Energy loss and diffusion in non-conformal holographic QCD models

Francesco Nitti

APC, U. Paris Diderot

Quark Confinement XII
Thessaloniki, August 30 2016
Introduction

Heavy quarks: important probes of deconfined phase.

I will review the holographic description of:

- Energy loss
- Langevin diffusion (*transverse momentum broadening*)

of a heavy quark moving through the (thermalized) plasma.
Introduction

Heavy quarks: important probes of deconfined phase.

I will review the holographic description of:

- Energy loss
- Langevin diffusion (*transverse momentum broadening*)

of a heavy quark moving through the (thermalized) plasma.

Setup: a *non conformal* holographic theory in the deconfined phase (suitable for connection with experiment)

(Review of work with U. Gursoy, E. Kiritsis, L. Mazzanti, G. Michalogiakakis, 2008-2013. Building on previous work by Gubser, Herzog, Son, Casalderrey-Solana, Teaney, Son, Iancu ...
Diffusion of a heavy quark

Quark produced out of equilibrium \((M > T)\): follow diffusion of a single particle. Use Langevin equation:

\[
\frac{d\vec{p}}{dt} = -\eta D \vec{p}(t) + \vec{\xi}(t)
\]
Diffusion of a heavy quark

Quark produced out of equilibrium ($M > T$): follow diffusion of a single particle. Use Langevin equation:

$$\frac{d\vec{p}}{dt} = -\eta_D \vec{p}(t) + \vec{\xi}(t)$$

Two forces on the r.h.s:

- η_D: “average” viscous friction force
- $\xi(t)$: Stochastic force with white noise

$$\langle \xi^i(t) \rangle = 0, \quad \langle \xi^i(t)\xi^j(t') \rangle = \kappa^{ij} \delta(t - t')$$
Diffusion of a heavy quark

Quark produced out of equilibrium \((M > T)\): follow diffusion of a single particle. Use Langevin equation:

\[
\frac{d\vec{p}}{dt} = -\eta_D \vec{p}(t) + \vec{\xi}(t)
\]

Two forces on the r.h.s:

- \(\eta_D\): “average” viscous friction force
- \(\xi(t)\): Stochastic force with white noise

\[
\langle \xi^i(t) \rangle = 0, \quad \langle \xi^i(t) \xi^j(t') \rangle = \kappa^{ij} \delta(t - t')
\]

both forces have the same origin: the integrated effect of stochastic interactions with a medium.
Energy loss

\[\frac{d\vec{p}}{dt} = -\eta_D \vec{p}(t) + \vec{\xi}(t) \]

Coefficient η_D indicates a viscous friction on the quark, and consequent energy loss (if η_D constant):

\[F_{fric} = -\eta_D p, \quad \frac{1}{E_p} \frac{dE_p}{dt} \sim \eta_D \]

The energy is lost in interactions with the plasma.
Transverse Momentum Broadening

Quark momentum obeys a Langevin process with $\langle p^\perp \rangle = 0$, but with an increasing dispersion of p^\perp:

$$\langle (p^\perp)^2 \rangle \sim 2\kappa^\perp t$$
Transverse Momentum Broadening

Quark momentum obeys a Langevin process with $\langle p^\perp \rangle = 0$, but with an increasing dispersion of p^\perp:

$$\langle (p^\perp)^2 \rangle \sim 2\kappa^\perp t$$

Define the *jet quenching parameter*

$$\hat{q} \equiv \frac{\langle (p^\perp)^2 \rangle}{\text{mean free path}} = \frac{(p^\perp)^2}{vt} = 2\frac{\kappa^\perp}{v}$$
AdS/CFT

The AdS/CFT duality: conjecture that certain quantum field theories are equivalent to theories of strings/gravity in higher dimensions.
AdS/CFT

The AdS/CFT duality: conjecture that certain quantum field theories are equivalent to theories of gravity in higher dimensions.

