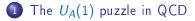
The axial anomaly and topology in finite temperature $$\mathsf{QCD}$$

Sayantan Sharma

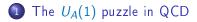

August 30, 2016

Work done with:

V. Dick, F. Karsch, E. Laermann, S. Mukherjee, P. Petreczky, H-P Schadler

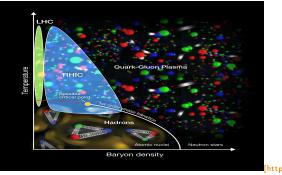
Sayantan Sharma XII Quark Confinement and the Hadron Spectrum, Thessaloniki S

Slide 1 of 33



Sayantan Sharma XII Quark Confinement and the Hadron Spectrum, Thessaloniki Slide 2 of 33

Outline

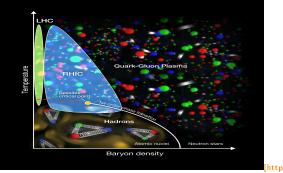

2 Background

Our results: towards solving the puzzle

Sayantan Sharma XII Quark Confinement and the Hadron Spectrum, Thessaloniki Slide 3 of 33

Introduction

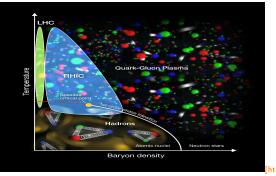
• The phase diagram of strongly interacting matter is largely unknown



[http://www.bnl.gov/rhic/news]

Slide 4 of 33

Introduction


- The phase diagram of strongly interacting matter is largely unknown
- Confinement and chiral symmetry breaking observed, mechanism still unknown. [Schaefer and Shuryak, 96]

[http://www.bnl.gov/rhic/news]

Introduction

- The phase diagram of strongly interacting matter is largely unknown
- Confinement and chiral symmetry breaking observed, mechanism still unknown. [Schaefer and Shuryak, 96]
- At $\mu_B \rightarrow 0$, it is now well known from lattice there is a crossover transition. [Bielefeld-BNL collaboration 05, MILC collaboration, 05, Budapest-Wuppertal collaboration, 06, HotQCD, 11] But can we see hints of the criticality due to the light quarks present.

[http://www.bnl.gov/rhic/news]

• $m_f = 0$, \mathcal{L}_{QCD} invariant under $U_L(N_f) \times U_R(N_f) \equiv SU(N_f)_V \times SU(N_f)_A \times U_B(1) \times U_A(1)$

Sayantan Sharma XII Quark Confinement and the Hadron Spectrum, Thessaloniki Slide 5 of 33

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

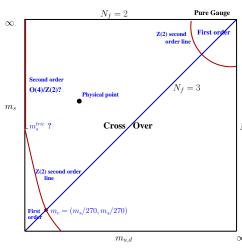
- $m_f = 0$, \mathcal{L}_{QCD} invariant under $U_L(N_f) \times U_R(N_f) \equiv SU(N_f)_V \times SU(N_f)_A \times U_B(1) \times U_A(1)$
- $m_s \sim \Lambda_{QCD}$, $m_u, m_d \ll \Lambda_{QCD}$, The approximate symmetry: $SU(2)_V \times SU(2)_A \times U_B(1) \times U_A(1)$

- $m_f = 0$, \mathcal{L}_{QCD} invariant under $U_L(N_f) \times U_R(N_f) \equiv SU(N_f)_V \times SU(N_f)_A \times U_B(1) \times U_A(1)$
- $m_s \sim \Lambda_{QCD}$, m_u , $m_d << \Lambda_{QCD}$, The approximate symmetry: $SU(2)_V \times SU(2)_A \times U_B(1) \times U_A(1)$
- QGP \rightarrow hadron transition results in light pions \rightarrow chiral symmetry breaking $SU(2)_V \times SU(2)_A \times U_B(1) \rightarrow SU(2)_V \times U_B(1)$

- $m_f = 0$, \mathcal{L}_{QCD} invariant under $U_L(N_f) \times U_R(N_f) \equiv SU(N_f)_V \times SU(N_f)_A \times U_B(1) \times U_A(1)$
- $m_s \sim \Lambda_{QCD}$, m_u , $m_d << \Lambda_{QCD}$, The approximate symmetry: $SU(2)_V \times SU(2)_A \times U_B(1) \times U_A(1)$
- QGP \rightarrow hadron transition results in light pions \rightarrow chiral symmetry breaking $SU(2)_V \times SU(2)_A \times U_B(1) \rightarrow SU(2)_V \times U_B(1)$
- Symmetries determine order parameter: $\langle \bar{\psi}_I \psi_I \rangle$.

