Energy loss and diffusion in non-conformal holographic QCD models

Francesco Nitti

APC, U. Paris Diderot

Quark Confinement XII Thessaloniki, August 30 2016

Energy loss and diffusion in non-conformal holographic QCD models - p.1

Introduction

Heavy quarks: important probes of deconfined phase.

I will review the holographic description of :

- Energy loss
- Langevin diffusion (transverse momentum broadening)

of a heavy quark moving through the (thermalized) plasma.

Introduction

Heavy quarks: important probes of deconfined phase.

I will review the holographic description of :

- Energy loss
- Langevin diffusion (transverse momentum broadening)

of a heavy quark moving through the (thermalized) plasma.

Setup: a *non conformal* holographic theory in the deconfined phase (suitable for connection with experiment) (Review of work with U. Gursoy, E. Kiritsis, L. Mazzanti, G. Michalogeorgiakis, 2008-2013.

Building on previos work by Gubser, Herzog, Son, Casalderrey-Solana, Teaney, Son, Iancu ...)

Diffusion of a heavy quark

Quark produced out of equilibrium (M > T): follow diffusion of a single particle. Use Langevin equation:

$$\frac{d\vec{p}}{dt} = -\eta_D \, \vec{p}(t) + \vec{\xi}(t)$$

Diffusion of a heavy quark

Quark produced out of equilibrium (M > T): follow diffusion of a single particle. Use Langevin equation:

$$\frac{d\vec{p}}{dt} = -\eta_D \, \vec{p}(t) + \vec{\xi}(t)$$

Two forces on the r.h.s:

- η_D : "average" viscous friction force
- $\xi(t)$: Stochastic force with white noise

$$\langle \xi^i(t) \rangle = 0, \qquad \langle \xi^i(t) \xi^j(t') \rangle = \kappa^{ij} \delta(t - t')$$

Diffusion of a heavy quark

Quark produced out of equilibrium (M > T): follow diffusion of a single particle. Use Langevin equation:

$$\frac{d\vec{p}}{dt} = -\eta_D \, \vec{p}(t) + \vec{\xi}(t)$$

Two forces on the r.h.s:

- η_D : "average" viscous friction force
- $\xi(t)$: Stochastic force with white noise

$$\langle \xi^{i}(t) \rangle = 0, \qquad \langle \xi^{i}(t)\xi^{j}(t') \rangle = \kappa^{ij}\delta(t-t')$$

both forces have the same origin: the integrated effect of stochastic interactions with a medium.

$$\frac{d\vec{p}}{dt} = -\eta_D \,\vec{p}(t) + \vec{\xi}(t)$$

Coefficient η_D indicates a viscous friction on the quark, and consequent energy loss (if η_D constant):

$$F_{fric} = -\eta_D p, \qquad \frac{1}{E_p} \frac{dE_p}{dt} \sim \eta_D$$

The energy is lost in interactions with the plasma.

Transverse Momentum Broadening

Quark momentum obeys a Langevin process with $\langle p^{\perp} \rangle = 0$, but with an increasing dispersion of p^{\perp} :

Transverse Momentum Broadening

Quark momentum obeys a Langevin process with $\langle p^{\perp} \rangle = 0$, but with an increasing dispersion of p^{\perp} :

 $\langle (p^{\perp})^2 \rangle \sim 2\kappa^{\perp} t$

Define the *jet quenching parameter*

$$\hat{q} \equiv \frac{\langle (p^{\perp})^2 \rangle}{mean\,free\,path} = \frac{(p^{\perp})^2}{v\,t} = 2\frac{\kappa^{\perp}}{v}$$

AdS/CFT

The AdS/CFT duality: conjecture that certain quantum field theories are equivalent to theories of strings/gravity in higher dimensions.

AdS/CFT

The AdS/CFT duality: conjecture that certain quantum field theories are equivalent to theories of gravity in higher dimensions.

- Equivalent means that the two theories contain the same degrees of freedom, but arranged in differnt ways.
- Depending on the situation, one side or the other may simplify. Gravity description simple at large *N*.

AdS/CFT

The AdS/CFT duality: conjecture that certain quantum field theories are equivalent to theories of gravity in higher dimensions.

- Conformal invariance ⇔ AdS spacetime ds² = r⁻²(dr² + dx²_μ), Scaling isometry r → λr, x_μ → λx_μ (e.g. N = 4 SUSY YM at large N, large coupling)
- RG scale \Leftrightarrow radial coordinate r; UV \Leftrightarrow AdS boundary r = 0.

Field/Coupling correspondence

- A Bulk field $\Phi(x, r)$ corresponds to a running coupling in the QFT
- $\Phi_0(x) = \Phi(x, 0)$ is the UV value of the coupling

Minimal phenomenological setup

- The bulk theory is five-dimensional $(x^{\mu} + \text{RG coordinate } r)$
- Include only lowest dimension YM operators ($\Delta = 4$)

4D Operator		Bulk field	Coupling
TrF^2	\Leftrightarrow	Φ	$N\int e^{-\Phi}TrF^2$
$T_{\mu u}$	\Leftrightarrow	$g_{\mu u}$	$\int g_{\mu u}T^{\mu u}$

 $\lambda = Ng_{YM}^2 = e^{\Phi}$ (finite in the large N limit).

