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• The	canonical	way	to	derive	viscous	hydrodynamics	relies	on	a	
linearization	around	an	isotropic	equilibrium state	(local	rest	frame	=	LRF)	

• However,	the	QGP	is	not	isotropic	in	local	rest	frame	(LRF)	à large	
corrections	to	ideal	hydrodynamics	due	to	strong	longitudinal	expansion

• Alternative	approach: Anisotropic	hydrodynamics builds	in	momentum-
space	anisotropies	in	the	LRF	from	the	beginning

• The	goal	is	to	create	a	quantitatively	reliable	viscous-hydro-like	code	that	
more	accurately	describes:

• With	this,	we	hope	to	be	able	to	more	reliably	extract	the	transport	
coefficients from	data.

o Early	time	dynamics
o Small	systems	(p+A,	p+p)
o Dynamics	near	the	transverse	edges	of	the	overlap	region	(dilute)
o Dynamics	at	forward	rapidity	(dilute)
o Temperature-dependent	(and	potentially	large)	h/S

Motivation



QGP	momentum	anisotropy	cartoon
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For	discussion	of	early-time	pressure
anisotropy	in	AdS/CFT	approaches,	
see	earlier	talk	by	W.	van	der	Schee

For	discussion	of	early-time	pressure
anisotropy	using	pQCD,	see	earlier	
talk	by	Yan	Zhu



2nd-order	viscous	hydrodynamics
For	small	departures	from	equilibrium	we	can	linearize

f(x, p) = feq

✓
p

µ
uµ

T

◆
(1 + �f(x, p))

For	viscous	hydro	one	expands	df in	a	gradient	expansion:		nth order	in	gradients	
à nth-order	viscous	Hydro
• 1st order	Hydro	:	Relativistic	Navier-Stokes	(parabolic	diff	eqsà acausal)	

[e.g.	Eckart and	Landau-Lifshitz]
• 2nd order	Hydro	:	Including	quadratic	gradients	fixes	causality	problem;	hyperbolic	diff	eqs

[e.g.	Israel-Stewart,	BRSSS,	DNMR	(expansion	in	R-1 and	Kn),	…]
• …
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Tµ⌫ = Tµ⌫
ideal +

Z
dP pµp⌫feq �f

⌘ Tµ⌫
ideal +⇧µ⌫

⇧µ⌫ =

Z
dP pµp⌫feq �f

Gradient	expansion	reliably	describes	the	near-equilibrium	limit,	but,	it	is	an	
asymptotic	series.		[See	earlier	talk	by	W.	Florkowski]



Indications	from	Viscous	Hydro
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H.	Song,	PhD	Dissertation,	0908.3656
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Dissipative	Anisotropic	Hydrodynamics
• There	are	two	ways	being	actively	followed	in	the	literature	

to	address	this	problem
A. Linearize	around	a	spheroidal	distribution	function

Bazow,	Martinez,	Molnar,	Niemi,	Rischke,	Heinz,	MS

B. Introduce	a	generalized	anisotropy	tensor	which	replaces	the	shear	
stress	tensor	at	LO	and	linearize	around	that	instead
Tinti,	Ryblewski,	Martinez,	Nopoush,	Alqahtani,	Florkowski,	MS

• Each	of	these	methods	has	its	own	advantages.
• The	first	can	more	straightforwardly	benefit	from	the	

systematic	methods	introduced	in	the	past	to	derive	the	
standard	2nd viscous	hydrodynamics	equations

• The	second	is	more	general	and	can,	in	principle,	even	more	
reliably	describe	far-from-equilibrium	systems;	however,	the	
formalism	is	a	bit	more	complicated.
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Viscous	Hydrodynamics	Expansion
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prolate oblate

Isotropic	in	momentum	space

⇠ =
hp2T i
2hp2Li

� 1

See	e.g.
• W.	Florkowski and	R.	Ryblewski,	1007.0130
• M.	Martinez	and	MS,	1007.0889
• D.	Bazow,	U.	Heinz,	and	MS,	1311.6720
• D.	Bazow,	U.	Heinz,	and	M.	Martinez,	1503.07443
• E.	Molnar,	H.	Niemi,	and	D.	Rischke,	1602.00573;	

1606.09019

Spheroidal	expansion	method

f(⌧,x,p) = f
aniso

(p,⇤(⌧,x)| {z }
T?

