Yang-Mills correlation functions at non-zero temperature

Markus Q. Huber

Institute of Physics, University of Graz

XIIth Quark Confinement and the Hadron Spectrum - Thessaloniki, Greece

Sept. 2, 2016

Markus Q. Huber

University of Graz

Sept. 2, 2016

 $\frac{1}{4}F^a_{\mu\nu}F^{a,\mu\nu}+\bar{q}(i\not\!\!D-M)q$

- Phases: hadronic phase, quark-gluon plasma, color superconductor, quarkyonic?
- Transitions: first order line, crossover at $\mu = 0$
- Critical point: existence? position?

• Challenges for all methods at $\mu > T$, e.g.

- Lattice QCD: complex action problem
- Models: parameters
- Functional methods: reliability of truncations

Functional equations: Exact equations derived from QCD action.

$$\frac{1}{4}F^a_{\mu\nu}F^{a,\mu\nu}+\bar{q}(i\not\!D-M)q$$

Functional equations: Exact equations derived from QCD action.

eqs. of motion from 3PI eff. action

Functional equations: Exact equations derived from QCD action.

eqs. of motion from 3PI eff. action

Functional equations: Exact equations derived from QCD action.

Difficulty

Infinitely large systems of equations without obvious ordering scheme.

Outline

- Introduction
- Dyson-Schwinger equations and truncations
- Testing truncations in d = 3
- Non-vanishing temperature results

Landau gauge QCD

Landau gauge QCD

Landau gauge

• simplest one for functional equations

•
$$\partial_{\mu} \boldsymbol{A}_{\mu} = 0$$
: $\mathcal{L}_{gf} = \frac{1}{2\xi} (\partial_{\mu} \boldsymbol{A}_{\mu})^2, \quad \xi \to 0$

• requires ghost fields: $\mathcal{L}_{gh} = \bar{c} \left(-\Box + g \mathbf{A} \times \right) c$

The tower of DSEs

The tower of DSEs

The tower of DSEs

Infinitely many equations. In QCD, every *n*-point function depends on (n + 1)-and possibly (n + 2)-point functions.

Markus Q. Huber

University of Graz

Sept. 2, 2016

Truncating the equations

Guides

- Perturbation theory
- Symmetries
- Lattice
- Analytic results

Truncating the equations

Guides

- Perturbation theory
- Symmetries
- Lattice
- Analytic results

Truncation

- Drop quantities (unimportant?)
- Use fits
- Model quantities (good models available? 'true' or 'effective'?)

Ideally: Find a truncation that has (I) no parameters and yields (II) quantitative results.

Markus Q. Huber

University of Graz

Sept. 2, 2016

But...

... how do we know that the results are trustworthy?

... how do we know that the results are trustworthy?

 \rightarrow Compare with experiment (requires further calculations).

- ... how do we know that the results are trustworthy?
- \rightarrow Compare with experiment (requires further calculations).
- \rightarrow Compare with other methods \rightarrow [talk by Sternbeck].

- ... how do we know that the results are trustworthy?
- \rightarrow Compare with experiment (requires further calculations).
- \rightarrow Compare with other methods \rightarrow [talk by Sternbeck].

Lattice results

Available for

• Vacuum

- ... how do we know that the results are trustworthy?
- \rightarrow Compare with experiment (requires further calculations).
- \rightarrow Compare with other methods \rightarrow [talk by Sternbeck].

Lattice results

- Vacuum
- Propagators

- ... how do we know that the results are trustworthy?
- \rightarrow Compare with experiment (requires further calculations).
- \rightarrow Compare with other methods \rightarrow [talk by Sternbeck].

Lattice results

- Vacuum
- Propagators
- *T* > 0

- ... how do we know that the results are trustworthy?
- \rightarrow Compare with experiment (requires further calculations).
- \rightarrow Compare with other methods \rightarrow [talk by Sternbeck].

Lattice results

- Vacuum
- Propagators
- *T* > 0
- Three-point functions (restricted kinematics)

- ... how do we know that the results are trustworthy?
- \rightarrow Compare with experiment (requires further calculations).
- \rightarrow Compare with other methods \rightarrow [talk by Sternbeck].

Lattice results

- Vacuum
- Propagators
- *T* > 0
- Three-point functions (restricted kinematics)
- $\mu > 0?$

But...

- ... how do we know that the results are trustworthy?
- \rightarrow Compare with experiment (requires further calculations).
- \rightarrow Compare with other methods \rightarrow [talk by Sternbeck].

Lattice results

- Vacuum
- Propagators
- *T* > 0
- Three-point functions (restricted kinematics)
- $\mu > 0?$
- Four-point functions?

But...