Minimal phenomenological setup

- The bulk theory is five-dimensional $(x^{\mu} + \text{RG coordinate } r)$
- Include only lowest dimension YM operators ($\Delta = 4$)

4D Operator		Bulk field	Coupling
TrF^2	\Leftrightarrow	Φ	$N\int e^{-\Phi}TrF^2$
$T_{\mu u}$	\Leftrightarrow	$g_{\mu u}$	$\int g_{\mu u}T^{\mu u}$

 $\lambda = Ng_{YM}^2 = e^{\Phi}$ (finite in the large N limit).

• Breaking of conformal symmetry, mass gap, confinement, and all non-perturbative dynamics driven by the dilaton dynamics (aka the Yang-Mills coupling).

5-D Eistein-Dilaton Theory

Bulk dynamics described by a 2-derivative action:

$$S_E = -M_p^3 N_c^2 \int d^5 x \sqrt{-g} \left[R - \frac{4}{3} (\partial \Phi)^2 - V(\Phi) \right]$$

5-D Eistein-Dilaton Theory

Bulk dynamics described by a 2-derivative action:

$$S_E = -M_p^3 N_c^2 \int d^5 x \sqrt{-g} \left[R - \frac{4}{3} (\partial \Phi)^2 - V(\Phi) \right]$$

 $V(\Phi)$ fixed phenomenologically.

5-D Eistein-Dilaton Theory

Bulk dynamics described by a 2-derivative action:

$$S_E = -M_p^3 N_c^2 \int d^5 x \sqrt{-g} \left[R - \frac{4}{3} (\partial \Phi)^2 - V(\Phi) \right]$$

 $V(\Phi)$ fixed phenomenologically.

 Φ constant (conformal invariant) Φ running (non-conformal)

Langevin dynamics of heavy guarks in 5D Holographic QCD models - p.11

Finite temperature

Deconfined phase described by a 5D black hole geometry

$$ds^{2} = b^{2}(r) \left[\frac{dr^{2}}{f(r)} - f(r)dt^{2} + dx^{i}dx_{i} \right]$$

For a class of $V(\Phi)$, theory has confinement and a 1st order phase transition to a deconfined phase (BH geometry).

Langevin dynamics of heavy quarks in 5D Holographic QCD models - p.12

Holographic description of a heavy quark

Trailing String picture:

- String profile obtained extremizing worldsheet area.
- The moving string equilbrates at a temperature $T_s < T$.
- Drag coefficient η_D related to $b(r_s), f(r_s)$.

Trailing string fluctuations

$$\vec{X}(t,r) = \left(vt + \xi(r)\right) \frac{\vec{v}}{v} + \delta \vec{X}(r,t)$$

Dual to Langevin dynamics on the boundary: fluctuations correlators compute Langevin coefficients.

$$\dot{\vec{p}} = -\eta_D(p)\vec{p} + \vec{\xi}(t) \qquad \langle \xi^i(t)\xi^j(0)\rangle = \kappa^{ij}(p)\delta(t)$$

Langevin diffusion constants

$$\kappa^{ij} = \kappa^{\parallel}(p)p^i p^j + \kappa^{\perp}(p) \left(\delta^{ij} - \frac{p^i p^j}{p^2}\right)$$

Langevin diffusion constants

$$\kappa^{ij} = \kappa^{\parallel}(p)p^i p^j + \kappa^{\perp}(p) \left(\delta^{ij} - \frac{p^i p^j}{p^2}\right)$$

modified Einstein relations (Relativistic Langevin):

$$\kappa^{\perp} = 2\gamma M T_s \eta_D, \qquad \kappa^{\parallel} = 2\gamma^3 M T_s \left[\eta_D + M\gamma v \frac{\partial \eta_D}{\partial p} \right]$$

(Cfr. non-relativistic, thermal equilibrium E.R. $\kappa = 2TM\eta_D$)

Explicit Model: Improved Holographic QCD

Gürsoy, Kiritsis, Mazzanti, F.N. '09

Simple parametrization for $V(\Phi) \Rightarrow$ good qualitative and quantitative agreement with lattice Yang-Mills thermodynamics.

Explicit Model: Improved Holographic QCD

Gürsoy, Kiritsis, Mazzanti, F.N. '09

Simple parametrization for $V(\Phi) \Rightarrow$ good qualitative and quantitative agreement with lattice Yang-Mills thermodynamics.

 $s(T)/T^3$ lattice data: Panero, 0907.3719 Fix scale by matching critical temperature and vacuum string tension.

Explicit Model: Improved Holographic QCD

Gürsoy, Kiritsis, Mazzanti, F.N. '09

Simple parametrization for $V(\Phi) \Rightarrow$ good qualitative and quantitative agreement with lattice Yang-Mills thermodynamics.

