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In-medium Program

Study the screening length in hot matter via: 
• Modifications to quarkonia production in A+A collisions 
• Relative to the baseline production in p+p collisions 
• Correcting for modifications due to production in a nucleus (p,d+A) 

• Traditionally called cold nuclear matter (CNM) effects 

Physics is extracted from comparison with theory - so ideally, we would 
like to: 

Vary the temperature of the medium in A+A 
• Collision energy (RHIC vs LHC gives wide lever arm) 
• Mass of colliding ions 
• Collision centrality (but not easy to model) 
Vary the type and strength of underlying CNM effects 
• Depends on collision energy 
• Depends on rapidity 

2



Quarkonia - PHENIX
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High data rate, no triggering in Au+Au 
Good triggers in p+p, d,p+A  
Smaller dielectron acceptance than STAR
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Quarkonia - STAR
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Large dielectron acceptance 
Trigger difficult at low pT

MTD: smaller dimuon acceptance 
But easy trigger, good S/B 
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Recent: STAR Au+Au J/ψ pT dependence - from dimuons
First (preliminary) results for J/ψ from the MTD, shown earlier this year. 
Good precision and pT reach! 
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PHENIX, STAR, ALICE J/ψ centrality dependence 
midrapidity, integrated over all pT

Very nice agreement 
between PHENIX and 
STAR. 

Coalescence is 
dominant  at LHC for pT 
integrated data. 

Peter Chaloupka 
ICNFP 2016
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Transport models:  
Liu et. al. 
Model I at RHIC: PLB 678 (2009) 72   
Model I at LHC: PRC 89 (2014) 054911

Zhao et. al. 
Model II at RHIC: PRC 82 (2010) 064905   
Model II at LHC: NPA 859 (2011) 114 
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The striking difference in suppression is 
partly due to coalescence, partly due to 
stronger CNM effects at forward rapidity 
at RHIC energy.

PHENIX, ALICE J/ψ - forward rapidity



STAR, CMS J/ψ - high pT 

Zhao et. al. 
Model II at RHIC: PRC 82 (2010) 064905   
Model II at LHC: NPA 859 (2011) 114 

Transport models:  
Liu et. al. 
Model I at RHIC: PLB 678 (2009) 72   
Model I at LHC: PRC 89 (2014) 054911

Peter Chaloupka 
ICNFP 2016

Contrast: high pT J/ψ 
show much stronger 
suppression at LHC 
energies 

Higher energy 
density wins over 
coalescence at high 
pT.
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Au+Au J/ψ Energy scan at RHIC
PHENIX data at 39, 64 and 200 GeV.
The suppression seems to be: 

• Strongest at 200 GeV 
• Weaker at 64 GeV 
• Weaker again at 39 GeV

Model (Zhao & Rapp): the suppression is similar at the three energies:
• As the energy increases, suppression increases
• But increased suppression is compensated by increased regeneration.

STAR final data - arXiv:1607.07517
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STAR, PHENIX U+U J/ψ 
• Expect about 20% higher energy 

density (Kikola, Odyniec,Vogt, 
PRC 84, 054907 (2011))

• CNM effects are expected to be 
very similar

• Charm production is higher - 
Ncoll increases

Both PHENIX and STAR observe 
weaker suppression for U+U

Charm coalescence wins?
PRC 84, 054907 (2011)
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U+U vs Au+Au J/ψ 
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Problem: competing models of U deformation: 
• Set 1 has larger surface diffuseness 

• smaller Ncoll values by 6-15%  
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Take invariant yield ratio: 
Curves show centrality dependence if 
J/ψ production scaled with 
• Ncoll (dashed lines) 
• Ncoll2 (solid lines) 

Set 1 (blue) Not much difference 
set 2 (red) Favors Ncoll2 for central 

Phys. Rev. C 93, 034903 (2016)



J/ψ Flow in Au+Au at 200 GeV

Old: STAR J/ψ flow 
measurements using 
dielectrons

New: preliminary STAR 
dimuon measurements  

this preliminary dimuon 
analysis uses only 1/7 of  
available data - more to 
come
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d+Au ψ’ - mid rapidity
PHENIX RdAu data  
PRL111 (2013) 202301 