イボト イラト イラト

- $m_f = 0$, \mathcal{L}_{QCD} invariant under $U_L(N_f) \times U_R(N_f) \equiv SU(N_f)_V \times SU(N_f)_A \times U_B(1) \times U_A(1)$
- $m_s \sim \Lambda_{QCD}$, m_u , $m_d << \Lambda_{QCD}$, The approximate symmetry: $SU(2)_V \times SU(2)_A \times U_B(1) \times U_A(1)$
- QGP \rightarrow hadron transition results in light pions \rightarrow chiral symmetry breaking $SU(2)_V \times SU(2)_A \times U_B(1) \rightarrow SU(2)_V \times U_B(1)$
- Symmetries determine order parameter: $\langle \bar{\psi}_I \psi_I \rangle$.
- $U_A(1) \rightarrow$ not a symmetry yet may affect the order of phase transition for $N_f = 2$ [Pisarski & Wilczek, 84].

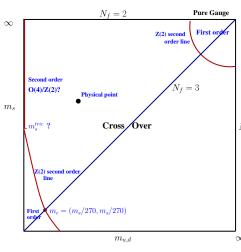

(周) (日) (日)

Where do we stand now!

 Perturbative RG studies on sigma models with same symmetries as N_f flavour QCD:

 $N_f \ge 3$: 1st order phase transition independent of $U_A(1)$.

 $N_f = 2$: If $U_A(1)$ effectively restored \Rightarrow 1st or 2nd order with $U_L(2) \times U_R(2) \rightarrow U_V(1)$ criticality

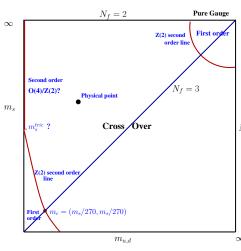


Where do we stand now!

 Perturbative RG studies on sigma models with same symmetries as N_f flavour QCD:

 $N_f \ge 3$: 1st order phase transition independent of $U_A(1)$.

 $N_f = 2$: If $U_A(1)$ broken $\Rightarrow 2$ nd order transition with O(4) critical exponents.

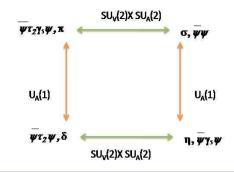


Where do we stand now!

 Perturbative RG studies on sigma models with same symmetries as N_f flavour QCD:

 $N_f \ge 3$: 1st order phase transition independent of $U_A(1)$.

```
Important to get insight from lattice.
```



[Pisarski & Wilczek, 84, Butti, Pelissetto & Vicari, 03, 13, Nakayama & Ohtsuki, 15]

		▲ 車 ▶ 車 ◆ ○ へ ()
Sayantan Sharma	XII Quark Confinement and the Hadron Spectrum, Thessaloniki	Slide 6 of 33

Routes to solve the puzzle

Not an exact symmetry \rightarrow what observables to look for?

Degeneracy of the 2-point correlators $_{\rm [Shuryak, 94]} \to$ higher point correlation functions imp.

Routes to solve the puzzle

• In terms of integrated correlators:

$$\chi_{\pi} = \int d^4x \langle i\pi^+(x)i\pi^-(0) \rangle$$

- Off-Diagonals of the meson spectra: $\chi_{\delta}-\chi_{\sigma}=-2\chi_{disc}$
- Furthermore $\chi_\eta \chi_\pi = -2\chi_{5,disc}$
- When chiral symmetry is restored $\chi_{\pi} \leftrightarrow \chi_{\sigma}, \ \chi_{\eta} \leftrightarrow \chi_{\delta}$
- Consequently $\chi_{disc} \rightarrow \chi_{5,disc}$
- From definition, $\chi_t = \frac{Tm_l^2}{V} \left\langle \left(\frac{\operatorname{Tr}}{D_l} D_l^{-1} \gamma^5 \right)^2 \right\rangle = (m_l)^2 \chi_{5,disc} ,$
- $\chi_t = m_l^2 \chi_{disc}$ New fermionic observable when χ_{SB} restored!

A 35 A 35 A

Routes to solve the puzzle

- Not an exact symmetry→ what observables to look for?
- When $U_A(1)$ is also restored:

$$\chi_{\pi} - \chi_{\delta} = \int d^4x \left[\langle i\pi^+(x)i\pi^-(0) \rangle - \langle \delta^+(x)\delta^-(0) \rangle \right] \to 0$$

• Equivalently study $\rho(\lambda, m_f)$ of the Dirac operator.

$$\chi_{\pi} - \chi_{\delta} \stackrel{V \to \infty}{\to} \int_{0}^{\infty} d\lambda \frac{4m_{f}^{2} \rho(\lambda, m_{f})}{(\lambda^{2} + m_{f}^{2})^{2}} , \ \langle \bar{\psi}\psi \rangle \stackrel{V \to \infty}{\to} \int_{0}^{\infty} d\lambda \frac{2m_{f} \rho(\lambda, m_{f})}{(\lambda^{2} + m_{f}^{2})^{2}}$$