 $(\epsilon-3p)/T^4$ lattice data: Panero, 0907.3719

Fix scale by matching critical temperature and vacuum string tension.

Results: drag coefficients

• Conformal *AdS*/CFT:

٠

 $\eta_D \propto \sqrt{\lambda} \frac{T^2}{M_q}$

Results: drag coefficients

• Conformal *AdS*/CFT:

•

$$\eta_D \propto \sqrt{\lambda} \frac{T^2}{M_q}$$

• Non-conformal model: $\eta_D = \eta_D(p)$; More complicated *T*-dependence; no need to fix λ ;

Results: drag coefficients

• Conformal *AdS*/CFT:

•

$$\eta_D \propto \sqrt{\lambda} \frac{T^2}{M_q}$$

- Non-conformal model: $\eta_D = \eta_D(p)$; More complicated *T*-dependence; no need to fix λ ;
- IHQCD (all free parameters fixed by satic quantities): diffusion time ($\tau = 1/\eta_D$):

 $\tau_{charm} \simeq 4.5 fm/c$

for $p \approx 10 \, GeV$, $T \sim T_c$, consistent with size of fireball.

Qhat

 κ^{\perp} computed numerically given the solution for the background metric \Rightarrow obtain jet-quenching parameter:

$$\hat{q} = 2 \frac{\kappa^{\perp}}{v} \qquad \left(\hat{q}_{conf} \propto \sqrt{\lambda} T^3\right)$$

Qhat

 κ^{\perp} computed numerically given the solution for the background metric \Rightarrow obtain jet-quenching parameter:

$$\hat{q} = 2 \frac{\kappa^{\perp}}{v} \qquad \left(\hat{q}_{conf} \propto \sqrt{\lambda} T^3\right)$$

solid and dotted lines represent different schemes to match the temperature in the holographic YM model to the temperature in deconfined QCD.

• Langevin eqaution is an approximation of a more general equation:

$$\dot{p} = -\int_0^\infty dt' \,\eta_D(t')p(t-t') + \xi(t), \qquad \langle \xi(t)\xi(0) \rangle = G(t)$$

long time regime $t \gg \tau_{corr} \sim 1/T_s$: reduces to Langevin with:

$$\eta_D = \tilde{\eta}_D(\omega) \Big|_{\omega=0}, \qquad \kappa = \tilde{G}(\omega) \Big|_{\omega=0}$$

• Langevin eqaution is an approximation of a more general equation:

$$\dot{p} = -\int_0^\infty dt' \,\eta_D(t')p(t-t') + \xi(t), \qquad \langle \xi(t)\xi(0)\rangle = G(t)$$

long time regime $t \gg \tau_{corr} \sim 1/T_s$: reduces to Langevin with:

$$\eta_D = \tilde{\eta}_D(\omega) \Big|_{\omega=0}, \qquad \kappa = \tilde{G}(\omega) \Big|_{\omega=0}$$

• Δp_{\perp}^2 description in terms of κ_{\perp} : *short time* solution of *local* Langevin. $t \ll \tau_{relax} \sim 1/\eta_D$

• Langevin eqaution is an approximation of a more general equation:

$$\dot{p} = -\int_0^\infty dt' \,\eta_D(t')p(t-t') + \xi(t), \qquad \langle \xi(t)\xi(0) \rangle = G(t)$$

long time regime $t \gg \tau_{corr} \sim 1/T_s$: reduces to Langevin with:

$$\eta_D = \tilde{\eta}_D(\omega) \Big|_{\omega=0}, \qquad \kappa = \tilde{G}(\omega) \Big|_{\omega=0}$$

- Δp_{\perp}^2 description in terms of κ_{\perp} : *short time* solution of *local* Langevin. $t \ll \tau_{relax} \sim 1/\eta_D$
- Consistency requires 1/η_D >> 1/T_s If this fails, need to use the generalized process with memory and "colored" noise kernels. Accessible via Holography.

Parametrization in terms of \hat{q} justified if:

 $T_s/\eta_D > 1$

This translates to a bound on quark momentum:

 $p < 1.5M_q \left(M_q/T \right)^2$

Parametrization in terms of \hat{q} justified if:

 $T_s/\eta_D > 1$

This translates to a bound on quark momentum:

 $p < 1.5M_q \left(M_q/T \right)^2$

Parametrization in terms of \hat{q} justified if:

 $T_s/\eta_D > 1$

This translates to a bound on quark momentum:

 $p < 1.5M_q \left(M_q/T \right)^2$

Conclusion and outlook

- Non-conformal holographic models give realistic results for heavy quark transport in the QGP.
- What happens when the local Langevin description breaks down?

Look at p_{\perp} broadening with a non-trivial kernel and colored noise.

- How does momentum dependence affect the dynamics for large times, $> 1/\eta_D$? Need to extend the analysis to large momentum variations, i.e. non-constant v.
- Compare with results for b/c suppression from experiments.