, ⇠(⌧,x)| {z }
anisotropy

) + �f̃

f(⌧,x,p) = feq(p, T (⌧,x)) + �f

fLRF
aniso

= f
iso

 p
p

2 + ⇠(x, ⌧)p2z
⇤(x, ⌧)

!

Anisotropic	Hydrodynamics	(aHydro)	Expansion

à “Romatschke-Strickland”	form	in	LRF

Treat	this	term	
perturbatively
à “NLO	aHydro”



• What	is	special	about	this	form	at	leading	order?

• Gives	the	ideal	hydro	limit	when	x=0  (	Là T )

• For	longitudinal	(0+1d)	free	streaming,	the	LRF	distribution	function	is	of	
spheroidal	form;	limit	emerges	automatically	in	0+1d	aHydro

• Since	fiso ≥	0,	the	one-particle	distribution	function	and	pressures	are	≥	0	
(not	guaranteed	in	standard	2nd-order	viscous	hydro)

• Reduces	to	2nd-order	viscous	hydrodynamics	in	limit	of	small	anisotropies
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Why	spheroidal	form	at	LO?

fLRF
aniso

= f
iso

 p
p

2 + ⇠(x, ⌧)p2z
⇤(x, ⌧)

!

⇠FS(⌧) = (1 + ⇠0)

✓
⌧

⌧0

◆2

� 1

⇧

Eeq =
8

45
⇠ +O(⇠2)

For	3+1d	proof	of	equivalence	to	second-order	
viscous	hydrodynamics	in	the	near-equilibrium	
limit	see	Tinti 1411.7268.
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Generalized	aHydro formalism
In	generalized	aHydro,	one	assumes	that	the	distribution	function	is	of	the	form

f(x, p) = feq

 p
p

µ⌅µ⌫(x)p⌫

�(x)
,

µ(x)

�(x)

!
+ �f̃(x, p)

⌅µ⌫ = uµu⌫ + ⇠µ⌫ ��µ⌫�

traceless	
anisotropy	
tensor

“Bulk”

Transverse	
projector

LRF	four	
velocity

uµuµ = 1

⇠µµ = 0

�µ
µ = 3

uµ⇠
µ⌫ = uµ�

µ⌫ = 0

See	e.g.
• M.	Martinez,	R.	Ryblewski,	and	MS,	1204.1473
• L.	Tinti and	W.	Florkowski,	1312.6614
• M.	Nopoush,	R.	Ryblewski,	and	MS,	1405.1355	
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• Number	(entropy)	
production	vanishes	
in	two	limits:		ideal	
hydrodynamic	and	
free	streaming	limits

• In	the	conformal	
model	which	we	are	
testing	with,	number	
density	is	
proportional	to	
entropy	density

[D.	Bazow,	U.	Heinz,	and	MS,	1311.6720]
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T0 =	600	MeV	
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Conformal	0+1d	aHydro results
[W.	Florkowski,	R.	Ryblewski,	and	MS,	1304.0665	and	1305.7234]
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Kinetic Exact

aHydro

DNMR
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1+1d	aHydro solution	for	Gubser Flow
M.	Nopoush,	R.	Ryblewski,	and	MS,	1410.6790	

Exact	kinetic	solution:		G.	Denicol,	U.W.	Heinz,	M.	Martinez,	J.	Noronha,	and	MS,	1408.5646	and	1408.7048
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3+1d	aHydro Equations	of	Motion
• Assuming	an	ellipsoidal	form	for	the	anisotropy	tensor	(ignoring	off-

diagonal	components	for	now),	one	has	seven	degrees	of	freedom:		
xx, xy,	xz,	ux,	uy, uz,	and	l.

• For	the	EoS	we	use	a	lattice-based	EoS	with	the	effective	temperature	T	
determined	via	Landau	matching.

