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Introduction

Heavy quarks: important probes of deconfined phase.

I will review the holographic description of :

• Energy loss

• Langevin diffusion (transverse momentum broadening)

of a heavy quark moving through the (thermalized) plasma.
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Introduction

Heavy quarks: important probes of deconfined phase.

I will review the holographic description of :

• Energy loss

• Langevin diffusion (transverse momentum broadening)

of a heavy quark moving through the (thermalized) plasma.

Setup: a non conformal holographic theory in the deconfined phase

(suitable for connection with experiment)

(Review of work with U. Gursoy, E. Kiritsis, L. Mazzanti, G. Michalogeorgiakis, 2008-2013.

Building on previos work by Gubser, Herzog, Son, Casalderrey-Solana, Teaney, Son, Iancu ...)
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Diffusion of a heavy quark

Quark produced out of equilibrium (M > T ): follow diffusion of a

single particle. Use Langevin equation:

dp⃗

dt
= −ηD p⃗(t) + ξ⃗(t)
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Diffusion of a heavy quark

Quark produced out of equilibrium (M > T ): follow diffusion of a

single particle. Use Langevin equation:

dp⃗

dt
= −ηD p⃗(t) + ξ⃗(t)

Two forces on the r.h.s:

• ηD: “average” viscous friction force

• ξ(t): Stochastic force with white noise

⟨ξi(t)⟩ = 0, ⟨ξi(t)ξj(t′)⟩ = κijδ(t− t′)

Langevin dynamics of heavy quarks in 5D Holographic QCD models – p.3



Diffusion of a heavy quark

Quark produced out of equilibrium (M > T ): follow diffusion of a

single particle. Use Langevin equation:

dp⃗

dt
= −ηD p⃗(t) + ξ⃗(t)

Two forces on the r.h.s:

• ηD: “average” viscous friction force

• ξ(t): Stochastic force with white noise

⟨ξi(t)⟩ = 0, ⟨ξi(t)ξj(t′)⟩ = κijδ(t− t′)

both forces have the same origin: the integrated effect of

stochastic interactions with a medium.
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Energy loss

dp⃗

dt
= −ηD p⃗(t) + ξ⃗(t)

Coefficient ηD indicates a viscous friction on the quark, and

consequent energy loss (if ηD constant):

Ffric = −ηDp,
1

Ep

dEp

dt
∼ ηD

The energy is lost in interactions with the plasma.
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Transverse Momentum Broadening

Quark momentum obeys a Langevin process with ⟨p⊥⟩ = 0, but with

an increasing dispersion of p⊥:

⟨(p⊥)2⟩ ∼ 2κ⊥ t
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Transverse Momentum Broadening

Quark momentum obeys a Langevin process with ⟨p⊥⟩ = 0, but with

an increasing dispersion of p⊥:

⟨(p⊥)2⟩ ∼ 2κ⊥ t

Define the jet quenching parameter

q̂ ≡ ⟨(p⊥)2⟩
mean free path

=
(p⊥)2

v t
= 2

κ⊥

v
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AdS/CFT

The AdS/CFT duality: conjecture that certain quantum field theories

are equivalent to theories of strings/gravity in higher dimensions.
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AdS/CFT

The AdS/CFT duality: conjecture that certain quantum field theories

are equivalent to theories of gravity in higher dimensions.

• Equivalent means that the two theories contain the same

degrees of freedom, but arranged in differnt ways.

• Depending on the situation, one side or the other may simplify.

Gravity description simple at large N .
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AdS/CFT

The AdS/CFT duality: conjecture that certain quantum field theories

are equivalent to theories of gravity in higher dimensions.

