Complex Langevin simulations of a finite density Matrix Model for QCD

Savvas Zafeiropoulos

Institut für Theoretische Physik
Goethe Universität
Frankfurt am Main

02.09.2016
XIIth Quark Confinement and the Hadron Spectrum
Thessaloniki, Greece

Work in collaboration with J. Glesaaen (Frankfurt U.), O. Philipsen (Frankfurt U.), J. Verbaarschot (Stony Brook U.)
Many approaches to attack the sign problem

- Conventional/Monte Carlo based methods
 - Reweighting
 - Taylor expansion
 - Imaginary μ
 - Strong Coupling Expansion
 - Mean Field analyses

- Alternative methods
 - Stochastic Quantization-Complex Langevin
 - Lefschetz Thimble
 - Canonical ensembles
 - Dual variables
 - Density of States
Many approaches to attack the sign problem

- Conventional/Monte Carlo based methods
 - Reweighting
 - Taylor expansion
 - Imaginary μ
 - Strong Coupling Expansion
 - Mean Field analyses

- Alternative methods
 - Stochastic Quantization-Complex Langevin
 - Lefschetz Thimble
 - Canonical ensembles
 - Dual variables
 - Density of States
Stochastic quantization as an alternative

- consider the trivial "QFT" given by the partition function
 \[Z = \int e^{-S(x)} \, dx \]
- in the real Langevin formulation
 \[x(t + \delta t) = x(t) - \partial_x S(x(t)) \delta t + \delta \xi \]
- stochastic variable $\delta \xi$ with zero mean and variance given by $2\delta t$
- generalization to complex actions \cite{Parisi1983, Klauder1983}
 \[x \rightarrow z = x + iy \]
 \[z(t + \delta t) = z(t) - \partial_z S(z(t)) \delta t + \delta \xi \]
- one can study gauge theories with complex actions \cite{Aarts, James, Seiler, Sexty, Stamatescu, ...}
Stochastic quantization as an alternative

- consider the trivial "QFT" given by the partition function
 \[Z = \int e^{-S(x)} \, dx \]
- in the real Langevin formulation
 \[x(t + \delta t) = x(t) - \partial_x S(x(t)) \delta t + \delta \xi \]
- stochastic variable \(\delta \xi \) with zero mean and variance given by \(2 \delta t \)
- generalization to complex actions \(\text{Parisi}(1983), \text{Klauder} (1983) \)
 \[x \rightarrow z = x + iy \]
 \[z(t + \delta t) = z(t) - \partial_z S(z(t)) \delta t + \delta \xi \]
- one can study gauge theories with complex actions \(\text{Aarts, James, Seiler, Sexty, Stamatescu, ...} \)
Stochastic quantization as an alternative

- consider the trivial ”QFT” given by the partition function
 \[Z = \int e^{-S(x)} dx \]
- in the real Langevin formulation
 \[x(t + \delta t) = x(t) - \partial_x S(x(t)) \delta t + \delta \xi \]
- stochastic variable \(\delta \xi \) with zero mean and variance given by \(2\delta t \)
- generalization to complex actions Parisi (1983), Klauder (1983)
 \[x \rightarrow z = x + iy \]
 \[z(t + \delta t) = z(t) - \partial_z S(z(t)) \delta t + \delta \xi \]
- one can study gauge theories with complex actions Aarts, James, Seiler, Sexty, Stamatescu, ...
Stochastic quantization as an alternative

- consider the trivial ”QFT” given by the partition function
 \[\mathcal{Z} = \int e^{-S(x)} \, dx \]
- in the real Langevin formulation
 \[x(t + \delta t) = x(t) - \partial_x S(x(t)) \delta t + \delta \xi \]
- stochastic variable \(\delta \xi \) with zero mean and variance given by \(2\delta t \)
- generalization to complex actions \(\text{Parisi}(1983), \text{Klauder} (1983) \)
 \[x \rightarrow z = x + iy \]
 \[z(t + \delta t) = z(t) - \partial_z S(z(t)) \delta t + \delta \xi \]
- one can study gauge theories with complex actions \(\text{Aarts, James, Seiler, Sexty, Stamatescu, ...} \)
Stochastic quantization as an alternative

