Thermal D mesons from anisotropic lattice QCD

Jon-Ivar Skullerud, Aoife Kelly

National University of Ireland Maynooth FASTSUM collaboration

Quark Confinement and the Hadron Spectrum, $\Theta \epsilon \sigma \sigma \alpha \lambda o \nu \iota \kappa \eta$ 2 Sep 2016

Outline

Background

Simulation and analysis

D meson results

Charmonium

Summary and outlook

Why open charm?

- Heavy quarks are important probes of medium
- ▶ Long history of *cc*̄ studies: experiment, pheno, lattice
- Open charm still in its infancy

Why D mesons?

Experimental interest in open heavy flavour in A–A collisions: Talks by Elisa Mennino (Mon), Shingo Sakai (Tue)

Why D mesons?

Open and hidden charm

Cannot study $c\bar{c}$ in isolation from open charm

- Recombination at freeze-out
- Increased yield of D mesons relative to J/ψ ?
- Double ratio better measure than R_{AA}?
- Thermal modifications of D mesons may be important
- ► Charm quark diffusion ↔ D meson flow

Open charm — issues

Open charm

- Increased experimental interest in open charm
- Suggestions of D meson survival in QGP?
- Modifications of yields of open charm states?
- Increased D_s/D ratio (strangeness enhancement)?

Open charm from the lattice

Very few studies so far:

- Cumulants [Bazavov et al, Mukherjee et al (2015)]
- Screening correlators [Bazavov et al (2014)]

May contribute up to $1.2T_c$?

Spectral functions

contain information about the fate of hadrons in the medium

- stable states $ho(\omega) \sim \delta(\omega m)$
- resonances or thermal width $\rho(\omega) \sim$ lorentzian
- continuum above threshold

Spectral functions

contain information about the fate of hadrons in the medium

- stable states $ho(\omega) \sim \delta(\omega m)$
- resonances or thermal width $ho(\omega) \sim$ lorentzian
- continuum above threshold

Spectral functions

contain information about the fate of hadrons in the medium

- stable states $ho(\omega) \sim \delta(\omega m)$
- resonances or thermal width $ho(\omega) \sim$ lorentzian
- continuum above threshold

• $\rho_{\Gamma}(\omega, \overrightarrow{p})$ related to euclidean correlator $G_{\Gamma}(\tau, \overrightarrow{p})$ according to

$$\mathcal{G}_{\Gamma}(au, \overrightarrow{p}) = \int
ho_{\Gamma}(\omega, \overrightarrow{p}) \mathcal{K}(au, \omega) d\omega \,, \quad \mathcal{K}(au, \omega) = rac{\cosh[\omega(au - 1/2T)]}{\sinh(\omega/2T)}$$

- an ill-posed problem requires a large number of time slices
 - Fit to physically motivated Ansatz
 - Use Maximum Entropy Method or other Bayesian methods
 - Other inversion methods, eg Backus–Gilbert, Cuniberti

Lattice simulations

- QGP near crossover is strongly interacting: nonperturbative methods required
- Equilibrium thermal field theory formulated in euclidean space
 suitable for Monte Carlo simulations

$$\langle {\cal O}
angle = \int {\cal D} [\Phi] {\cal O} [\Phi] e^{-{\cal S} [\Phi]}$$

- Temperature $T = rac{1}{L_ au} = (N_ au a_ au)^{-1}$
- ▶ 2+1 active light flavours required for quantitative predictions!

