

From pato as an experimental overview on quarkonium at LHC

Roberta Arnaldi INFN Torino

Outlook

Selection on results on

- Charmonium: J/ψ and ψ (2S)
- Bottomonium: $\Upsilon(1S)$, $\Upsilon(2S)$, $\Upsilon(3S)$

in pPb and PbPb collisions at LHC energies

AA: hot matter effects

the original idea

quarkonium production suppressed via color screening in the QGP

sequential melting

differences in quarkonium binding energies lead to a sequential melting with increasing temperature

(re)combination

enhanced quarkonium production through (re)combination during QGP phase or at hadronization

P. Braun-Muzinger, J. Stachel, PLB 490(2000) 196 R. Thews et al, Phys.Rev.C63:054905(2001)

DA: CNM effects

- Cold nuclear matter effects: might affect quarkonium production on top of hot matter mechanisms
 - nuclear parton shadowing/ color glass condensate
 - energy loss
 - $c\bar{c}$ in medium break-up

- the assessment of the size of these effects is fundamental to interpret quarkonium A-A results
- Nuclear modification factor

$$R_{AA}^{J/\psi} = \frac{Y_{AA}^{J/\psi}}{\langle T_{AA} \rangle \sigma_{nn}^{J/\psi}}$$

Medium effects are quantified comparing the AA quarkonium yield with the pp one, scaled by a geometrical factor (from Glauber model)

- $R_{AA} = 1 \rightarrow \text{no medium effects}$ $R_{AA} \neq 1 \rightarrow \text{hot/cold matter effects}$

Cuarkonium at Li-C

Facility	Experiment	System	√s _{NN} (GeV)	Data taking
LHC ATL		Pb-Pb	2760 5020	2010-2012 2015
	ALICE ATLAS CMS LHCb	p-Pb	5020	2013
		pp	2760	2010-2016
			5020	
			7000	
			8000	
			13000	

Cuarkonium at Lhc

Clarkonium at LHC

Facility	Experiment	System	√s _{NN} (GeV)	Data taking
LHC AT		Pb-Pb	2760 5020	2010-2012 2015
	ALICE ATLAS CMS LHCb	p-Pb	5020	2013
		рр	2760	2010-2016
			5020	
			7000	
			8000	
			13000	

- pp, pA and AA systems have been studied
- top LHC energies now reached!

LHC Run-1

LHC Run-2

Clarkonium ha COUSIONS

Evidence of recombination for low p_T J/ψ

Observation corroborated by the comparison of LHC results with

1) lower energy experiments

Run-1 JV: where we stand? 10

Evidence of recombination for low $p_T J/\psi$

Observation corroborated by the comparison of LHC results with

- 1) lower energy experiments2) theoretical models
- models including (re)combination of J/ψ in QGP or in the hadronic phase provide a reasonable description of ALICE results
 - still rather large theory uncertainties: models will benefit from a precise measurement of σ_{cc} and CNM effects

Run-1 JV: where we stand? 11

Evidence of recombination for low $p_T J/\psi$

Observation corroborated by the comparison of LHC results with

- 1) lower energy experiments
- 2) theoretical models
- 3) high $p_T J/\psi$ results
- suppression stronger at higher √s, as expected from QGP dissociation
- opposite J/ψ behavior compared to low- p_T results
- negligible re(combination) effects expected at high p_T

Jy results from Run-2

Pb-Pb collisions @ $\sqrt{s_{NN}}$ =5.02TeV

High statistics Run-2 allows the R_{AA} evaluation in narrow centrality bins

Similar centrality dependence at the two energies, with an increasing suppression up to N_{part}~100, followed by a plateau

 R_{AA} @ 5.02TeV is ~15% higher than the one at 2.76TeV, even if within uncertainties

v theory models

Brackets represents the possible range of variation of the hadronic J/ψ

TM1, TM2 (Du et al, Zhou et al): rate equation of suppression/regeneration in QGP SHM (Andronic et al): J/ψ produced by stat. hadronization at phase boundary CIM (Ferreiro): suppression by the comoving partonic medium and regeneration

- Data are compatible with theory models at both energies
- Still large uncertainties mainly due to the choice of σ_{cc}

Run-2 / V results

R_{AA} increases with p_T, at both energies, as expected in a regeneration scenario

Hint for an increase of R_{AA}, at 5.02TeV, in 2<p_T<6 GeV/c

Also $\sqrt{s_{NN}}$ =5.02TeV results support a picture where a combination of J/ψ suppression and (re)combination occurs in the QGP