- Consider the trivial "QFT" given by the partition function
 \[Z = \int e^{-S(x)} \, dx \]
- In the real Langevin formulation
 \[x(t + \delta t) = x(t) - \partial_x S(x(t)) \delta t + \delta \xi \]
- Stochastic variable \(\delta \xi \) with zero mean and variance given by \(2\delta t \)
- Generalization to complex actions \(\text{Parisi}(1983), \text{Klauder} (1983) \)
 \[x \rightarrow z = x + iy \]
 \[z(t + \delta t) = z(t) - \partial_z S(z(t)) \delta t + \delta \xi \]
- One can study gauge theories with complex actions \(\text{Aarts, James, Seiler, Sexty, Stamatescu, ...} \)
Is this "the" solution to the sign problem?

- Proof relating Langevin dynamics to the path integral quantization no longer holds.
- Simulations are not guaranteed to converge to "the correct solution".
- Criteria of convergence not fulfilled in practical simulations.
proof relating Langevin dynamics to the path integral quantization-no longer holds

- simulations are not guaranteed to converge to "the correct solution"

- criteria of convergence not fulfilled in practical simulations
Is this "the" solution to the sign problem?

- Proof relating Langevin dynamics to the path integral quantization-no longer holds
- Simulations are not guaranteed to converge to "the correct solution"
- Criteria of convergence not fulfilled in practical simulations
- focus on a much simpler theory than QCD. Random Matrix Theory
- same flavor symmetries with QCD which uniquely determine (in the ϵ-regime)
- mass dependence of the chiral condensate $\langle \bar{\eta} \eta \rangle = \partial_m \log Z$
- the baryon number density $\langle \eta^\dagger \eta \rangle = \partial_\mu \log Z$
- focus on a much simpler theory than QCD. Random Matrix Theory
- same flavor symmetries with QCD which uniquely determine (in the ϵ-regime)
- mass dependence of the chiral condensate $\langle \bar{\eta} \eta \rangle = \partial_m \log Z$
- the baryon number density $\langle \eta^\dagger \eta \rangle = \partial_\mu \log Z$
The Stephanov Model

\[Z = \int D W e^{-n\Sigma^2 \text{Tr} W W^\dagger} \det^{N_f} (m \quad iW + \mu \\
\quad iW^\dagger + \mu \quad m) \]

Stephanov (1996)

- solve via bosonization
- \[Z(m, \mu) = \int d\sigma d\sigma^* e^{-n\sigma^2} (\sigma\sigma^* + m(\sigma + \sigma^*) + m^2 - \mu^2)^n \]
- where \(\sigma \) is an \(N_f \times N_f \) matrix
- \[Z^{N_f=1}(m, \mu) = \int d\sigma d\sigma^* e^{-n\sigma^2} (\sigma\sigma^* + m(\sigma + \sigma^*) + m^2 - \mu^2)^n \]
- \[Z^{N_f=1}(m, \mu) = \pi e^{-nm^2} \int_0^\infty du (u - \mu^2)^n I_0(2mn\sqrt{u}) e^{-nu} \]
The Stephanov Model

\[Z = \int DW e^{-n \Sigma^2 \text{Tr} WW^\dagger} \det^{N_f} \begin{pmatrix} m & iW + \mu \\ iW^\dagger + \mu & m \end{pmatrix} \]

Stephanov (1996)

- solve via bosonization
- \(Z(m, \mu) = \int d\sigma d\sigma^* e^{-n \sigma^2} (\sigma \sigma^* + m(\sigma + \sigma^*) + m^2 - \mu^2)^n \)
- where \(\sigma \) is an \(N_f \times N_f \) matrix

\[Z^{N_f=1}(m, \mu) = \int d\sigma d\sigma^* e^{-n \sigma^2} (\sigma \sigma^* + m(\sigma + \sigma^*) + m^2 - \mu^2)^n \]

\[Z^{N_f=1}(m, \mu) = \pi e^{-nm^2} \int_0^\infty du (u - \mu^2)^n I_0(2mn\sqrt{u}) e^{-nu} \]
The Stephanov Model