- ... how do we know that the results are trustworthy?
- \rightarrow Compare with experiment (requires further calculations).
- \rightarrow Compare with other methods \rightarrow [talk by Sternbeck].

Lattice results

Available for

- Vacuum
- Propagators
- *T* > 0
- Three-point functions (restricted kinematics)
- $\mu > 0?$
- Four-point functions?

 \rightarrow Comparison with lattice is helpful, but finally self-consistent checks are required.

Two words of caution:

- One cannot assume naturally that the hierarchy is the same for all *T* and μ .
- In simple truncations, the effect of a single correlation function is difficult to estimate.

Introduction

DSEs and truncations

Yang-Mills theory T > 0

Summary and conclusions

Top-down for Yang-Mills theory

Top-down vs. bottom up \uparrow Green functions from QCD action vs. effective models

Top-down for Yang-Mills theory

Neglect all non-primitively divergent Green functions. \rightarrow Self-contained.

Full propagator equations (two-loop diagrams!):

Top-down for Yang-Mills theory

Neglect all non-primitively divergent Green functions. \rightarrow Self-contained.

Full propagator equations (two-loop diagrams!):

$$\underbrace{\mathbf{i}}_{\mathbf{i}} \underbrace{\mathbf{j}}_{\mathbf{i}}^{-1} + \underbrace{\mathbf{i}}_{\mathbf{i}} \underbrace{\mathbf{j}}_{\mathbf{i}}^{-1} - \frac{1}{2}}_{\mathbf{i}} \underbrace{\mathbf{i}}_{\mathbf{i}} \underbrace{\mathbf{j}}_{\mathbf{i}} - \frac{1}{2}}_{\mathbf{i}} \underbrace{\mathbf{j}}_{\mathbf{i}} \underbrace{\mathbf{j}}_{\mathbf{i}} + \underbrace{\mathbf{j}}_{\mathbf{i}} \underbrace{\mathbf{j}} \underbrace{\mathbf{j}}$$

Truncated three-point functions:

Truncated four-gluon vertex:

Top-down for Yang-Mills theory

Neglect all non-primitively divergent Green functions. \rightarrow Self-contained.

Full propagator equations (two-loop diagrams!):

$$\underbrace{\mathbf{i}}_{\mathbf{i}} \underbrace{\mathbf{j}}_{\mathbf{i}}^{-1} + \underbrace{\mathbf{i}}_{\mathbf{i}} \underbrace{\mathbf{j}}_{\mathbf{i}}^{-1} - \frac{1}{2}}_{\mathbf{i}} \underbrace{\mathbf{i}}_{\mathbf{i}} \underbrace{\mathbf{j}}_{\mathbf{i}} - \frac{1}{2}}_{\mathbf{i}} \underbrace{\mathbf{j}}_{\mathbf{i}} \underbrace{\mathbf{j}}_{\mathbf{i}} + \underbrace{\mathbf{j}}_{\mathbf{i}} \underbrace{\mathbf{j}} \underbrace{\mathbf{j}}$$

Truncated three-point functions:

Truncated four-gluon vertex:

[MQH '16]

Quantitative study of truncation effects possible

• Varying the four-gluon vertex: bare vs. dynamic

[MQH '16]

Quantitative study of truncation effects possible

- Varying the four-gluon vertex: bare vs. dynamic
- DSEs vs. 3PI

[MQH '16]

Quantitative study of truncation effects possible

- Varying the four-gluon vertex: bare vs. dynamic
- DSEs vs. 3PI

Conclusions from d = 3

• Importance of two-loop diagrams in propagator, less in vertices

[MQH '16]

Quantitative study of truncation effects possible

• Varying the four-gluon vertex: bare vs. dynamic

DSEs vs. 3PI

Conclusions from d = 3

- Importance of two-loop diagrams in propagator, less in vertices
- Small deviations of vertices from tree-level

[MQH '16]

Quantitative study of truncation effects possible

- Varying the four-gluon vertex: bare vs. dynamic
- DSEs vs. 3PI

Conclusions from d = 3

- Importance of two-loop diagrams in propagator, less in vertices
- Small deviations of vertices from tree-level
- Cancellations in gluonic vertices: large+large=small

[MQH '16]

Quantitative study of truncation effects possible

- Varying the four-gluon vertex: bare vs. dynamic
- DSEs vs. 3PI

Similar truncation in FRG (d = 4): [Cyrol, Mitter, Strodthoff, Pawlowski '16; talks by Cyrol, Mitter]

Conclusions from d = 3

- Importance of two-loop diagrams in propagator, less in vertices
- Small deviations of vertices from tree-level
- Cancellations in gluonic vertices: large+large=small