• Conformal invariance ⇔ AdS spacetime ds2 = r−2(dr2 + dx2µ),
Scaling isometry r → λr, xµ → λxµ
(e.g. N = 4 SUSY YM at large N , large coupling)

• RG scale ⇔ radial coordinate r; UV ⇔ AdS boundary r = 0.
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Field/Coupling correspondence

• A Bulk field Φ(x, r) corresponds to a running coupling in the

QFT

• Φ0(x) = Φ(x, 0) is the UV value of the coupling
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Minimal phenomenological setup

• The bulk theory is five-dimensional (xµ + RG coordinate r)

• Include only lowest dimension YM operators (∆ = 4)

4D Operator Bulk field Coupling

TrF 2 ⇔ Φ N
∫

e−Φ TrF 2

Tµν ⇔ gµν
∫

gµνTµν

λ = Ng2YM = eΦ (finite in the large N limit).
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Minimal phenomenological setup

• The bulk theory is five-dimensional (xµ + RG coordinate r)

• Include only lowest dimension YM operators (∆ = 4)

4D Operator Bulk field Coupling

TrF 2 ⇔ Φ N
∫

e−Φ TrF 2

Tµν ⇔ gµν
∫

gµνTµν

λ = Ng2YM = eΦ (finite in the large N limit).

• Breaking of conformal symmetry, mass gap, confinement, and

all non-perturbative dynamics driven by the dilaton dynamics

(aka the Yang-Mills coupling).
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5-D Eistein-Dilaton Theory

Bulk dynamics described by a 2-derivative action:

SE = −M3
pN

2
c

∫

d5x
√
−g

[

R− 4

3
(∂Φ)2 − V (Φ)

]
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Bulk dynamics described by a 2-derivative action:

SE = −M3
pN

2
c

∫

d5x
√
−g

[

R− 4

3
(∂Φ)2 − V (Φ)

]

V (Φ) fixed phenomenologically.
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5-D Eistein-Dilaton Theory

Bulk dynamics described by a 2-derivative action:

SE = −M3
pN

2
c

∫

d5x
√
−g

[

R− 4

3
(∂Φ)2 − V (Φ)

]

V (Φ) fixed phenomenologically.

Φ constant Φ running

(conformal invariant) (non-conformal)
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Finite temperature

Deconfined phase described by a 5D black hole geometry

ds2 = b2(r)

[

dr2

f(r)
− f(r)dt2 + dxidxi

]

For a class of V (Φ), theory has confinement and a 1st order phase

transition to a deconfined phase (BH geometry).

f(r) = 1 f(r) ̸= 1, f(rh) = 0

T < Tc confined T > Tc deconfined (BH)

Langevin dynamics of heavy quarks in 5D Holographic QCD models – p.12



Holographic description of a heavy quark

Trailing String picture:

• String profile obtained extremizing worldsheet area.

• The moving string equilbrates at a temperature Ts < T .

• Drag coefficient ηD related to b(rs), f(rs).
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Trailing string fluctuations

X⃗(t, r) =
(

vt+ ξ(r)
) v⃗

v
+ δX⃗(r, t)

Dual to Langevin dynamics on the boundary: fluctuations

correlators compute Langevin coefficients.

˙⃗p = −ηD(p)p⃗+ ξ⃗(t) ⟨ξi(t)ξj(0)⟩ = κij(p)δ(t)
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Langevin diffusion constants

κij = κ∥(p)pipj + κ⊥(p)

(

δij − pipj

p2

)
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Langevin diffusion constants

κij = κ∥(p)pipj + κ⊥(p)

(

δij − pipj

p2

)

modified Einstein relations (Relativistic Langevin):

κ⊥ = 2γM TsηD, κ∥ = 2γ3MTs

[

ηD +Mγv
∂ηD
∂p

]

(Cfr. non-relativistic, thermal equilibrium E.R. κ = 2TMηD)
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Explicit Model: Improved Holographic QCD

Gürsoy, Kiritsis, Mazzanti, F.N. ’09

Simple parametrization for V (Φ) ⇒ good qualitative and

quantitative agreement with lattice Yang-Mills thermodynamics.
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Explicit Model: Improved Holographic QCD

Gürsoy, Kiritsis, Mazzanti, F.N. ’09

Simple parametrization for V (Φ) ⇒ good qualitative and

quantitative agreement with lattice Yang-Mills thermodynamics.
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Explicit Model: Improved Holographic QCD

Gürsoy, Kiritsis, Mazzanti, F.N. ’09

Simple parametrization for V (Φ) ⇒ good qualitative and

quantitative agreement with lattice Yang-Mills thermodynamics.
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Results: drag coefficients

• Conformal AdS/CFT:

ηD ∝
√
λ
T 2

Mq

.
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Results: drag coefficients

• Conformal AdS/CFT:

ηD ∝
√
λ
T 2

Mq

.