- $Z = \int DW e^{-n\Sigma^2 \text{Tr} WW^\dagger} \det^{N_f} \left(\begin{array}{cc} m & iW + \mu \\ iW^\dagger + \mu & m \end{array} \right)$

Stephanov (1996)

- solve via bosonization

- $Z(m, \mu) = \int d\sigma d\sigma^* e^{-n\sigma^2} (\sigma\sigma^* + m(\sigma + \sigma^*) + m^2 - \mu^2)^n$

- where σ is an $N_f \times N_f$ matrix

- $Z^{N_f=1}(m, \mu) = \int d\sigma d\sigma^* e^{-n\sigma^2} (\sigma\sigma^* + m(\sigma + \sigma^*) + m^2 - \mu^2)^n$

- $Z^{N_f=1}(m, \mu) = \pi e^{-nm^2} \int_0^\infty du (u - \mu^2)^n I_0(2mn\sqrt{u}) e^{-nu}$
The Stephanov Model

\[Z = \int D \! W e^{-n \Sigma^2 \text{Tr} W W^\dagger} \det^{N_f} \left(\begin{array}{cc} m & iW + \mu \\ iW^\dagger + \mu & m \end{array} \right) \]

Stephanov (1996)

- solve via bosonization
- \(Z(m, \mu) = \int d\sigma d\sigma^* e^{-n\sigma^2} (\sigma\sigma^* + m(\sigma + \sigma^*) + m^2 - \mu^2)^n \)
- where \(\sigma \) is an \(N_f \times N_f \) matrix
- \(Z_{N_f=1}(m, \mu) = \int d\sigma d\sigma^* e^{-n\sigma^2} (\sigma\sigma^* + m(\sigma + \sigma^*) + m^2 - \mu^2)^n \)
- \(Z_{N_f=1}(m, \mu) = \pi e^{-nm^2} \int_0^\infty du (u - \mu^2)^n I_0(2mn\sqrt{u}) e^{-nu} \)
The phase transition

- in the thermodynamic limit evaluate Z via a saddle point approximation
- there is a phase transition separating a phase with zero and non-zero baryon density
- In the chiral limit $\mu_c = 0.527$ for $\mu \in \mathbb{R}$
- $\mu_c = i$ for $\mu \in \mathbb{I}$
- we can compute $\Sigma(m, \mu)$ and $n_B(m, \mu)$ and compare it with the Complex Langevin simulation
The phase transition

- in the thermodynamic limit evaluate \mathcal{Z} via a saddle point approximation
- there is a phase transition separating a phase with zero and non-zero baryon density
 - In the chiral limit $\mu_c = 0.527$ for $\mu \in \mathbb{R}$
 - $\mu_c = i$ for $\mu \in \mathbb{I}$
 - we can compute $\Sigma(m, \mu)$ and $n_B(m, \mu)$ and compare it with the Complex Langevin simulation
The phase transition in the thermodynamic limit evaluate Z via a saddle point approximation.

There is a phase transition separating a phase with zero and non-zero baryon density.

In the chiral limit $\mu_c = 0.527$ for $\mu \in \mathbb{R}$

$\mu_c = i$ for $\mu \in \mathbb{I}$

We can compute $\Sigma(m, \mu)$ and $n_B(m, \mu)$ and compare it with the Complex Langevin simulation.