Dynamical anisotropic lattices

- A large number of points in time direction required to extract spectral information
- For $T = 2T_c$, $\mathcal{O}(10)$ points $\Longrightarrow a_t \sim 0.025$ fm
- Far too expensive with isotropic lattices $a_s = a_t!$
- Fixed-scale approach
 - vary T by varying N_{τ} (not a)
 - need only 1 T = 0 calculation for renormalisation
 - independent handle on temperature

- Introduces 2 additional parameters
- Non-trivial tuning problem
 [PRD 74 014505 (2006); HadSpec Collab, PRD 79 034502 (2009)]

Simulation parameters

FASTSUM Gen2 ensemble: $N_f = 2 + 1$ anisotropic clover [HadSpec, PRD **79** 034502 (2009); FASTSUM, JHEP **1502** 186 (2015)]

ŕ	2 5	$N_{ au}$	T (MeV)	T/T_c	N _{cft}
ξ	3.5	128	44	0.24	50
a_s (fm)	0.123	40	141	0.76	50
a_{τ}^{-1} (GeV)	5.63	36	156	0.84	500
m_{π} (MeV)	380	32	176	0.95	100
$m_\pi/m_ ho$	0.45	28	201	1.09	1000
N _s	24	24	235	1.27	1000
L_s (fm)	2.94	20	281	1.52	576
		16	352	1.90	1000

Charm action params from Hadspec: JHEP 1207 126 (2012)

Spectral function reconstruction

Spectral function $\rho(\omega)$ is expressed in terms of default model $m(\omega)$

$$\rho(\omega) = m(\omega) \exp\left[\sum_{k=1}^{N_b} b_k u_k(\omega)\right]$$

Singular value decomposition:

$$K(\omega, \tau) \to K(\omega_i, \tau_j) = K_{ij} = U \Xi V^7$$

Standard MEM (SVD basis): u_k are column vectors of U: $N_b = N_s \le N_{data}$ Extended basis: use N_{ext} additional column vectors of UFourier basis: use N_b Fourier modes as u_k Using MEM analysis code from Alexander Rothkopf

Zero temperature spectral functions

D meson correlators

Reconstructed correlators

The systematic uncertainty of the spectral function can be avoided by studying the reconstructed correlator, defined as

$$G_r(\tau; T, T_r) = \int_0^\infty \rho(\omega; T_r) K(\tau, \omega, T) d\omega$$

where K is the kernel

$$\mathcal{K}(au, \omega, au) = rac{\cosh[\omega(au-1/2 au)]}{\sinh(\omega/2 au)}$$

If $\rho(\omega; T) = \rho(\omega; T_r)$ then $G_r(\tau; T, T_r) = G(\tau; T)$

Small changes in correlators is compatible with large changes in spectral function [Mocsy&Petreczky (2007)]

Direct correlator reconstruction [Ding et al (2012)]

With

$$T=rac{1}{a_{ au}N}, \ T_r=rac{1}{a_{ au}N_r}, \ \ rac{N_r}{N}=m\in\mathbb{N}$$

and using

$$\frac{\cosh\left[\omega(\tau - N/2)\right]}{\sinh(\omega N/2)} = \sum_{n=0}^{m-1} \frac{\cosh\left[\omega(\tau + nN + mN/2)\right]}{\sinh(\omega mN/2)}$$

we have

$$G_r(\tau; T, T_r) = \sum_{n=0}^{m-1} G(\tau + nN, T_r)$$

Reconstructed correlators

Reconstructed correlators

- Significant changes for $T\gtrsim T_c$
- Modifications below T_c?
- ► Smaller for D_s
- Transport contrib in V channel?

Open charm: spectral functions Pseudoscalar channel

- Both D and D_s mesons dissociate close to T_c
- Thermal mass shift below T_c?

Open charm: spectral functions Vector channel

Thermal mass shift stronger in vector channel?

Charmonium: reconstructed correlators

- $T \gtrsim T_c$ consistent with no change
- Much smaller modifications above T_c
- P-wave analysis in progress

Charmonium

Summary and outlook

Summary

- First lattice study of open charm temporal correlators and spectral functions
- Thermal modifications already below T_c
- Possible thermal mass shift observed?
- No sign of surviving bound states above T_c

Summary and outlook

Summary

- First lattice study of open charm temporal correlators and spectral functions
- Thermal modifications already below T_c
- Possible thermal mass shift observed?
- No sign of surviving bound states above T_c

Outlook

- Complete study of MEM systematics
- Improved statistics
- Repeat with smaller a_{τ}
- Open beauty?