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Introduction

An outstanding theoretical challenge: Develop a consistent framework that can combine 
weakly and strongly coupled dofs, i.e. construct a generalized EFT such that it can 
include nonperturbative effects 

The holographic duality may model the IR of QCD via (usual) 5-dimensional classical 
gravity but the latter does not capture the weakly coupled UV, while pQCD fails in the 
IR. 

To understand bound states of QCD, their interactions and also QGP formed by heavy-
ion collisions we need to include both weakly and strongly coupled dofs at various 
energy scales (and not just extrapolate to intermediate coupling) 

Semi-holography: A proposal in this direction



The case for HIC

At initial stage, the dynamics is perturbative and experimental evidence suggests that 
it should be described by the color glass condensate (CGC) framework following from 
McLerran-Venugopalan model of nuclear structure functions 

At later stage, fast “hydrolyzation” and small      suggest that a strongly coupled 
bath of IR gluons is formed which may be successfully described by a holographic 
model 

SEMIHOLOGRAPHY: Combine CGC and Holography to construct a model with a small 
number of effective parameters [see J. Cassalderrey Solana et. al. (also talks by W. van der Schee 
and A. Sadofyev) for a different hybrid approach for jet quenching]
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Recap of saturation physics 
(Iancu, Leonidov & McLerran 2000; see F. Gelis & E. Iancu, [arXiv:

1002.0333] for review)
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Color glass condensate/Glasma 
(Kovner, McLerran, Weigert 1995; McLerran,& Lappi, 2005) 

Saturation physics:  At initial stage of collisions most gluons have 
transverse and longitudinal momenta of O(Qs)

At initial time, these are sourced by frozen large x color sources of 
colliding nuclei which follow a Gaussian distribution with width O(Qs)

Can be described by classical YM equations due to over-occupation at 
leading order

G L A S M A i n i t i a l s t a g e : 
Longitudinal chromoelectric and 
chromomagnetic flux tubes of 
transverse width ⇡ 1/Qs



The semi-holographic framework 
for large N pure QCD

The perturbative fields design the sources of the holographic theory

The holographic IR is an emergent strongly coupled pure YM theory — so it has 
only three marginal couplings/sources

Gravitation can model confinement [E. Witten 1998] (see U. Gursoy, E. Kiritsis and 
F. Nitti 2008 for a bottom-up approach — also talk by Matti Jarvinen) 
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Which principles determine                                    ?

Which principles determine the classical gravity theory for the holographic IR?

(i) Existence of a local em-tensor for the full system that is conserved in 
flat space and which can be constructed without knowing the UV/IR 
Lagrangians explicitly 

(ii) Renormalizability of UV and IR 

(iii) Cancellation of Borel poles of pQCD (or similar divergences in 
perturbation series for glasma) 

(iv) Reconstruction of holography as RG flow — specially if   

Progress: The general solution of (i) is known and lot of progress on others  

A toy model addressing all points to appear [S. Banerjee, N. Gaddam, AM] 

Here we do not present a fundamental derivation but construct a 
phenomenological model for HIC incorporating points (i) and (ii) in a 
minimalistic way. 
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It is consistent with the variational principle to rewrite:

Self-consistent solution of classical gravity gives:

on-shell gravitational action

The gravitational theory in HIC: Einstein’s gravity minimally coupled to a dilaton-axion 
pair (assume confinement plays no role until hadronization)
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Furthermore if we assume that:

then both UV and IR are renormalizable (both UV and IR are marginally 
deformed)
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What about HIC? 
(E. Iancu and AM 2014; AM, F. Preis, A. Rebhan and S. Stricker 2015)
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Unique solution of gravity in method of characteristics from a given initial condition and 
given boundary sources [P.Chesler and L.Yaffe; W. van der Schee and B.Schenke]

Our initial conditions [E.Iancu and AM 2014]: 

(i) Glasma initial conditions for classical YM fields 

(ii)  Pure AdS with vanishing dilaton and axion in gravity (in practice a small seed  
black hole is needed)

WCFT = self-consistent on-shell gravitational action with following sources

glasma at LO is classical YM
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In FG coordinates where Gµr = 0, Grr = l2/r2 we have asymptotic r ⇡ 0 behaviors:
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Consistently with the variational principle we can rewrite the classical action for 
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The modified glasma classical YM equations (in flat space):
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ITERATIVE SCHEME: [E. Iancu and AM 2014] 

(i) Solve glasma equations with                     
(ii) Substitute this solution in the gravitational sources                     and obtain 

the self-consistent mean fields              by solving gravity equations                        
(iii) Solve the glasma equations again with these new self-consistent mean fields 
(iv) Re do step 2 and continue until solutions in both sectors converge 
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At each step of iteration the glasma and gravity initial conditions are held fixed



The em-tensor 
(AM, F. Preis, A. Rebhan and S. Stricker 2015)

One can readily construct the local em-tensor of the full system from the action that 
is conserved in flat space where the full system lives.
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THEOREM: When both the modified glasma equations and the equations of gravity are 
satisfied, i.e. when iteration converges the above em-tensor is conserved i.e.
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To prove the theorem one does not need to know how we solve for the IR-CFT 
operators explicitly 

One just needs to impose the IR-CFT Ward identity 

The above should be reinterpreted as the modified Ward identity of a marginally 
deformed IR-CFT living in flat space
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Numerical Feasibility Test 
(AM, F. Preis, A. Rebhan and S. Stricker 2015)

