

Experimental overview of collective flow with identified particles at RHIC and the LHC

Panos Christakoglou (Nikhef)

Experimental overview of collective flow with identified particles at RHIC and the LHC

Panos Christakoglou (Nikhef)

Many thanks to the (flow) groups from PHENIX, STAR, CMS, ALICE

Experimental overview of collective flow with identified particles at RHIC and the LHC

Could not help adding my (in some cases biased) interpretation of results

Panos Christakoglou (Nikhef)

A bit of a history...

(NA49 Collaboration): Phys.Rev.Lett. 80 (1998) 4136

A bit of a history...

(NA49 Collaboration): Phys.Rev.Lett. 80 (1998) 4136

(NA49 Collaboration): Nucl.Phys. A661 (1999) 341-344

Hydro

Pions
V₂
3 < y < 6
RQMD resonance gas

By the second sec

Random names (faces) from that author list:

A bit of a history...

(NA49 Collaboration): Phys.Rev.Lett. 80 (1998) 4136

(NA49 Collaboration): Nucl.Phys. A661 (1999) 341-344

Pions
V
2
3 < y < 6
RQMD resonance gas

RQMD resonance gas

b (fm)

Random names (faces) from that author list:

The birth of the sQGP paradigm...

(STAR Collaboration) Phys. Rev. Lett. 86 (2001) 402

The birth of the sQGP paradigm...

(STAR Collaboration) Phys. Rev. Lett. 86 (2001) 402

Random names (faces) from that author list:

...established by looking at the details

(STAR Collaboration): Phys. Rev. Lett. 87 (2001) 182301

(PHENIX Collaboration): Phys.Rev.Lett.91, 182301,2003

- Mass ordering at low p_T
- Good description by blast-wave parametrisation

...established by looking at the details

- Mass ordering at low p_T
- Good description by blast-wave parametrisation
 - Agreement with (ideal) hydrodynamical calculations

...established by looking at the details

Mass ordering at low p_T

Good description by blast-wave parametrisation

Agreement with (ideal) hydrodynamical calculations

Apparent NCQ scaling at intermediate p_T

The "perfect liquid" at RHIC

The "perfect liquid" at RHIC and LHC

0.0

0.5

1.0

The sQGP paradigm

The three momentum scales: low p_T ($p_T < 3 \text{ GeV}/c$)

- Mass ordering observed at low p_T at RHIC energies
 - ★ expected by hydrodynamic calculations

S. S. Adler *et al.* (PHENIX Collaboration), Phys. Rev. Lett. **91**, (2003) 182301

B. Abelev et al. (STAR

Collaboration), Phys. Rev.

C77, (2008) 054901

H. Song, S. Bass and U. Heinz arXiv:1311.0157 [nucl-th]

New calculations expect the mass ordering to be violated

Mass ordering @ LHC

B. Abelev et al. (ALICE Collaboration), JHEP 06 (2015) 190

Low p_T (p_T < 3 GeV/c): mass ordering \rightarrow elliptic/radial flow interplay

The special role of the φ-meson

B. Abelev et al. (ALICE Collaboration), JHEP 06 (2015) 190

- At low p_T (p_T < 3 GeV/c): mass ordering \rightarrow elliptic/radial flow interplay
 - ★ First bins could hint to a different ordering? Still inconclusive...

Mass ordering @ RHIC

L. Adamczyk et al. (STAR Collaboration), Phys. Rev. Lett. 116, (2016) 062301

Mass ordering preserved at RHIC?

Mass ordering violation @ RHIC

L. Adamczyk et al. (STAR Collaboration), Phys. Rev. Lett. 116, (2016) 062301

Mass ordering violation @ RHIC

Violation of mass ordering: hadronic rescattering effect

T. Hirano et al., Phys.Rev. C77 (2008) 044909

FIG. 9: (Color online) Transverse momentum dependence of the elliptic flow parameters for pions (dotted blue), protons (dashed green), and ϕ mesons (solid red), for Au+Au collisions at $b=7.2\,\mathrm{fm}$. (a) Before hadronic rescattering. (b) After hadronic rescattering. (c) Ideal hydrodynamics with $T_{\mathrm{th}}=100\,\mathrm{MeV}$. The results for pions and protons are the same as shown in Fig. 5.