- If chiral symmetry restored: $\langle \bar{\psi}\psi \rangle = 0 \Rightarrow \lim_{m_f \to 0} \lim_{V \to \infty} \rho(0, m_f) \to 0.$
- A gap in the infrared spectrum $\Rightarrow U_A(1)$ restored
- chiral symmetry restored + $U_A(1)$ broken if: $\lim_{\lambda\to 0} \rho(\lambda, m_f) \to \delta(\lambda) m_f^{\gamma}$, $1 < \gamma \leq 2$

Sayantan Sharma XII Quark Confinement and the Hadron Spectrum, Thessaloniki

Slide 7 of 33

イロト イポト イラト イラト

• Very little known. Only recently studied in detail [Aoki, Fukaya & Taniguchi, 12].

• Very little known. Only recently studied in detail [Aoki, Fukaya & Taniguchi, 12].

 Assuming ρ(λ, m) to be analytic in λ, m², look at Ward identities of n-point function of scalar & pseudo-scalar currents when chiral symmetry is restored.

Slide 8 of 33

• Very little known. Only recently studied in detail [Aoki, Fukaya & Taniguchi, 12].

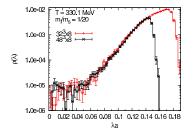
- Assuming ρ(λ, m) to be analytic in λ, m², look at Ward identities of n-point function of scalar & pseudo-scalar currents when chiral symmetry is restored.
- $\rho(\lambda, m \to 0) \sim \lambda^3 \Rightarrow U_A(1)$ breaking effects invisible in this sector for upto 6-point correlation functions.

(D) (A) (A) (A) (A)

• Very little known. Only recently studied in detail [Aoki, Fukaya & Taniguchi, 12].

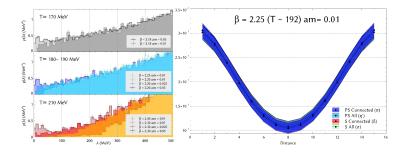
- Assuming ρ(λ, m) to be analytic in λ, m², look at Ward identities of n-point function of scalar & pseudo-scalar currents when chiral symmetry is restored.
- $\rho(\lambda, m \to 0) \sim \lambda^3 \Rightarrow U_A(1)$ breaking effects invisible in this sector for upto 6-point correlation functions.
- Non-analyticities in the infrared part of the spectrum+analytic form of the bulk.

1) The $U_A(1)$ puzzle in QCD



Our results: towards solving the puzzle

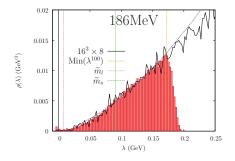
Sayantan Sharma XII Quark Confinement and the Hadron Spectrum, Thessaloniki S


Slide 9 of 33

Lattice studies so far!

- Improved Staggered fermions: Large $32^3 \times 8$ lattice $\rightarrow U_A(1)$ broken [Ohno et. al. 12]
- Same observation noted earlier for smaller lattice [Chandrasekharan & Christ 96]
- Recent results on screening mass with improved Wilson fermions $M_{\eta} - M_{\sigma} = -81(282) \text{ MeV} \rightarrow U_A(1)$ effectively restored at T_c . Lattice volumes rather small $(2 \text{ fm})^3$ [B. Brandt et. al., 16] Issues with lattice artifacts? Exact chiral invariance is not maintained

Lattice studies so far!



Dynamical overlap fermions with exact chiral symmetry on lattice $\rightarrow U_A(1)$ restored [Cossu et. al, JLQCD collaboration, 11, 12] Pion mass 220 MeV. Effects of fixing the topology? Thermodynamic limit?

Slide 10 of 33

▲ 同 ▶ ▲ 王

Lattice studies so far!

- Dynamical domain wall fermions with better chiral symmetry $\rightarrow U_A(1)$ broken [Buchoff et. al. 13] Low statistics in the lower end of spectrum?
- Optimal domain wall fermions: On small lattice $\rightarrow U_A(1)$ restored [Chiu et. al. 13]
- Small eigenvalues in small volumes related to χ_{SB} . Reweighting them $\rightarrow U_A(1)$ restored. [G. Cossu et. al. 15 (JLQCD collaboration.]

Consequence: Constituents of the hot QCD medium

- Near T_c, a medium consisting of interacting instantons can explain chiral symmetry breaking ⇒ Instanton Liquid Model
 [Shuryak, 82, Schaefer & Shuryak, 96]
- At T >> T_c, medium is like a dilute gas of instantons?
 [Gross, Pisarski & Yaffe, 81].
- What is the medium made up of for $T_c \leq T \leq 2T_c$?
- At what *T* is DIGA is valid?
- Finite T instantons have substructures instanton-monopoles \rightarrow carry electric and magnetic charges. Can we detect them on lattice.. First signals observed! [ligenfritz, Michael Mueller-Preussker et. al 02, 06, 13, 14].