First attempts in the Osborn model Mollgaard and Splittorff (2013-2014), Nagata, Nishimura, Shimasaki (2015-2016)
The phase transition

- In the thermodynamic limit evaluate \mathcal{Z} via a saddle point approximation.
- There is a phase transition separating a phase with zero and non-zero baryon density.
- In the chiral limit $\mu_c = 0.527$ for $\mu \in \mathbb{R}$.
- $\mu_c = i$ for $\mu \in \mathbb{I}$.
- We can compute $\Sigma(m, \mu)$ and $n_B(m, \mu)$ and compare it with the Complex Langevin simulation.
\[Z = \int D W e^{-n\Sigma^2 \text{Tr} W W^\dagger} \det^{N_f} \begin{pmatrix} m & iW + \mu \\ iW^\dagger + \mu & m \end{pmatrix} \]

\[W = a + ib \]

- compute the drift terms \(\partial S / \partial a_{ij} \) and \(\partial S / \partial b_{ij} \)
- complexify the dof \(a, b \in \mathbb{R} \rightarrow a, b \in \mathbb{C} \)
- \(a_{ij}(t + \delta t) = a_{ij}(t) - \partial_{a_{ij}} S(x(t)) \delta t + \delta \xi_{ij} \)
- \(b_{ij}(t + \delta t) = b_{ij}(t) - \partial_{b_{ij}} S(x(t)) \delta t + \delta \xi_{ij} \)
- \(\langle \xi_{ij} \rangle = 0 \) and \(\langle \xi_{ij}(t) \xi_{kl}(t') \rangle = 2 \delta t \delta(t - t') \delta_{ik} \delta_{jl} \)
\[\mathcal{Z} = \int DW e^{-n \Sigma^2 \text{Tr} WW^\dagger} \det^{N_f} \begin{pmatrix} m & iW + \mu \\ iW^\dagger + \mu & m \end{pmatrix} \]

- \(W = a + ib \)
- compute the drift terms \(\partial S/\partial a_{ij} \) and \(\partial S/\partial b_{ij} \)
- complexify the dof \(a, b \in \mathbb{R} \rightarrow a, b \in \mathbb{C} \)
- \(a_{ij}(t + \delta t) = a_{ij}(t) - \partial_{a_{ij}} S(x(t)) \delta t + \delta \xi_{ij} \)
- \(b_{ij}(t + \delta t) = b_{ij}(t) - \partial_{b_{ij}} S(x(t)) \delta t + \delta \xi_{ij} \)
- \(\langle \xi_{ij} \rangle = 0 \) and \(\langle \xi_{ij}(t) \xi_{kl}(t') \rangle = 2 \delta t \delta(t - t') \delta_{ik} \delta_{jl} \)
\[Z = \int DW e^{-n\Sigma^2 \text{Tr} WW^\dagger} \det^{N_f} \begin{pmatrix} m & iW + \mu \\ iW^\dagger + \mu & m \end{pmatrix} \]

- \[W = a + ib \]
- compute the drift terms \(\partial S/\partial a_{ij} \) and \(\partial S/\partial b_{ij} \)
- complexify the dof \(a, b \in \mathbb{R} \rightarrow a, b \in \mathbb{C} \)

- \[a_{ij}(t + \delta t) = a_{ij}(t) - \partial_{a_{ij}} S(x(t)) \delta t + \delta \xi_{ij} \]
- \[b_{ij}(t + \delta t) = b_{ij}(t) - \partial_{b_{ij}} S(x(t)) \delta t + \delta \xi_{ij} \]
- \(\langle \xi_{ij} \rangle = 0 \) and \(\langle \xi_{ij}(t) \xi_{kl}(t') \rangle = 2\delta t \delta(t - t') \delta_{ik} \delta_{jl} \)
\[Z = \int DWe^{-n\Sigma^2 \text{Tr} WW^\dagger} \text{det}^N_f \begin{pmatrix} m & iW + \mu \\ iW^\dagger + \mu & m \end{pmatrix} \]

- \[W = a + ib \]
- Compute the drift terms \(\partial S/\partial a_{ij} \) and \(\partial S/\partial b_{ij} \)
- Complexify the dof \(a, b \in \mathbb{R} \rightarrow a, b \in \mathbb{C} \)
- \(a_{ij}(t + \delta t) = a_{ij}(t) - \partial a_{ij}S(x(t))\delta t + \delta \xi_{ij} \)
- \(b_{ij}(t + \delta t) = b_{ij}(t) - \partial b_{ij}S(x(t))\delta t + \delta \xi_{ij} \)
- \(\langle \xi_{ij} \rangle = 0 \) and \(\langle \xi_{ij}(t)\xi_{kl}(t') \rangle = 2\delta t\delta(t - t')\delta_{ik}\delta_{jl} \)
m-scan for $\mu = 0$