Too strong for CNM effects: 
Interpreted as final state 
suppression due to effects of co-
moving matter on the weakly 
bound ψ’ state
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Ferreiro (PLB 749 (2015) 98)
“Comovers” in final state

Du & Rapp arXiv:1504.00670
Hadronic gas + QGP in final state



d+Au ψ’ - comparison with p+Pb from ALICE
Double ratio has similar dependence on collision centrality at the two 
very different collision energies 
Seems to be explained well by final state models
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p+Al, p+Au  ψ’

Add forward/backward rapidity p+Au 
and p+Al measurements from RHIC 2015 
run - strong suppression at backward 
rapidity, consistent trend with midrapidity 
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Coming (very) soon: Final results for ψ(2S)/ψ(1S) 
ratios at forward/backward rapidity in 

• p+p, p+Al, p+Au, 3He+Au



Statistics starved measurement for 
PHENIX due to  
•small acceptance at midrapidity,  
•small cross section at forward/

backward rapidity 

Described by the models, but the data 
do not provide a strong constraint 

PHENIX Υ(1S+2S+3S) in Au+Au

PRC 91 (2015) 024913
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Emeric, Zhao, Rapp, EPJ. A 48, 72 (2012)

Strickland, Bazow, Nucl. Phys.A 879, 25 (2012).



New: STAR Υ production in U+U at 193 GeV/c
Fit dielectron mass spectrum 
with Crystal Ball lineshapes 

Extract RAA for  
• Y(1S+2S+3S) 
• Y(1S) 

Well described by Strickland 
model B & the other models
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arXiv:1608.06487



Υ(1S+2S+3S) comparisons at RHIC

Y(1S+2S+3S) for d+Au, U+U and Au+Au 

arXiv:1608.06487
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Common trend with Npart for 
suppression in Au+Au (200 
GeV) and U+U (193 GeV). 



Υ(1S), Y(1S+2S+3S) - comparison STAR/CMS

Y(1S+2S+3S) for  
U+U, Au+Au at RHIC from STAR 
Pb+Pb at 2.76 TeV from CMS 

Trend is for stronger suppression 
at 2.76 GeV in both cases 
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arXiv:1608.06487



Recent: STAR Υ’s from dimuons

First results using dimuons from 
the STAR MTD 

Best Y(2S+3S)/Y(1S) ratio 
measurement so far 

Indicates that Y(2S+3S)/Y(1S) ratio 
is larger at RHIC than at LHC 

Peter Chaloupka 
ICNFP 2016
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Future: sPHENIX
the PHENIX detector is no more (being dismantled this summer) 
• Although we have a lot of data to analyze yet!
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Next: sPHENIX 

Designed for  
• Jets 
• HF tagged jets 
• Upsilons 



sPHENIX Upsilons

Proposed tracker: 
• Inner barrel:  3 MAPS pixel layers (copy of ALICE ITS upgrade IB) 
• Intermediate tracker: 4 silicon strip layers 
• Outer tracker: Compact TPC 

Measure Upsilons with dielectrons  
Anticipate ~ 80 MeV mass resolution  
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p+p 
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Tim Hallman, RHIC User’s Meeting June 2016



Backup
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CNM effects include
• Gluon shadowing – parton distributions 

modified in a nucleus
• Breakup of the precursor J/ψ by 

collisions with nucleons 
• Initial state energy loss of partons in 

cold nuclear matter
• Cronin effect – multiple elastic 

scattering of partons

Target 
nucleus

Notes:
• Gluon shadowing affects the underlying charm yield.
• Breakup reduces the fraction of charm forming bound charmonium.
• Initial state energy loss changes the rapidity distribution
• Cronin effect modifies only the pT distribution.

The lack of a pattern in the RAA values is due to processes that modify the 
quarkonia yield in a nuclear target - cold nuclear matter (CNM) processes

Cold nuclear matter effects
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Cu+Au J/ψ
Asymmetric heavy beams 
Compare forward backward 
RAA in the muon arms

At backward rapidity,  Cu+Au similar 
to Au+Au 

The forward backward difference for 
Cu+Au is consistent with the expected 
effect of shadowing (EPS09) 
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Au+Au J/ψ centrality dependence
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J/ψ Data
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