Beyond effective interaction approximation: \checkmark [Fischer, Lücker, Welzbacher '14]

Input for DSEs:

- model for quark-gluon vertex
- ${\, \bullet \,}$ fits for gluon propagators at $\mu = {\rm 0}$ from the lattice

Beyond effective interaction approximation: √ [Fischer, Lücker, Welzbacher '14]

Input for DSEs:

- model for quark-gluon vertex
- ${\, \bullet \,}$ fits for gluon propagators at $\mu = {\rm 0}$ from the lattice

Possible improvements:

- fully dynamical propagators
- fully dynamical quark-gluon vertex

Beyond effective interaction approximation: √ [Fischer, Lücker, Welzbacher '14]

Input for DSEs:

- model for quark-gluon vertex
- fits for gluon propagators at $\mu = 0$ from the lattice

Possible improvements:

- $\, \bullet \,$ fully dynamical propagators $\, \rightarrow \,$ require other vertices
- $\, \bullet \,$ fully dynamical quark-gluon vertex $\, \rightarrow \,$ requires propagators & other vertices

Beyond effective interaction approximation: \checkmark [Fischer, Lücker, Welzbacher '14]

Input for DSEs:

- model for quark-gluon vertex
- ${\, \bullet \,}$ fits for gluon propagators at $\mu = {\rm 0}$ from the lattice

Possible improvements:

- $\, \bullet \,$ fully dynamical propagators $\, \rightarrow \,$ require other vertices
- $\, \bullet \,$ fully dynamical quark-gluon vertex $\, \rightarrow \,$ requires propagators & other vertices

Ultimately, full control over Yang-Mills part required!

Markus Q. Huber

University of Graz

Sept. 2, 2016

Non-vanishing temperature

Elementary Green functions \rightarrow (dual) quark condensate, Polyakov loop potential, \ldots

Propagators

Lattice results \rightarrow input to calculate other quantities [Fischer, Maas, Müller '10].

Fits based on [Maas, Pawlowski, von Smekal, Spielmann '12].

Note

Gluon propagator from lattice has no truncation artifacts.

Markus Q. Huber

University of Graz

Sept. 2, 2016

Example: Ghost DSE

Ghost dressing $G(p^2)$ from DSE [MQH, von Smekal '13]:

• Ghost insensitive to phase transition.

Ghost-gluon vertex

- Vertices on lattice more difficult than propagators.
- Full momentum dependence from functional equations.

Self-consistent solution, zeroth Matsubara only

Vertex from FRG: [Fister, Pawlowski '11; talk by Cyrol]

Markus Q. Huber

Ghost-gluon vertex: Continuum and lattice

Three-gluon vertex: Continuum and lattice

Note: IR suppression observed at T = 0. Zero crossing? [talk by Sternbeck]

Three-gluon vertex: Continuum and lattice

 \rightarrow Enhancement around T_c , but still zero crossing.

Three-gluon vertex: Continuum and lattice

Lattice: [Fister, Maas '14] \rightarrow Enhancement around T_c , but still zero crossing.

Three-gluon vertex

DSE calculation: semi-perturbative approximation (first iteration only)

- Functional equations: Non-perturbative approach to QCD.
- Calculations of propagators, vertices and partially mixed systems show a coherent picture at T = 0.
- Top-down approach provides a self-contained description.
- Results for ghost and gluonic three-point functions at T > 0.

- Functional equations: Non-perturbative approach to QCD.
- Calculations of propagators, vertices and partially mixed systems show a coherent picture at T = 0.
- Top-down approach provides a self-contained description.
- Results for ghost and gluonic three-point functions at T > 0.

QCD at T > 0

• Full control over Yang-Mills sector required for top-down approach.

- Functional equations: Non-perturbative approach to QCD.
- Calculations of propagators, vertices and partially mixed systems show a coherent picture at T = 0.
- Top-down approach provides a self-contained description.
- Results for ghost and gluonic three-point functions at T > 0.

QCD at T > 0

• Full control over Yang-Mills sector required for top-down approach.

<u>Outlook:</u>

- Adding gluon propagator.
- Coupling the equations.
- Unquenching.

- Functional equations: Non-perturbative approach to QCD.
- Calculations of propagators, vertices and partially mixed systems show a coherent picture at T = 0.
- Top-down approach provides a self-contained description.
- Results for ghost and gluonic three-point functions at T > 0.

QCD at T > 0

• Full control over Yang-Mills sector required for top-down approach.

<u>Outlook:</u>

- Adding gluon propagator.
- Coupling the equations.
- Unquenching.

Thank you for your attention.

Markus Q. Huber

University of Graz

Sept. 2, 2016