$\langle \eta^\dagger \eta \rangle$ for $\mu = 0$

$\langle \bar{\eta} \eta \rangle$ for $\mu = 0$
Numerical Validity - Matrix Size

\[\langle \bar{\eta}\eta \rangle \text{ for } \mu = 1 \]

\[\langle \bar{\eta}\eta \rangle / N \]

\[\langle \bar{\eta}\eta \rangle / N \text{ for } N = 48, N = 96 \]

\[\langle \bar{\eta}\eta \rangle / N \text{ for } N = 48, N = 96 \]

\[\langle \eta^\dagger\eta \rangle \text{ for } m = 0 \]

\[\langle \eta^\dagger\eta \rangle / N \]

\[\langle \eta^\dagger\eta \rangle / N \text{ for } N = 48, N = 96 \]
Numerical Validity - Step Size

\[\langle \eta \eta \rangle / N \]
\[\Delta t = 10^{-4} \]
\[\Delta t = 10^{-5} \]

\langle \eta \eta \rangle \text{ for } \mu = 1

\langle \eta^\dagger \eta \rangle / N
\Delta t = 10^{-4}
\Delta t = 10^{-5}

\langle \eta^\dagger \eta \rangle \text{ for } m = 0
\[\langle \eta^\dagger \eta \rangle \text{ for } \mu = 0.2 \]

\[\langle \bar{\eta} \eta \rangle \text{ for } \mu = 0.2 \]
m-scan for $\mu = 1$

\[\langle \eta^\dagger \eta \rangle \text{ for } \mu = 1 \]

\[\langle \bar{\eta} \eta \rangle \text{ for } \mu = 1 \]
\(\langle \eta^\dagger \eta \rangle \text{ for } m = 0 \)

\(\langle \bar{\eta} \eta \rangle \text{ for } m = 0 \)
\mu\text{-scan for } m = 0.2

\begin{align*}
\langle \eta^\dagger \eta \rangle \text{ for } m = 0.2
\end{align*}

\begin{align*}
\langle \bar{\eta} \eta \rangle \text{ for } m = 0.2
\end{align*}
$\langle \eta^\dagger \eta \rangle$ for $m = 1$

$\langle \bar{\eta} \eta \rangle$ for $m = 1$
What is actually happening

- Do the simulations converge?
- If yes to which theory?
What is actually happening

- Do the simulations converge?
- If yes to which theory?
m-scan for $\mu = 0.2$

\[\langle \eta^\dagger \eta \rangle \text{ for } \mu = 0.2 \]

\[\langle \bar{\eta} \eta \rangle \text{ for } \mu = 0.2 \]
m-scan for $\mu = 1$

\(\langle \eta^\dagger \eta \rangle \) for $\mu = 1$

\(\langle \bar{\eta} \eta \rangle \) for $\mu = 1$
μ-scan for $m = 0$

$\langle \eta^\dagger \eta \rangle$ for $m = 0$

$\langle \bar{\eta} \eta \rangle$ for $m = 0$
\[\langle \eta^\dagger \eta \rangle \text{ for } m = 0.2 \]

\[\langle \bar{\eta} \eta \rangle \text{ for } m = 0.2 \]
\(\mu\)-scan for \(m = 1\)

\[
\langle \eta \dagger \eta \rangle \text{ for } m = 1
\]

\[
\langle \tilde{\eta} \eta \rangle \text{ for } m = 1
\]
Conclusions and outlook