イロト イポト イヨト イヨト 二日

• Finite volume effects \rightarrow ensure presence of topological objects in a box.

- Finite volume effects \rightarrow ensure presence of topological objects in a box.
- Most studies done with lattice fermions with only a remnant of continuum chiral symmetry + absence of flavor singlet U_A(1)

[S. Chandrasekharan, 96, H. Ohno et. al 12, V. Dick et. al., 15, B. Brandt et. al., 16].

- Finite volume effects → ensure presence of topological objects in a box.
- Most studies done with lattice fermions with only a remnant of continuum chiral symmetry + absence of flavor singlet U_A(1)

 $[S,\ Chandrasekharan,\ 96,\ H.\ Ohno\ et.\ al\ 12,\ V.\ Dick\ et.\ al.,\ 15,\ B.\ Brandt\ et.\ al.,\ 16].$

• Studies done with chiral fermions are in a fixed topological sector+ small volume [JLQCD collaboration, 13].

イロン イボン イヨン イヨン

- Finite volume effects → ensure presence of topological objects in a box.
- Most studies done with lattice fermions with only a remnant of continuum chiral symmetry + absence of flavor singlet $U_A(1)$

 $\left[S,\ Chandrasekharan,\ 96,\ H.\ Ohno\ et.\ al\ 12,\ V.\ Dick\ et.\ al.,\ 15,\ B.\ Brandt\ et.\ al.,\ 16\right].$

- Studies done with chiral fermions are in a fixed topological sector+ small volume [JLQCD collaboration, 13].
- Lattice cut-off effects need careful consideration for near-zero eigenvalues [G. Cossu et. al. 15]

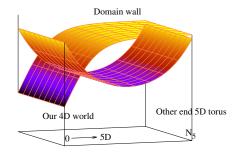
イロン イボン イヨン イヨン

- $\bullet\,$ To measure the localized topological structures $\rightarrow\,$ remove the ultraviolet fluctuations
- Two known methods: Gauge operator & Fermionic operator
- Cooling to the classical action or smearing UV modes and then measure $F\tilde{F}$ [ligenfritz, Michael Mueller-Preussker et. al 06, 13, Bonati, M. D'Elia et. al., 13, 14]
- Controlled smearing method \rightarrow Wilson flow [M. Luscher, 09, 10].
- May cause disappearance of small instantons, density $\propto
 ho^{-5}$.

A D A A B A A B A A B A

- $\bullet\,$ To measure the localized topological structures $\rightarrow\,$ remove the ultraviolet fluctuations
- Two known methods: Gauge operator & Fermionic operator
- Cooling to the classical action or smearing UV modes and then measure $F\tilde{F}$ [ligenfritz, Michael Mueller-Preussker et. al 06, 13, Bonati, M. D'Elia et. al., 13, 14]
- Controlled smearing method \rightarrow Wilson flow [M. Luscher, 09, 10].
- May cause disappearance of small instantons, density $\propto
 ho^{-5}$.
- Alternative: Use the index theorem from fermion zero modes

Index theorem on the lattice


- It is impossible to define chiral fermions on lattice which are (ultra)local. [Nielsen & Ninomiya, 82]
- Overlap fermions [Narayanan & Neuberger, 94, Neuberger, 98] have exact chiral symmetry on the lattice.

$$D_{ov} = M(1 + \gamma_5 \operatorname{sgn}(\gamma_5 D_W(-M)))$$
, $\operatorname{sgn}(A) = A/\sqrt{A}A$.

- It satisfies the Ginsparg-Wilson relation $\{\gamma_5, D_{ov}\} = aD_{ov}\gamma_5 D_{ov}$ [Ginsparg & Wilson, 82]
- D_{ov} has an exact index theorem like in the continuum \Rightarrow the zero modes of D_{ov} related to topological structures of the underlying gauge field. [Hasenfratz, Laliena & Niedermeyer, 98]

イロト イポト イラト イラト

Index theorem on the lattice

 One can also start from 5D world+ put a defect to localize chiral fermions on the 4D brane.

• Domain wall fermions [Kaplan 92, Shamir 95] in the limit $N_5 \rightarrow \infty$ $D_{DW} = M(1 - \gamma_5 \operatorname{sgn}(\ln |T|))$, $T = (1 + a_5\gamma_5 D_W P_+)^{-1}(1 - a_5\gamma_5 D_W P_-)$.