First	Moment

Second	Moment

Florkowski,	Haque,	Nopoush,	Ryblewski,	MS,	forthcoming



Implementing	the	equation	of	state
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EêESB
PêPSB
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R	Ryblewski and	F.	Florkowski,	1204.2624
M.	Alqahtani,	M.	Nopoush,	and	MS,	1509.02913;	1605.02101

Standard	Method

Quasiparticle	Method



Anisotropic	“Cooper-Frye”	Freezeout
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• Use	same	ellipsoidal	form	for	“anisotropic	freeze-out”	at	LO.
• From	includes	both	shear	and	bulk	corrections	to	to	the	distribution	function.

Bazow,	Heinz,	Martinez,	Nopoush,	Ryblewski,	MS,	1506.05278
Florkowski,	Haque,	Nopoush,	Ryblewski,	MS,	forthcoming
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NOTE: Usual	2nd-order	viscous	hydro	form

f(p, x) = feq

"
1 + (1� afeq)

pµp⌫⇧µ⌫

2(✏+ P )T 2

#

feq = 1/[exp(p · u/T ) + a] a = -1, +1, or 0

• This	form	suffers	from	the	problem	that	the	
distribution	function	can	be	negative	in	some	regions	
of	phase	space	à unphysical

• Problem	becomes	worse	when	including	bulk	viscous	
correction	(see	forthcoming	slides).

• Use	energy	density	(scalar)	to	
determine	the	freeze-out	hyper-
surface	S à e.g.	Teff,FO =	150	MeV

isotropic anisotropy
tensor

bulk
correction
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Florkowski,	Haque,	Nopoush,	Ryblewski,	MS,	forthcoming
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Discussion	I
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• 3+1d	aHydro calculation	includes	effects	of	both	bulk	and	shear	viscosity.

• In	the	RTA	model	used,	the	bulk	viscosity	is	related	to	the	shear	viscosity	
via	

so	there	is	only	one	independent	transport	coefficient	(this	also	holds	true	
for	all	other	higher-order	transport	coefficients	when	using	RTA).

• Our	preliminary	findings	suggest	that	h/s	≅ 0.23.

• This	is	different	than	the	recent	vHydro results	of	Ryu,	et	al	1502.01675,	
who found that including bulk	viscosity gives	h/s	≅ 0.095.



M.	Strickland 18

• The	difference	can	be	due	to	
many	factors	(slightly	
different	EoS,	different	initial	
conditions,	etc.).

• However,	one	very	troubling	
feature	of	the	``standard’’	
vHydro bulk	corrrection is	
that	it	can cause	the	
primordial	particle	spectra	
to	become	negative	at	(not	
so)	high	momentum.

• This	unphysical	effect	can	
cause	one	to	overestimate	
the	effect	of	increasing	the	
shear	viscosity	to	entropy	
density	ratio.

• aHydro does	not	suffer	from	
this	problem.
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Discussion	II M.	Alqahtani,	M.	Nopoush,	and	MS,	1605.02101



Conclusions	and	Outlook
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• Anisotropic	hydrodynamics	builds	upon	prior	advances	in	
relativistic	hydrodynamics	in	an	attempt	to	create	a	more	
quantitatively	reliable	model	of	QGP	evolution.

• It	incorporates	some	“facts	of	life”	specific	to	the	conditions	
generated	in	relativistic	heavy	ion	collisions	and,	in	doing	so,	
optimizes	the	dissipative	hydrodynamics	approach.

• We	now	have	a	3+1d	aHydro code	with	realistic	EoS,	anisotroic
freeze-out,	etc which	we	are	using	to	extract	QGP	transport	
coefficients.

• Our	preliminary	fits	to	experimental	data	look	quite	good;	we	
can	fit	spectra	and	v2 including	the	mass	splitting	between	
different	hadronic	species.		Need	more	statistics	and	tuning…

• Our	preliminary	findings	suggest	h/s	≅ 0.23	for	LHC	2.76	TeV
Pb+Pb collisions.