- studied the Complex Langevin algorithm for an RMT model for QCD
- can compare with exact analytical results for all the range of parameters (m, μ)
- compared to previous similar studies this model possess a phase transition to a phase with non-zero baryon density
- fails to converge to QCD and it converges to $|QCD|$ standard ways to fix it → gauge cooling Seiler, Sexty and Stamatescu (2012), Nagata, Nishimura, Shimasaki (2015)
- work in progress...
- Thanks a lot for your attention!
Conclusions and outlook

- studied the Complex Langevin algorithm for an RMT model for QCD
- can compare with exact analytical results for all the range of parameters \((m, \mu)\)
- compared to previous similar studies this model possesses a phase transition to a phase with non-zero baryon density
- fails to converge to \(QCD\) and it converges to \(|QCD|\)
- standard ways to fix it \(\rightarrow\) gauge cooling Seiler, Sexty and Stamatescu (2012), Nagata, Nishimura, Shimasaki (2015)
- work in progress...

Thanks a lot for your attention!
studied the Complex Langevin algorithm for an RMT model for QCD

can compare with exact analytical results for all the range of parameters \((m, \mu)\)

compared to previous similar studies this model posseses a phase transition to a phase with non-zero baryon density

fails to converge to \(QCD\) and it converges to \(|QCD|\)

standard ways to fix it \(\rightarrow\) gauge cooling Seiler, Sexy and Stamatescu(2012), Nagata, Nishimura, Shimasaki (2015)

work in progress...

Thanks a lot for your attention!
Conclusions and outlook

- studied the Complex Langevin algorithm for an RMT model for QCD
- can compare with exact analytical results for all the range of parameters \((m, \mu)\)
- compared to previous similar studies this model possesses a phase transition to a phase with non-zero baryon density
- fails to converge to \(QCD\) and it converges to \(|QCD|\)
- standard ways to fix it \(\rightarrow\) gauge cooling Seiler, Sexty and Stamatescu (2012), Nagata, Nishimura, Shimasaki (2015)
- work in progress...

Thanks a lot for your attention!
Conclusions and outlook

- studied the Complex Langevin algorithm for an RMT model for QCD
- can compare with exact analytical results for all the range of parameters (m, μ)
- compared to previous similar studies this model possesses a phase transition to a phase with non-zero baryon density
- fails to converge to QCD and it converges to $|QCD|$
- standard ways to fix it \rightarrow gauge cooling Seiler, Thirty and Stamatescu (2012), Nagata, Nishimura, Shimasaki (2015)

- work in progress...

Thanks a lot for your attention!
Conclusions and outlook

- studied the Complex Langevin algorithm for an RMT model for QCD
- can compare with exact analytical results for all the range of parameters \((m, \mu)\)
- compared to previous similar studies this model possesses a phase transition to a phase with non-zero baryon density
- fails to converge to \(QCD\) and it converges to \(|QCD|\)
- standard ways to fix it \(\rightarrow\) gauge cooling Seiler, Sexty and Stamatescu(2012), Nagata, Nishimura, Shimasaki (2015)

- work in progress...

- Thanks a lot for your attention!
studied the Complex Langevin algorithm for an RMT model for QCD

can compare with exact analytical results for all the range of parameters \((m, \mu)\)

compared to previous similar studies this model possesses a phase transition to a phase with non-zero baryon density

fails to converge to \(QCD \) and it converges to \(|QCD|\)

standard ways to fix it \(\rightarrow\) gauge cooling Seiler, Sexy and Stamatescu(2012), Nagata, Nishimura, Shimasaki (2015)

work in progress...

Thanks a lot for your attention!
Conclusions and outlook

- studied the Complex Langevin algorithm for an RMT model for QCD
- can compare with exact analytical results for all the range of parameters \((m, \mu)\)
- compared to previous similar studies this model possesses a phase transition to a phase with non-zero baryon density
- fails to converge to \(\text{QCD}\) and it converges to \(|\text{QCD}|\)
- standard ways to fix it \(\rightarrow\) gauge cooling Seiler, Sexty and Stamatescu (2012), Nagata, Nishimura, Shimasaki (2015)
- work in progress...

Thanks a lot for your attention!
Stay Tuned!

for upcoming results . . .