Sayantan Sharma XII Quark Confinement and the Hadron Spectrum, Thessaloniki

Slide 14 of 33

The technique we use

- Method I: Use overlap as valence operator to probe the infrared spectrum.
- \bullet Sea quarks in background \rightarrow HISQ and domain wall fermions
- We look at the eigenvalue distribution of D_{ov} on the ensembles.
- Zero modes of D_{ov} related to topological structures of sea quarks.
- Infrared part of eigenvalue distribution gives us idea about the χ_{SB} , $U_A(1)$ and the topological structures that contribute to them.

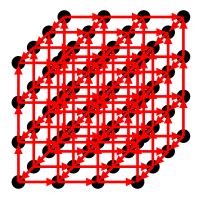
イロト イポト イヨト イヨト

The technique we use

- Method I: Use overlap as valence operator to probe the infrared spectrum.
- \bullet Sea quarks in background \rightarrow HISQ and domain wall fermions
- We look at the eigenvalue distribution of D_{ov} on the ensembles.
- Zero modes of D_{ov} related to topological structures of sea quarks.
- Infrared part of eigenvalue distribution gives us idea about the χ_{SB} , $U_A(1)$ and the topological structures that contribute to them.
- Method II Use Wilson flow on staggered fermions \rightarrow continuum limit

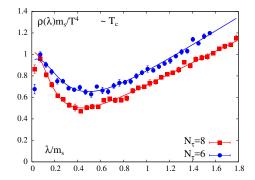
The technique we use

- Method I: Use overlap as valence operator to probe the infrared spectrum.
- \bullet Sea quarks in background \rightarrow HISQ and domain wall fermions
- We look at the eigenvalue distribution of D_{ov} on the ensembles.
- Zero modes of D_{ov} related to topological structures of sea quarks.
- Infrared part of eigenvalue distribution gives us idea about the χ_{SB} , $U_A(1)$ and the topological structures that contribute to them.
- Method II Use Wilson flow on staggered fermions \rightarrow continuum limit
- First we present results with staggered (HISQ) quarks and then with "chiral" domain wall fermions.



Sayantan Sharma XII Quark Confinement and the Hadron Spectrum, Thessaloniki

Our Set-up

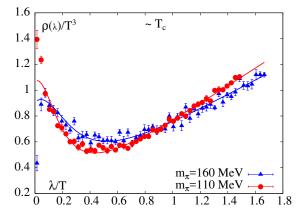


- $V = N^3 a^3$, $T = \frac{1}{N_\tau a}$
- Box size: m_π $V^{1/3}>4$
- Input m_s physical ≈ 100 MeV and $m_{\pi} = 160, 110$ MeV (staggered) $m_{\pi} = 200, 135$ MeV (domain wall fermions)

Eigenvalue distribution near T_c

- General features: Near zero mode peak +bulk.
- We fit the $ho(\lambda)$ to ansatz: $ho(\lambda) = rac{A\epsilon}{\lambda^2 + A} + B\lambda^\gamma$

[V. Dick, F. Karsch, E. Laermann, S. Mukherjee and S.S. PRD 91, 15].



Bulk rises linearly as λ , consistent with χ_{PT} predictions. No gap seen.

Eigenvalue distribution near T_c

- General features: Near zero mode peak +bulk.
- We fit the $\rho(\lambda)$ to ansatz: $\rho(\lambda) = \frac{A\epsilon}{\lambda^2 + A} + B\lambda^{\gamma}$

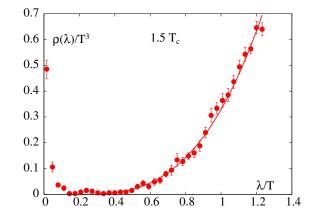
[V. Dick, F. Karsch, E. Laermann, S. Mukherjee and S.S. PRD 91, 15].

No gap even when quark mass reduced! Peak height increases as mass lowered.

Sayantan Sharma

XII Quark Confinement and the Hadron Spectrum, Thessaloniki

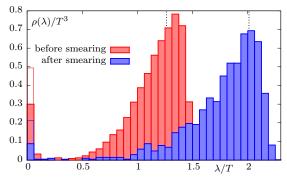
Slide 18 of 33


At higher temperatures...

Near zero mode peak shows little cut-off dependence. Bulk rises as λ^2 .

Sayantan Sharma XII Quark Confinement and the Hadron Spectrum, Thessaloniki Slide 19 of 33

At higher temperatures...


At 1.5 T_c , the bulk and the near zero peak decouples completely Bulk rises as λ^3 . Breaking of $U_A(1)$ from the near-zero modes? Are these physical?