Comparison with hydrodynamic calculations

hydro curves from: H. Song, S. Bass and U. Heinz Phys. Rev. C 89, 034919

Mass ordering not preserved!!!

Particles with large hadronic x-section are "pushed" to higher p_T (e.g. p) Particles with small hadronic x-section are affected less (e.g. ϕ , Ξ)

Mass ordering preserved

And there is more...: higher harmonics!

Higher harmonics @ RHIC

A. Adare et al. (PHENIX Collaboration), Phys.Rev. C93 (2016) 051902

Mass ordering at low p_T observed also for higher harmonics at RHIC

Higher harmonics @ LHC

B. Abelev et al. (ALICE Collaboration), arXiv:1606.06057 [nucl-ex]

Higher harmonics @ LHC (ultra-central events)

B. Abelev et al. (ALICE Collaboration), arXiv:1606.06057 [nucl-ex]

Same features for different v_n (up to v₅!) even for ultra-central collisions

The three momentum scales: intermediate p_T (3 < p_T < 6 GeV/c)

- Number of constituent quark (NCQ) scaling holding with good accuracy at RHIC
 - ★ quarks coalesce forming hadrons?
 - ★ NCQ scaling was considered as "evidence" of partonic degrees of freedom

J. Adams *et al.*, (STAR Collaboration), Nucl.Phys. **A757** (2005) 102 K. Adcox *et al.*, (PHENIX Collaboration), Nucl. Phys. **A757**, (2005) 184

Deviations from the universal scaling at RHIC

A. Adare et al. (PHENIX Collaboration), Phys. Rev. C85, (2012) 064914

Deviations from the universal scaling at RHIC

A. Adare et al. (PHENIX Collaboration), Phys. Rev. C85, (2012) 064914

Deviations for $p_T/n_q > 1$ GeV/c depend on centrality

NCQ scaling @ RHIC

L. Adamczyk et al. (STAR Collaboration), Phys.Rev.Lett. 116 (2016) 062301

Scaling seems to hold at an approximate level of 10-15% Good enough???

Scaling properties @ LHC

Intermediate p_T (3 < p_T < 6 GeV/c): ~grouping based on type (mesons/baryons)

NCQ scaling in p_T/n_q (double ratio): evolution with energy

Qualitative similar deviations between LHC and RHIC, but the trend is different for different particle species

A. Adare et al., [PHENIX Collaboration], Phys. Rev. C85, (2012) 064914

The elephant in the room...

Scaling at the level of no better than ± 20%

The special role of the φ-meson

The special role of the φ-meson

- Intermediate p_T (3 < p_T < 6 GeV/c) the ϕ -meson follows
 - the meson band for peripheral events

The special role of the ϕ -meson

- Intermediate p_T (3 < p_T < 6 GeV/c) the ϕ -meson follows
 - the meson band for peripheral events
 - ★ the baryon band for central events

The special role of the ϕ -meson

Mass effect also at the intermediate p_T range! Challenges the coalescence picture???

- Intermediate p_T (3 < p_T < 6 GeV/c) the ϕ -meson follows
 - the meson band for peripheral events
 - ★ the baryon band for central events

Scaling of higher harmonics @ LHC

B. Abelev et al. (ALICE Collaboration), arXiv:1606.06057 [nucl-ex]

Scaling of higher harmonics @ LHC (ultra-central events)

B. Abelev et al. (ALICE Collaboration), arXiv:1606.06057 [nucl-ex]

Scaling at the level of 10-20%

AMPT: mass ordering & scaling properties

- A Multi-Phase Transport model
 - ★ String melting:
 - strings are melt into their partons
 - partons interact based on a partonic cross-section
 - coalescence to form hadrons
 - hadronic rescattering phase
 - **★** Default
 - strings combined into hadrons via the Lund string fragmentation model
 - 6 hadronic rescattering phase
- Possibility to probe the effects of the
 - ★ partonic phase
 - ★ coalescence mechanism
 - ★ hadronic rescattering

- Probing the path length dependence
 - particles flying in- (out-of)plane have to travel through less (more) medium
 - \star expect to see an azimuthal dependence of jets and high p_T particles

High *p*_T pions, kaons, protons @ LHC: v₂

B. Abelev et al. (ALICE Collaboration), Phys. Lett. B719, (2013) 18

- Significant v_2 for all particle species at high p_T
 - $\stackrel{\checkmark}{\bowtie}$ azimuthal dependence of high- p_{T} particle yield
 - no significant particle species dependence for $p_T > 10 \text{ GeV/}c$
- Fig. 1. Theory curve describes data fairly well