- **Equivalent** means that the two theories contain the same degrees of freedom, but arranged in different ways.
- Depending on the situation, one side or the other may simplify. Gravity description simple at large N.
AdS/CFT

The AdS/CFT duality: conjecture that certain quantum field theories are equivalent to theories of gravity in higher dimensions.

- Conformal invariance \Leftrightarrow AdS spacetime $ds^2 = r^{-2}(dr^2 + dx_{\mu}^2)$,

 Scaling isometry $r \rightarrow \lambda r$, $x_{\mu} \rightarrow \lambda x_{\mu}$

 (e.g. $\mathcal{N} = 4$ SUSY YM at large N, large coupling)

- RG scale \Leftrightarrow radial coordinate r; UV \Leftrightarrow AdS boundary $r = 0$.
Field/Coupling correspondence

- A Bulk field $\Phi(x, r)$ corresponds to a running coupling in the QFT
- $\Phi_0(x) = \Phi(x, 0)$ is the UV value of the coupling
Minimal phenomenological setup

- The bulk theory is five-dimensional ($x^\mu + \text{RG coordinate } r$)
- Include only lowest dimension YM operators ($\Delta = 4$)

<table>
<thead>
<tr>
<th>4D Operator</th>
<th>Bulk field</th>
<th>Coupling</th>
</tr>
</thead>
<tbody>
<tr>
<td>TrF^2</td>
<td>Φ</td>
<td>$N \int e^{-\Phi} TrF^2$</td>
</tr>
<tr>
<td>$T_{\mu\nu}$</td>
<td>$g_{\mu\nu}$</td>
<td>$\int g_{\mu\nu} T^{\mu\nu}$</td>
</tr>
</tbody>
</table>

$$\lambda = Ng_{YM}^2 = e^\Phi$$ (finite in the large N limit).
Minimal phenomenological setup

- The bulk theory is five-dimensional ($x^\mu + \text{RG coordinate } r$)
- Include only lowest dimension YM operators ($\Delta = 4$)

<table>
<thead>
<tr>
<th>4D Operator</th>
<th>Bulk field</th>
<th>Coupling</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Tr F^2$</td>
<td>Φ</td>
<td>$N \int e^{-\Phi} Tr F^2$</td>
</tr>
<tr>
<td>$T_{\mu\nu}$</td>
<td>$g_{\mu\nu}$</td>
<td>$\int g_{\mu\nu} T^{\mu\nu}$</td>
</tr>
</tbody>
</table>

$\lambda = Ng_{YM}^2 = e^\Phi$ (finite in the large N limit).

- Breaking of conformal symmetry, mass gap, confinement, and all non-perturbative dynamics driven by the dilaton dynamics (aka the Yang-Mills coupling).
5-D Eistein-Dilaton Theory

Bulk dynamics described by a 2-derivative action:

\[S_E = -M_p^3 N_c^2 \int d^5 x \sqrt{-g} \left[R - \frac{4}{3} (\partial \Phi)^2 - V(\Phi) \right] \]
5-D Eistein-Dilaton Theory

Bulk dynamics described by a 2-derivative action:

\[S_E = -M_p^3 N_c^2 \int d^5 x \sqrt{-g} \left[R - \frac{4}{3} (\partial \Phi)^2 - V(\Phi) \right] \]

\(V(\Phi) \) fixed phenomenologically.
5-D Einstein-Dilaton Theory

Bulk dynamics described by a 2-derivative action:

\[S_E = -M_p^3 N_c^2 \int d^5 x \sqrt{-g} \left[R - \frac{4}{3} (\partial \Phi)^2 - V(\Phi) \right] \]

\(V(\Phi) \) fixed phenomenologically.