Sayantan Sharma XII Quark Confinement and the Hadron Spectrum, Thessaloniki

Slide 19 of 33

Robustness of near zero modes

- The infrared part could be affected by unphysical dislocations. → partial quenching + rough configurations.
- These have smaller classical action than instantons. \rightarrow lattice cut-off effect.
- HYP smearing [Hasenfratz & Knechtli, 02] expected to eliminate such structures.

- Smearing does not eliminate the near zero modes.
- At this temperature, rooting is insignificant.
- Difference? Smearing may suppress small instantons.

Sayantan Sharma 🛛 XII Quark Confinement and the Hadron Spectrum, Thessaloniki Slide 20 of 33

What we found till now...

• The near-zero modes survive till $1.5 T_c$.

Sayantan Sharma XII Quark Confinement and the Hadron Spectrum, Thessaloniki Slide 21 of 33

What we found till now...

- The near-zero modes survive till $1.5 T_c$.
- The bulk modes have very distinct rise..changes from $|\lambda|$ to λ^2 as $T_c \to 1.2\,T_c$

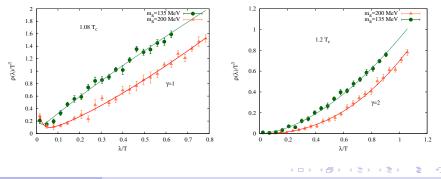
What we found till now...

- The near-zero modes survive till $1.5 T_c$.
- The bulk modes have very distinct rise..changes from $|\lambda|$ to λ^2 as $T_c \to 1.2\,T_c$
- both conspire to break $U_A(1)$.

- The near-zero modes survive till $1.5 T_c$.
- The bulk modes have very distinct rise..changes from $|\lambda|$ to λ^2 as $T_c \to 1.2\,T_c$
- both conspire to break $U_A(1)$.
- Near zero modes are physical \rightarrow not artifacts even at 1.5 T_c .

[V. Dick, F. Karsch, E. Laermann, S. Mukherjee and S.S. PRD 91, 15].

- The near-zero modes survive till $1.5 T_c$.
- The bulk modes have very distinct rise..changes from $|\lambda|$ to λ^2 as $T_c \to 1.2\,T_c$
- both conspire to break $U_A(1)$.
- Near zero modes are physical \rightarrow not artifacts even at 1.5 T_c .

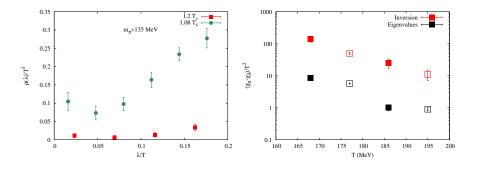

[V. Dick, F. Karsch, E. Laermann, S. Mukherjee and S.S. PRD 91, 15].

 How robust are these characteristics? Do fermions with exact chiral symmetry show similar trends?

イロト イポト イラト イラト

Sensitivity to fermion discretization

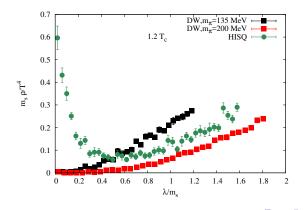
- Use of fermions exact chiral symmetry and $U_A(1) \rightarrow$ much clear interpretation of the topology issues.
- First results for domain wall fermion spectrum exciting! [V. Dick et. al., 1602.02197, in prep]
- Near zero peak persists at $T > T_c$ +bulk shows the expected rise Insensitive to quark mass effects.



Sayantan Sharma

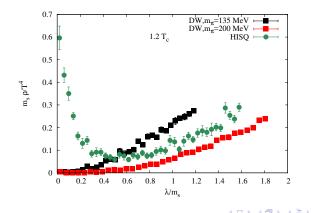
XII Quark Confinement and the Hadron Spectrum, Thessaloniki

Sensitivity to fermion discretization


- The near-zero mode falls by more than a third at $1.2 T_c$.
- First 50 eigenvalues of the Dirac operator contribute significantly to $U_A(1)$ breaking. [V. Dick et. al., 1602.02197, in prep]

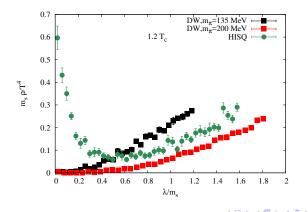
Sayantan Sharma XII Quark Confinement and the Hadron Spectrum, Thessaloniki Slide 22 of 33

Eigenvalue spectra of different lattice fermions


• How do the HISQ and Domain wall spectra compare?

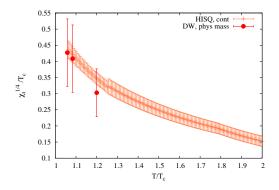
Sayantan Sharma XII Quark Confinement and the Hadron Spectrum, Thessaloniki Slide 23 of 33

Eigenvalue spectra of different lattice fermions


- How do the HISQ and Domain wall spectra compare?
- The bulk HISQ spectra with Goldstone pion mass 160 MeV consistent with DW with $m_{\pi} = 200$ MeV at 1.2 T_c .