NIKHEF High p_T pions, kaons, protons @ LHC: nuclear modification factor

B. Abelev et al. (ALICE Collaboration), PLB 736 (2014) 196

$$R_{AA}(p_T) = \frac{(1/N_{\text{evt}}^{AA}) d^2 N_{\text{ch}}^{AA} / d\eta \, dp_T}{\langle N_{\text{coll}} \rangle (1/N_{\text{evt}}^{pp}) d^2 N_{\text{ch}}^{pp} / d\eta \, dp_T}$$

- Large suppression of high p_T particles
- Suppression does not depend on particle species for $p_T > 10 \text{ GeV/}c$

Searching for the critical point

BES: v₂ of antiparticles

L. Adamczyk *et al.* (STAR Collaboration), Phys. Rev. **C88**, (2013) 014902

- Similar mass ordering at low p_T as the one reported for higher energies
- Fig. 12. The φ seems to deviate from the ordering at lower energies

BES: v₂ of particles

L. Adamczyk *et al*. (STAR Collaboration), Phys. Rev. **C88**, (2013) 014902

- \geqslant Similar mass ordering at low p_T as the one reported for higher energies
- Spread of $v_2(p_T)$ narrows with energy (not for antiparticles!)

BES: v₂ difference between particles and antiparticles

L. Adamczyk et al. (STAR Collaboration), Phys. Rev. C88, (2013) 014902

- Particle composition, baryon stopping change with energy
 - Is the difference a "trivial" effect or does it signal the transition to hadronic degrees of freedom?
- Models that couple hydro to baryon stopping seem to be getting similar differences with energy
- Situation is still quite unclear → need for further input from theorists

BES: Baryon/meson grouping (particles)

L. Adamczyk et al. (STAR Collaboration), Phys.Rev. C93 (2016) 014907

BES: Baryon/meson grouping (antiparticles)

L. Adamczyk et al. (STAR Collaboration), Phys.Rev. C93 (2016) 014907

Τα πάντα ρει...(everything flows)

Ηράκλειτος (Heraclitus) ~535 - 475 BC

Τα πάντα ρει...(everything flows)

B. Abelev et al. (ALICE Collaboration): Phys. Lett. B726, (2013) 164

Ηράκλειτος (Heraclitus) ~535 - 475 BC

Not only in A-A it seems but also for smaller systems!

Τα πάντα ρει...(everything flows)

(CMS Collaboration) arXiv:1606.06198 [nucl-ex]

Ηράκλειτος (Heraclitus) ~535 - 475 BC

Not only in A-A it seems but also for smaller systems!

Backup

(NA49 Collaboration): Phys.Rev. C68 (2003) 034903

p, (GeV/c)

(NA49 Collaboration): Phys.Rev.Lett. 80 (1998) 4136

B. Abelev et al. (ALICE Collaboration), Phys. Rev. C88, (2013) 044910

- Radial flow pushes particles to higher $p_T \rightarrow$ depletion at lower p_T
 - heavier particles "feel" more the boost \rightarrow the higher the mass the larger the low p_T depletion

Toy model (in-plane)

- Larger "push" in-plane than outof-plane as a function of mass
 - ★ larger low-p_T depletion in-plane than out-of-plane → lower v₂ in a mass dependent way

- Larger "push" in-plane than out-of-plane as a function of mass
 - ★ larger low-p_T depletion inplane than out-of-plane → lower v₂ in a mass dependent way

Heavy particles have lower v_2 at a fixed p_T than light particles

Looking at the details...: central events

- Systematic deviations for the majority of particle species (with the exception of K)
- Proton v_2 underestimated (i.e. extra push expected in hydro) but Λv_2 overestimated (i.e. less push expected in hydro)
- Mass ordering not preserved in VISHNU due to the hadronic cascade
 - not supported by ALICE data

How about higher harmonics?

hydro curves from: H.-J. Xu, Z. Li, and H. Song, Phys. Rev. **C93**, 064905 (2016)

Number of constituent quark (NCQ) scaling in p_T/n_q

Number of constituent quark (NCQ) scaling in p_T/n_q

Relevant range: $p_T/n_q > 1 \text{ GeV}/c$

The special role of the ϕ -meson

- Important test of:
 - \star mass ordering at low p_T
 - \star the particle type grouping at intermediate p_T

