], and
with the relation q̂ ∼ 1.25T 3s/η [A. Majumder, B. Muller, and X.-N. Wang, Phys.
Rev. Lett. 99, 192301 (2007)] if one takes η/s = 1/4π.

Ĥ = −
1

2M

(
∂

∂~ρ

)2

+
MΩ2~ρ2

2
− ~f ~ρ , Ω =

√
−iCpx2/M .

K(~ρ2, z2|~ρ1, z1) =
MΩ

2πi sin(Ωz)
exp [iScl (~ρ2, z2|~ρ1, z1)] ,
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dP/dxdL depends on two dimensionless parameters κ = λf |Ω|, φ = ~f 2/M|Ω|3

dP

dxdL
=

2V (x)π

|Ω|
[Iosc (κ) + I s1 (κ, φ) + I s2 (κ, φ)] ,

Iosc (κ) = Re

∫ ∞
0

dτ exp(iπ/4)

τ2

(
1−

τ2

sinh2 τ

)
exp

(
−

(1 + i)τ
√

2κ

)
,

I s1 (κ, φ) = Re

∫ ∞
0

dτ exp(iπ/4)

sinh2 τ
[1− exp(−U)] exp

(
−

(1 + i)τ
√

2κ

)
,

I s2 (κ, φ) =
φ

2
Re

∫ ∞
0

dτ
(1− cosh τ)2

sinh3 τ
exp

(
−

(1 + i)τ
√

2κ
− U

)
,

U =
(1− i)φ

2
√

2
[τ − 2 tanh(τ/2)] .

For γ → qq̄ M(x) = Eγx(1− x) ε2 = m2
q −m2

γx(1− x), ~f = zq~F , and

V (x) = z2
qαemNc [x2 + (1− x)2]/2 , Ω =

√
−iCp/M .

We will use extremely optimistic magnetic field eB = m2
π in the QGP. However even

eB ∼ 0.1m2
π is too optimistic.
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Model of the fireball

Even for a very fast thermalization of the glasma color fields at τ ∼ 1/Qs one can
apply the formulas obtained for the equilibrium QGP only at τ ∼> 0.2− 0.5 fm. We

describe the QGP fireball at τ > τ0 in the Bjorken model with s ∝ 1/τ , and take
s ∝ τ at τ < τ0 = 0.5 fm. We take Gaussian rapidity distribution that gives at τ > τ0

s(τ, ~ρ,Y , ~b) =
1

τ

dS(~ρ,Y = 0, ~b)

d~ρdY
exp (−Y 2/2σ2

Y )

with σY = 2.63 for Au+Au collisions at
√
s = 0.2 TeV. We take

dS/d~ρdY = CdNch/d~ρdη with C = 7.67 [B. Müller and K. Rajagopal, Eur. Phys. J.
C43, 15 (2005)]. We use the two component wounded nucleon Glauber model (with
α = 0.135 for Au+Au collisions at

√
s = 0.2 TeV)

dNch(~ρ,~b)

dηd~ρ
=

dNpp
ch

dη

[
(1− α)

2

dNpart(~ρ,~b)

d~ρ
+ α

dNcoll (~ρ,~b)

d~ρ

]
,

To determine T we use s(T ) from the lattice calculations [S. Borsanyi et al., JHEP
1011, 077 (2010)].
Presently, there is no consensus on the magnitude of the electromagnetic fields in the
QGP. Our calculations [BGZ, 2014] show that the induced currents cannot generate
the classical field at all.
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eBy/m
2
π vs t at the center of the fireball for AA collisions
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Magnetic field with (solid) and without (dotted) account for the induced currents
[BGZ, Phys. Lett. B737 (2014) 262]. Results obtained by solving Maxwell’s equations
with the initial condition Fµνin = 0 at τ = RA/γ. The conductivity is from the lattice

calculations for Nf = 3 [A. Amato et al., arXiv:1310.7466] that give σ/(e2
∑

z2
q )T

which rises smoothly from ∼ 0.07 at T = 150 MeV to ∼ 0.32 at T = 350 MeV.

. 10 14



x-dependence of By , Ex ,z in Au+Au collisions at
√
s = 0.2 TeV and in

Pb+Pb collisions at
√
s = 2.76 TeV at b = 6 fm
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=
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∫
dV (E2 + B2)/2� 〈k〉 ⇒ Nk � 1, i.e. induced fields are in a deep quantum regime.
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dP/dxdL for q → γq and γ → qq̄ at Eq,γ = 2 GeV
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dP/dxdL for q → γq (upper) and γ → qq̄ (lower) for u quark at eB = m2
π .

Solid: the synchrotron contribution with account for multiple scattering (q̂ 6= 0),
dashed: the pure synchrotron contribution (q̂ = 0),
dotted: the contribution of multiple scattering.
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Photon spectrum in Au+Au collisions at
√
s = 200 GeV
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Solid: the sum of the synchrotron contributions from q → γq and qq̄ → γ processes
calculated with q̂ 6= 0,
dashed: the same as solid but for q̂ = 0,
dotted: the contribution from q → γq and qq̄ → γ processes due to quark multiple
scattering alone,
dot-dashed: the sum of the contributions from q → γq and qq̄ → γ processes due to
quark multiple scattering and the contribution of the LO 2→ 2 processes.
The data are from PHENIX.
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Summary

• We have developed a formalism for evaluation of the photon emission from the
QGP with external electromagnetic field due to the collinear processes q → γq
and qq̄ → γ. Within this formalism we have studied the effect of magnetic
field on the photon emission rate from the QGP in AA collisions for a realistic
model of the plasma fireball.

• We showed that that multiple scattering reduces considerably the effect of
magnetic field.

• We found that even for an extremely optimistic assumption on the magnitude
of magnetic field (eB ∼ m2

π) the effect of magnetic field on the photon
emission in AA collisions is very small. For more realistic fields (eB ∼ 0.1m2

π)
the effect is practically negligible.
⇒The synchrotron mechanism cannot lead to a considerable azimuthal
asymmetry in the photon emission rate in AA collisions, and cannot resolve
the direct photon puzzle.
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