Sayantan Sharma XII Quark Confinement and the Hadron Spectrum, Thessaloniki

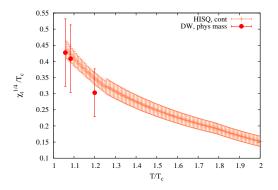
Eigenvalue spectra of different lattice fermions


- How do the HISQ and Domain wall spectra compare?
- The bulk HISQ spectra with Goldstone pion mass 160 MeV consistent with DW with $m_{\pi} = 200$ MeV at $1.2 T_c$.
- More near-zero states in HISQ than domain wall.redundant symmetries due to rooting?

Sayantan Sharma XII Quark Confinement and the Hadron Spectrum, Thessaloniki Slide 23 of 33

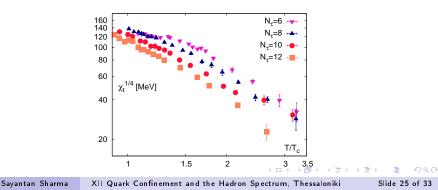
Topological susceptibility: different lattice fermions

• Are continuum symmetries recovered for staggered fermions for $a \rightarrow 0$?



Sayantan Sharma XII Quark Confinement and the Hadron Spectrum, Thessaloniki Slide 24 of 33

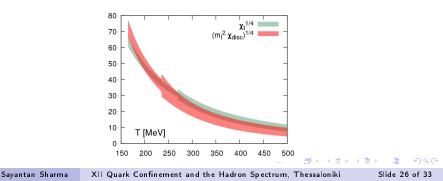
Topological susceptibility: different lattice fermions


- Are continuum symmetries recovered for staggered fermions for $a \rightarrow 0$?
- Results from QCD with "chiral" fermions agree well with continuum extrapolated results using staggered fermions.

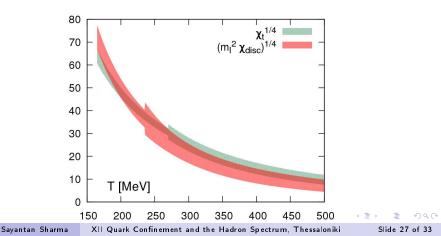
[P. Petreczky, H-P Schadler, SS, 1606.03145]

Topological susceptibility: Staggered fermions using Wilson flow

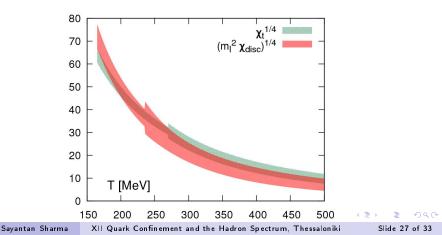
- Wilson flow on improved staggered fermion (HISQ) ensembles → remove ultra-violet fluctuations.
- Q measured using lattice definition of FF.
- Using $\chi_t^{1/4} = AT^{-B}$. Fit to the data shows very distinct slopes.
- B = 0.9 1.2 for T < 250 MeV. Agrees well with another independent work [Bonati et. al. 1512.06746]



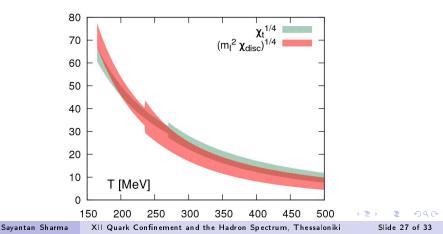
• Using the fit ansatz:


 $\chi_t^{1/4}(T, N_{\tau}) = (a_0 + a_2/N_{\tau}^2 + a_4/N_{\tau}^4) \cdot (T_c/T)^{b+b_2/N_{\tau}^2 + b_4/N_{\tau}^4 + b_6/N_{\tau}^6}$

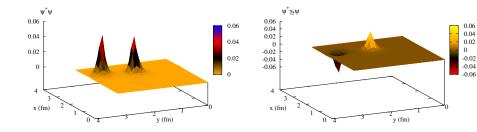
• T > 300 MeV: Continuum extrapolated b = 1.85(15) in agreement with Dilute instanton gas.


Also in agreement with an independent lattice work [Borsanyi et. al, 1606.07494] For details see talk by Sandor Katz, Monday 19:30, Session G2

• At T > 300 MeV topological fluctuations are rare.



- At T > 300 MeV topological fluctuations are rare.
- Another check: $m_l^2 \chi_{disc} = \chi_t$.