The special role of the φ-meson

- Important test of:
 - \star mass ordering at low p_T
 - \star the particle type grouping at intermediate p_{T}

B. Abelev *et al.*, (STAR Collaboration), Phys. Rev. Lett. 99, (2007) 112301

S. Afanasiev *et al.*, (PHENIX Collaboration), Phys. Rev. Lett. **99**, (2007) 052301

The special role of the φ -meson

- Important test of:
 - ★ mass ordering at low p_T
 - \star the particle type grouping at intermediate p_{T}

Mass effect also at the intermediate p_T range!
Challenges the coalescence picture???

- At low p_T (p_T < 3 GeV/c): mass ordering \rightarrow elliptic/radial flow interplay
 - ★ First bins could hint to a different ordering? Still inconclusive...
- Intermediate p_T (3 < p_T < 6 GeV/c) the ϕ -meson follows
 - ★ the baryon band for central events
 - the meson band for peripheral events

Violation of mass ordering at RHIC

L. Adamczyk et al. (STAR Collaboration), Phys.Rev.Lett. 116 (2016) 062301

Number of constituent quark (NCQ) scaling in p_T/n_q

Scaling only approximate

NCQ scaling in p_T/n_q (double ratio)

NCQ scaling in p_T/n_q (double ratio)

Scaling at the level of no better than $\pm 20\%$

NCQ scaling in $(m_T - m_0)/n_q$

NCQ scaling in $(m_T - m_0)/n_q$

Introduced to extend the scaling to lower p_T

NCQ scaling in $(m_T - m_0)/n_q$ (double ratio)

NCQ scaling in $(m_T - m_0)/n_q$ (double ratio)

- For $(m_T m_0)/n_q < 0.6 0.8 \text{ GeV}/c^2$: scaling is broken at the LHC
- For $(m_T m_0)/n_q > 0.6 0.8 \text{ GeV}/c^2$: scaling is only approximate at the level of $\pm 20\%$

Scaling of higher harmonics @ RHIC

A. Adare et al. (PHENIX Collaboration), Phys. Rev. C 93, 051902 (2016)

- AMPT string melting describes the main features observed in data qualitatively
- Fails to describe data quantitatively
 - Radial flow reduced in AMPT by 25% compared with data

Spectra: How good is VISHNU doing?

ollaboration: Phys. Rev. C 88, 044910 (2013)

Mass ordering not preserved!!!

Heinz, T. Hirano and C. Shen, Phys. Rev. Lett. 106 (2011) 192301 [Erratumibid. 109 (2012) 139904] [arXiv: 1011.2783 [nucl-H. Song, S.A. Bass, U. Heinz, T. Hirano and C. Shen, Phys. Rev. C 83 (2011) 054910 [Erratum-ibid. C 86 (2012) 059903] [arXiv:1101.4638

VISH2+I H. song and U.W. Heinz, Phys. Lett. B 658 (2008) 279 [arXiv: 0709.0742 [nucl-th]]. H. Song and U.W. Heinz, Phys. Rev. C 77 (2008) 064901 [arXiv: 0712.3715 [nucl-th]]. H. Song and U.W. Heinz, Phys. Rev. C 78 (2008) 024902 [arXiv: 0805.1756 [nucl-th]].

Not a clear trend: π , K similar for both centralities, φ similar for central events but different for peripheral, some baryons (e.g. p, Λ) "pushed" to higher p_T, while others (e.g. Ξ) to lower p_T

Mass ordering preserved

NCQ scaling in $(m_T - m_0)/n_q$ (double ratio)

- For $(m_T m_0)/n_q < 0.6 0.8 \text{ GeV}/c^2$: scaling is broken at the LHC
- For $(m_T m_0)/n_q > 0.6 0.8 \text{ GeV}/c^2$: scaling is only approximate at the level of $\pm 20\%$

Scaling properties at the LHC

NCQ scaling in $(m_T - m_0)/n_q$ (double ratio): evolution with energy

Qualitative similar deviations between LHC and RHIC, but the trend is different for different particle species

NCQ scaling in p_T/n_q (double ratio): evolution with energy

Qualitative similar deviations between LHC and RHIC, but the trend is different for different particle species

A. Adare et al., [PHENIX Collaboration], Phys. Rev. C85, (2012) 064914, [arXiv:1203.2644 [nucl-ex]].

Universal scaling of v₂ observed at RHIC?