• Non-conformal model:ηD = ηD(p); More complicated

T -dependence; no need to fix λ;
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Results: drag coefficients

• Conformal AdS/CFT:

ηD ∝
√
λ
T 2

Mq

.

• Non-conformal model:ηD = ηD(p); More complicated

T -dependence; no need to fix λ;

• IHQCD (all free parameters fixed by satic quantities): diffusion

time (τ = 1/ηD):

τcharm ≃ 4.5fm/c

for p ≈ 10GeV , T ∼ Tc, consistent with size of fireball.
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Qhat

κ⊥ computed numerically given the solution for the background

metric ⇒ obtain jet-quenching parameter:

q̂ = 2
κ⊥

v

(

q̂conf ∝
√
λT 3

)

!

" !

!

" !
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Qhat

κ⊥ computed numerically given the solution for the background

metric ⇒ obtain jet-quenching parameter:

q̂ = 2
κ⊥

v

(

q̂conf ∝
√
λT 3

)
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solid and dotted lines represent different schemes to match the temperature in the

holographic YM model to the temperature in deconfined QCD.
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Validity of the local approximation

• Langevin eqaution is an approximation of a more general

equation:

ṗ = −
∫ ∞

0

dt′ ηD(t
′)p(t− t′) + ξ(t), ⟨ξ(t)ξ(0)⟩ = G(t)

long time regime t ≫ τcorr ∼ 1/Ts: reduces to Langevin with:

ηD = η̃D(ω)
∣

∣

∣

ω=0

, κ = G̃(ω)
∣

∣

∣

ω=0
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Validity of the local approximation

• Langevin eqaution is an approximation of a more general

equation:

ṗ = −
∫ ∞

0

dt′ ηD(t
′)p(t− t′) + ξ(t), ⟨ξ(t)ξ(0)⟩ = G(t)

long time regime t ≫ τcorr ∼ 1/Ts: reduces to Langevin with:

ηD = η̃D(ω)
∣

∣

∣

ω=0

, κ = G̃(ω)
∣

∣

∣

ω=0

• ∆p2⊥ description in terms of κ⊥: short time solution of local

Langevin. t ≪ τrelax ∼ 1/ηD
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Validity of the local approximation

• Langevin eqaution is an approximation of a more general

equation:

ṗ = −
∫ ∞

0

dt′ ηD(t
′)p(t− t′) + ξ(t), ⟨ξ(t)ξ(0)⟩ = G(t)

long time regime t ≫ τcorr ∼ 1/Ts: reduces to Langevin with:

ηD = η̃D(ω)
∣

∣

∣

ω=0

, κ = G̃(ω)
∣

∣

∣

ω=0

• ∆p2⊥ description in terms of κ⊥: short time solution of local

Langevin. t ≪ τrelax ∼ 1/ηD

• Consistency requires 1/ηD ≫ 1/Ts If this fails, need to use the

generalized process with memory and “colored” noise kernels.

Accessible via Holography.
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Validity of the local approximation

Parametrization in terms of q̂ justified if:

Ts/ηD > 1

This translates to a bound on quark momentum:

p < 1.5Mq (Mq/T )
2
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Ts/ηD > 1

This translates to a bound on quark momentum:

p < 1.5Mq (Mq/T )
2
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Conclusion and outlook

• Non-conformal holographic models give realistic results for

heavy quark transport in the QGP.

• What happens when the local Langevin description breaks

down?

Look at p⊥ broadening with a non-trivial kernel and colored

noise.

• How does momentum dependence affect the dynamics for large

times, > 1/ηD? Need to extend the analysis to large momentum

variations, i.e. non-constant v.

• Compare with results for b/c suppression from experiments.
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