Simplest non-trivial example (but alas without an instance of 
thermalization) comes by assuming: 

Homogeneity, Isotropy and ↵ = � = 0

Let gauge group be SU(2)

Choose temporal gauge Aa
t = 0

Color-spin locking Aa
i (t) = f(t)�ai



Then Ea
i (t) = f 0(t)�ai , Ba

i (t) = �ai f
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In this configuration g(b)µ⌫ (t) = ⌦2[f(t)]⌘µ⌫

Since the bulk is pure gravity, we can invoke Birkhoff’s theorem: Homogeneity 
and isotropy imply that the solution in gravity is a “large” time-dependent 
diffeomorphism of an AdS-Sch BH 

So we can obtain IR-CFT em-tensor without solving gravity explicitly

IR-CFT em-tensor = conformal + diffeomorphism transformations of thermal em-
tensor + anomalous terms  with precise central charges (      )
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Glasma equations

Iterations converge in about 4 repetitions — the full em-tensor is then conserved

T µ⌫ ⌘ diag(E ,P,P,P)

The total BH entropy remains constant but energy-density of both YM and IR-CFT 
keeps oscillating forever 

No irreversible transfer of energy to IR as QN modes of BH are not excited!
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Homogeneous Thermalization 
(C. Ecker, AM, F. Preis, A. Rebhan and S. Stricker : in 

progress)

What if we manage to simulate with (stochastic) glasma initial conditions for 
YM fields? 

IR must thermalize due to BH formation. Will the UV glasma fields thermalize 
too? 

Yes — at late time gravity can be described by a dual field [Fluid/Gravity 
Correspondence BHMR 2007] living in a self-consistent weakly curved space

Furthermore there exists an entropy current in hydro limit
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µ > 0 with S̃µ =
p
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Therefore, there exists an entropy current for the full system and so UV 
must thermalize with IR (argument does not work in homogeneous case)



QUESTION: Is the thermalization bottom-up or top-down? 

Holography prefers TOP-DOWN but perturbative physics prefers BOTTOM-
UP [Baier, Mueller and Son 2007]. 

In semi-holography? Quantum complexity and initial condition dependence?

Even without coupling to BH, homogeneous (but anistropic) dynamics of 
glasma is chaotic — so there is inherent ergodicity 

Furthermore, if we switch on the dilaton and axion couplings, there will be 
irreversible energy transfer to IR through QN modes of gravity. 

The YM fields will have mean energy density depleted.  

However, there will be still oscillations in YM energy and for short periods 
of time the YM sector can also gain energy from IR (exploiting non-trivial 
dynamical boundary metric). 

In the long run, we expect Boltzmann weighting in glasma phase space — 
but will it be Fokker-Planck or strongly non-Markovian evolution?



Semi-holography with kinetic theory 
(Y: Hidaka , AM, F. Preis, A. Rebhan, A. Soloviev, S. Stricker and 

D. L. Yang : in progress)

At late time the classical YM description of glasma is strictly not valid as 
the system is not overoccupied. 

We must switch to kinetic theory [see A. Kurkela and E. Lu 2014 (also talks by A. 
Kurkela and Y Zhu)] for the YM sector 

The sources for gravity will be given by perturbative gluonic correlation 
functions in semiholography 

A successful semiholographic formulation has been done. 

Simplification: The gravity equations can be substituted by a fluid living in 
a self-consistent curved background metric that is determined by gluonic 
correlation functions. The latter can be recast as quantum kinetic theory. 

QUESTION: How are the collective flow observables modified?
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Both YM fields and propagators source the 
bulk graviton

t

q
µ⌫

=
1

4
lim
x!y

nh

@

x

�

@

y�

⇣

�

↵

µ

�

�

⌫

+ �

↵

⌫

�

�

µ

⌘

+
⇣

@

x

µ

@

y

⌫

+ @

x

⌫

@

y

µ

⌘

⌘

↵�

� @

x

µ

@

y↵

�

�

⌫

� @

x↵

@

y

µ

�

�

⌫

� @

x↵

@

y

⌫

�

�

µ

� @

x

⌫

@

y�

�

↵

µ

� ⌘

µ⌫

h

⌘

↵�

@

x

�

@

y� � @

x�

@

y↵

io

tr
⇣

D

↵�

(x, y) +D

↵�

(y, x)
⌘

SNLO =
i

2
Tr lnD�1 +

i

2
D�1

(0)[A
a
µ]D +WCFT


g(b)µ⌫ = ⌘µ⌫ +

�

Q4
s

�
tclµ⌫ + tqµ⌫

��
�WCFT


g(b)µ⌫ = ⌘µ⌫ +

�

Q4
s

tclµ⌫

�

Gives self-energy in 
Schwinger-Dyson eom for D

For simplicity we put only � 6= 0 and consider only NLO corrections to glasma



Outlook

Semiholography brings in rich dynamics of isotropization and thermalization which 
cannot be obtained simply by interpolating between weak and strong coupling, but 
rather by bringing all degrees of freedom together. 

Even the homogeneous and isotropic case has non-trivial dynamics when the bulk 
dilaton and axion are switched on. The quest is on — bottom-up vs top-down, quantum 
complexity, initial condition dependence, Fokker-Planck or non-Markovian? 

Numerics are extremely challenging — iteration requires extreme precision as generically 
convergence is slow. 

HIC could be a great opportunity to learn how to construct a nonperturbative effective 
framework for quantum many-body systems.

Please join our adventure
Thank you for your attention