B. Abelev *et al.*, (STAR Collaboration), Phys. Rev. **C75**, (2007) 054906

Deviations from the universal scaling at RHIC

A. Adare et al. (PHENIX Collaboration), Phys. Rev. C85, (2012) 064914

Ç.

Deviations for $KE_T/n_q > 0.8 \text{ GeV}/c^2$ depend on centrality

Deviations from the universal scaling at RHIC

A. Adare et al. (PHENIX Collaboration), Phys. Rev. C85, (2012) 064914

٥

Similar deviations observed by STAR?

BES: NCQ scaling

L. Adamczyk *et al.* (STAR Collaboration), Phys. Rev. **C88**, (2013) 014902

(STAR Collaboration): Phys.Rev. C86 (2012) 054908

From the Big-Bang

- The Quark-Gluon
 Plasma (QGP): a state
 of matter where the
 quarks and gluons are
 the relevant degrees of
 freedom
- We believe that the universe after expanding and cooling down went through this phase few µs after the Big-Bang
- Studying the strong phase transition → study primordial matter

From the Big-Bang to the Little-Bangs...

- QCD: Phase transition beyond a critical temperature (~170 MeV) and energy density (~0.5 GeV/fm³) → quarks and gluons are free → Quark Gluon Plasma (QGP)
- The properties of the QGP and the QCD Phase transition are poorly known from first principles

Little Bangs studied at RHIC and LHC

Colliding Au-ions at

- ★ $\sqrt{s_{NN}}$ = 130 and 200 GeV (RHIC "high energies") → mapping the crossover region for the first time
- ★ $\sqrt{s_{NN}} = 7.7$, 11.5, 19.6, 27, 39, and 62.4 GeV → searching for the critical point in the phase diagram (BES: Beam Energy Scan)

Little Bangs studied at RHIC and LHC

Soliding Pb-ions at $\sqrt{s_{NN}} = 2.76$ TeV → quantifying the QGP properties at $\mu_B \sim 0$

- Colliding Au-ions at
 - ★ √s_{NN} = 130 and 200 GeV (RHIC "high energies") → mapping the crossover region for the first time
 - ★ $\sqrt{s_{NN}} = 7.7$, 11.5, 19.6, 27, 39, and 62.4 GeV → searching for the critical point in the phase diagram (BES: Beam Energy Scan)

Elliptic flow

$$\varepsilon = \frac{\langle y^2 - x^2 \rangle}{\langle y^2 + x^2 \rangle}$$

$$\varepsilon = \frac{\langle y^2 - x^2 \rangle}{\langle y^2 + x^2 \rangle}$$

Superposition of independent pp collisions

$$\varepsilon = \frac{\langle y^2 - x^2 \rangle}{\langle y^2 + x^2 \rangle}$$

Superposition of independent pp collisions

Momenta pointing at random directions

$$\varepsilon = \frac{\langle y^2 - x^2 \rangle}{\langle y^2 + x^2 \rangle}$$

Development as a bulk system

high density and pressure at the center of the fireball

$$\varepsilon = \frac{\langle y^2 - x^2 \rangle}{\langle y^2 + x^2 \rangle}$$

Development as a bulk system

Asymmetric pressure gradients (larger in-plane than out-of-plane) push bulk out → flow

high density and pressure at the center of the fireball

$$\varepsilon = \frac{\langle y^2 - x^2 \rangle}{\langle y^2 + x^2 \rangle}$$

Development as a bulk system

Asymmetric pressure gradients (larger in-plane than out-of-plane) push bulk out → flow

More and faster particles inplane than out-of-plane

high density and pressure at the center of the fireball

$$\varepsilon = \frac{\langle y^2 - x^2 \rangle}{\langle y^2 + x^2 \rangle}$$

Development as a bulk system

Development as a bulk system

$$v_2 = \frac{\langle p_x^2 - p_y^2 \rangle}{\langle p_x^2 + p_y^2 \rangle}$$

$$v_2(p_p,\eta) = \langle cos[2(\varphi-\Psi_2)] \rangle$$

Studying the properties of the QGP

M. Roirdan and W. Zajc, Scientific American 34A May (2006)

EVIDENCE FOR A DENSE LIQUID