\(\Phi \) constant (conformal invariant)

\(\Phi \) running (non-conformal)
Finite temperature

Deconfined phase described by a 5D black hole geometry

\[ds^2 = b^2(r) \left[\frac{dr^2}{f(r)} - f(r) dt^2 + dx^i dx_i \right] \]

For a class of \(V(\Phi) \), theory has confinement and a 1st order phase transition to a deconfined phase (BH geometry).

\[f(r) = 1 \]
\[T < T_c \text{ confined} \]

\[f(r) \neq 1, \ f(r_h) = 0 \]
\[T > T_c \text{ deconfined (BH)} \]
Holographic description of a heavy quark

Trailing String picture:

- String profile obtained extremizing worldsheet area.
- The moving string equilibrates at a temperature $T_s < T$.
- Drag coefficient η_D related to $b(r_s), f(r_s)$.
Trailing string fluctuations

\[\vec{X}(t, r) = (vt + \xi(r)) \frac{\vec{v}}{v} + \delta \vec{X}(r, t) \]

Dual to Langevin dynamics on the boundary: fluctuations correlators compute Langevin coefficients.

\[\dot{\vec{p}} = -\eta_D(p)\vec{p} + \vec{\xi}(t) \quad \langle \xi^i(t)\xi^j(0) \rangle = \kappa^{ij}(p)\delta(t) \]
Langevin diffusion constants

\[\kappa_{ij} = \kappa_{||}(p)p^i p^j + \kappa_{\perp}(p) \left(\delta^{ij} - \frac{p^i p^j}{p^2} \right) \]
Langevin diffusion constants

\[\kappa^{ij} = \kappa^\parallel (p)p^i p^j + \kappa^\perp (p) \left(\delta^{ij} - \frac{p^i p^j}{p^2} \right) \]

modified Einstein relations (Relativistic Langevin):

\[\kappa^\perp = 2\gamma M T_s \eta_D, \quad \kappa^\parallel = 2\gamma^3 M T_s \left[\eta_D + M \gamma v \frac{\partial \eta_D}{\partial p} \right] \]

(Cfr. non-relativistic, thermal equilibrium E.R. \(\kappa = 2TM\eta_D \))
Explicit Model: Improved Holographic QCD

Gürsoy, Kiritsis, Mazzanti, F.N. ’09

Simple parametrization for $V(\Phi) \Rightarrow$ good qualitative and quantitative agreement with lattice Yang-Mills thermodynamics.
Explicit Model: Improved Holographic QCD

Gürsoy, Kiritsis, Mazzanti, F.N. ’09

Simple parametrization for $V(\Phi) \Rightarrow$ good qualitative and quantitative agreement with lattice Yang-Mills thermodynamics.

\[
\frac{s(T)}{T^3}
\]
\text{Fix scale by matching critical temperature and vacuum string tension.}

> lattice data: Panero, 0907.3719
Explicit Model: Improved Holographic QCD

Gürsoy, Kiritsis, Mazzanti, F.N. ’09

Simple parametrization for $V(\Phi) \Rightarrow$ good qualitative and quantitative agreement with lattice Yang-Mills thermodynamics.

$\frac{\Delta}{\Delta_{\text{SB}}}$, normalized to the SB limit of SU(3)

Langevin dynamics of heavy quarks in 5D Holographic QCD models

$(\epsilon - 3p)/T^4$ lattice data: Panero, 0907.3719

Fix scale by matching critical temperature and vacuum string tension.
Results: drag coefficients

- Conformal AdS/CFT:

$$
\eta_D \propto \sqrt{\lambda} \frac{T^2}{M_q}
$$
Results: drag coefficients

- Conformal AdS/CFT:

\[\eta_D \propto \sqrt{\lambda \frac{T^2}{M_q}} \]

- Non-conformal model: $\eta_D = \eta_D(p)$; More complicated T-dependence; no need to fix λ;
Results: drag coefficients

- Conformal AdS/CFT:

\[\eta_D \propto \sqrt{\lambda} \frac{T^2}{M_q} \]

- Non-conformal model: $\eta_D = \eta_D(p)$; More complicated T-dependence; no need to fix λ;