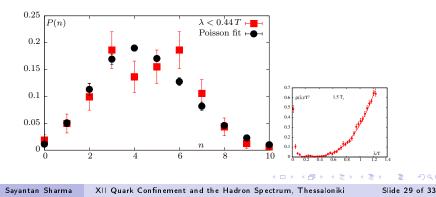


- At T > 300 MeV topological fluctuations are rare.
- Another check: $m_l^2 \chi_{disc} = \chi_t$.
- Cut-off effects are very different. But have the same continuum limit.

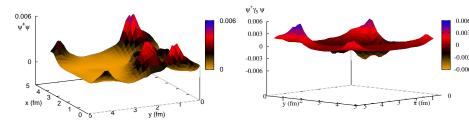
```
[ P. Petreczky, H-P Schadler, SS, 1606.03145]
```


Independent confirmation: near-zero modes

Near-zero modes of QCD Dirac operator due to a weakly interacting instanton-antiinstanton pair!


Sayantan Sharma XII Quark Confinement and the Hadron Spectrum, Thessaloniki Slide 28 of 33

The nature of the infrared modes at $1.5 T_c$

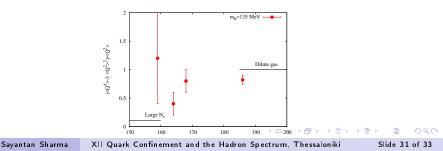

• If n=total no. of instantons+antiinstantons and form a dilute gas,

 $P(n, \langle n \rangle) = \langle n \rangle^n \mathrm{e}^{-\langle n \rangle} / \mathrm{n}!$

• For $\lambda/T < 0.44$, the value of $\langle n \rangle = 4.2 = \langle n^2 \rangle \Rightarrow$ density $\simeq 0.147(7) fm^{-4}$. This is much more dilute than an instanton liquid with density $1 fm^{-4}$. [V. Dick, F. Karsch, E. Laermann, S. Mukherjee and S.S. PRD 91, 15].

Localization properties of near zero modes near T_c

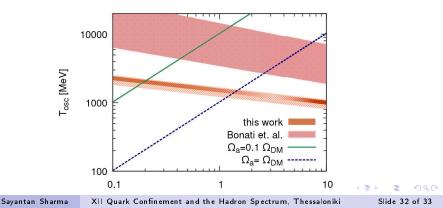
Combination of L and M instanton-monopoles of different chiralities?


Topological susceptibility and its fluctuations

• Higher order fluctuations:

$$rac{< Q^4 > -3 < Q^2 >^2}{< Q^2 >}$$

• At T = 0 QCD consistent with large N_c expansion of χ_t [M. Unsal, 08].


• Departure from large N_c expectations but a slow rise towards DIG $\gtrsim T_c \rightarrow$ effects of residual interactions? [Work in progress]. For an independent measurement and conclusions see talk by Massimo D'Elia, Monday, 18:45 Session E2.

DIGA and Axion dark matter

- Slow roll of axion field at the bottom of the potential: $\chi_t = 9f_a^2H^2 = m_a^2$
- Assuming axion density \leq dark matter density $\Rightarrow f_a \leq 1.2 \times 10^{12}$ GeV.
- Need a scaling factor to match lattice results with 1-loop DIGA predictions \rightarrow major uncertainty from estimates of m_{Debye} .

[P. Petreczky, H-P Schadler, SS, 1606.03145]

• The $U_A(1)$ is not effectively restored near T_c .

・ロン ・四マ ・ヨン ・ヨン

æ

- The $U_A(1)$ is not effectively restored near T_c .
- Both near-zero+ bulk eigenvalues of QCD break $U_A(1)$ explicitly.

э

- The $U_A(1)$ is not effectively restored near T_c .
- Both near-zero+ bulk eigenvalues of QCD break $U_A(1)$ explicitly.
- Topological susceptibility is measured for a large temperature range in the continuum...agreement with the fermions with good "chiral" properties on the lattice.

イロト イポト イヨト イヨト

- The $U_A(1)$ is not effectively restored near T_c .
- Both near-zero+ bulk eigenvalues of QCD break $U_A(1)$ explicitly.
- Topological susceptibility is measured for a large temperature range in the continuum...agreement with the fermions with good "chiral" properties on the lattice.
- Dilute gas scenario for instantons sets in already at $au \sim 300$ MeV.

イロト イポト イヨト イヨト

- The $U_A(1)$ is not effectively restored near T_c .
- Both near-zero+ bulk eigenvalues of QCD break $U_A(1)$ explicitly.
- Topological susceptibility is measured for a large temperature range in the continuum...agreement with the fermions with good "chiral" properties on the lattice.
- Dilute gas scenario for instantons sets in already at $au \sim 300$ MeV.
- Topological properties in QCD near T_c still needs to be understood.

4 D K 4 B K 4 B K 4 B K