- IHQCD (all free parameters fixed by satic quantities): diffusion time ($\tau = 1/\eta_D$):

\[\tau_{charm} \simeq 4.5 \text{ fm/c} \]

for $p \approx 10 GeV$, $T \sim T_c$, consistent with size of fireball.
\(\kappa^\perp \) computed numerically given the solution for the background metric \(\Rightarrow \) obtain jet-quenching parameter:

\[
\hat{q} = 2 \frac{\kappa^\perp}{v} \quad \left(\hat{q}_{\text{conf}} \propto \sqrt{\lambda} T^3 \right)
\]
$\kappa \perp$ computed numerically given the solution for the background metric \Rightarrow obtain jet-quenching parameter:

$$\hat{q} = 2 \frac{\kappa \perp}{v} \left(\hat{q}_{\text{conf}} \propto \sqrt{\lambda T^3} \right)$$

solid and dotted lines represent different schemes to match the temperature in the holographic YM model to the temperature in deconfined QCD.
Validity of the local approximation

- Langevin equation is an approximation of a more general equation:

\[
\dot{p} = - \int_0^\infty dt' \eta_D(t') p(t - t') + \xi(t), \quad \langle \xi(t)\xi(0) \rangle = G(t)
\]

long time regime \(t \gg \tau_{\text{corr}} \sim 1/T_s \): reduces to Langevin with:

\[
\eta_D = \tilde{\eta}_D(\omega) \bigg|_{\omega=0}, \quad \kappa = \tilde{G}(\omega) \bigg|_{\omega=0}
\]
Validity of the local approximation

- Langevin equation is an approximation of a more general equation:

$$\dot{p} = -\int_0^\infty dt' \eta_D(t') p(t - t') + \xi(t), \quad \langle \xi(t) \xi(0) \rangle = G(t)$$

long time regime $t \gg \tau_{corr} \sim 1/T_s$: reduces to Langevin with:

$$\eta_D = \tilde{\eta}_D(\omega)\bigg|_{\omega=0}, \quad \kappa = \tilde{G}(\omega)\bigg|_{\omega=0}$$

- Δp^2_\perp description in terms of κ_\perp: short time solution of local Langevin. $t \ll \tau_{relax} \sim 1/\eta_D$
Validity of the local approximation

- Langevin equation is an approximation of a more general equation:

\[\dot{p} = -\int_{0}^{\infty} dt' \eta_D(t')p(t - t') + \xi(t), \quad \langle \xi(t)\xi(0) \rangle = G(t) \]

long time regime \(t \gg \tau_{corr} \sim 1/T_s \): reduces to Langevin with:

\[\eta_D = \tilde{\eta}_D(\omega) \bigg|_{\omega=0}, \quad \kappa = \tilde{G}'(\omega) \bigg|_{\omega=0} \]

- \(\Delta p^2_\perp \) description in terms of \(\kappa_\perp \): *short time* solution of *local* Langevin. \(t \ll \tau_{relax} \sim 1/\eta_D \)

- Consistency requires \(1/\eta_D \gg 1/T_s \) If this fails, need to use the generalized process with memory and “colored” noise kernels. Accessible via Holography.
Validity of the local approximation

Parametrization in terms of \hat{q} justified if:

$$\frac{T_s}{\eta_D} > 1$$

This translates to a bound on quark momentum:

$$p < 1.5M_q \left(\frac{M_q}{T}\right)^2$$
Validity of the local approximation

Parametrization in terms of \hat{q} justified if:

$$\frac{T_s}{\eta_D} > 1$$

This translates to a bound on quark momentum:

$$p < 1.5 M_q \left(\frac{M_q}{T} \right)^2$$
Validity of the local approximation

Parametrization in terms of \hat{q} justified if:

$$\frac{T_s}{\eta_D} > 1$$

This translates to a bound on quark momentum:

$$p < 1.5 M_q \left(\frac{M_q}{T}\right)^2$$
Conclusion and outlook

- Non-conformal holographic models give realistic results for heavy quark transport in the QGP.

- What happens when the local Langevin description breaks down? Look at p_\perp broadening with a non-trivial kernel and colored noise.

- How does momentum dependence affect the dynamics for large times, $> 1/\eta_D$? Need to extend the analysis to large momentum variations, i.e. non-constant v.

- Compare with results for b/c suppression from experiments.