VIZSI IN AA COUSIONS

 ψ (2S) production modified in AA with a strong kinematic dependence

Fw-y, $3 < p_T < 30 \text{GeV/c} \rightarrow R_{AA}^{J/\psi} < R_{AA}^{\psi(2S)}$

later $\psi(2S)$ regeneration, when radial flow is stronger, might explain the rise

Mid-y 6.5<p_T<30GeV/c $\rightarrow R_{AA}^{J/\psi} > R_{AA}^{\psi(2S)}$

stronger suppression of ψ(2S) wrt J/ψ
CMS, PRL 113(2014) 262301

Fw-y, $0 < p_T < 3 \text{GeV/c} \rightarrow R_{AA}^{J/\psi} > R_{AA}^{\psi(2S)}$

ALICE trend agrees with transport models and stat. hadronization approach

3HEP 05 (2016) 179

Run1 data not precise enough to conclude on $\psi(2S)$ behavior Run2 results eagerly awaited!

Yins production in AA

PRL 109, 222301 (2012)

- Main features of bottomonium production wrt charmonium:
- no B hadron feed-down
- smaller gluon shadowing effects
- negligible (re)combination
- more robust theoretical predictions due to the higher b quark mass

with a drawback...smaller production cross-section

Clear suppression of Υ states in PbPb with respect to pp collisions

August 30th 2016 Roberta Arnaldi CONF12

Run-1 Yinsi where we stand?

Sequential suppression observed at LHC in Run 1:

$$R_{AA}^{\Upsilon(3S)} < R_{AA}^{\Upsilon(2S)} < R_{AA}^{\Upsilon(1S)}$$

 $R_{AA}(\Upsilon(1S)) = 0.43\pm0.03\pm0.07$ $R_{AA}(\Upsilon(2S)) = 0.13\pm0.03\pm0.02$ $R_{AA}(\Upsilon(3S)) < 0.14$ at 95% CL

- centrality dependent suppression for $\Upsilon(1S)$ and $\Upsilon(2S)$
- at LHC $\Upsilon(1S)$ is already suppressed in semiperipheral collisions, while at RHIC only in the central ones

feed-down from excited states + CNM are enough to explain the observed $\Upsilon(1S)$ suppression?

Run-I Yins results

- \longrightarrow no p_T or y dependence of the Y(1S) and Y(2S) suppressions
- \rightarrow models reproduce the p_T and centrality dependence
- rapidity description still needs tuning

Run-2 Yins results

- Centrality dependent $\Upsilon(1S)$ R_{AA} suppression observed also at $\sqrt{s_{NN}}=5.02$ TeV
- No firm conclusion on the R_{AA} energy dependence within the current uncertainties

YIns theory models

- Theory models, with (Emerick et al.) or without (Zhou et al.) regeneration component, qualitatively reproduce the data within uncertainties
- Different trend in data and theory for most forward-y?

DA I / V results

 J/ψ affected by CNM effects, with a strong y and p_T dependence:

- $\rightarrow R_{pA}$ decreases towards forward y
- data consistent with shadowing and coherent parton energy loss models
- agreement with CGC depends on implementation
- good agreement between ALICE and LHCb (similar kinematic range)

different behavior at mid-y for low and high $p_T J. \psi$

mid and fw-y: suppression increases vs centrality and is larger at low p_T backward-y: hint for increasing Q_{pA} vs centrality, with rather flat p_T trend

Shadowing and coherent energy loss models in fair agreement with data

- ψ (2S) suppression is stronger than the J/ ψ one, both at RHIC and LHC
- \rightarrow unexpected since time spent by the cc in the nucleus (τ_c) is shorter than charmonium formation time (τ_f)
- \rightarrow shadowing and energy loss, almost identical for J/ ψ and ψ (2S), do not account for the different suppression

Only models including QGP + hadron resonance gas or comovers describe the stronger ψ(2S) suppression

YISIN DA COUSIONS

Shadowing and energy loss models are compatible at forward-y
At backward-y smaller antishadowing is suggested

ALICE, Phys. Lett. B 740 (2015) 105 ATLAS-CONF-2015-050 ,LHCb, JHEP 07(2014)094 No significant rapidity dependence of Υ(1S) R_{pA} (ALICE and LHCb agree within uncertainties)

Y excited states in pa

p-Pb vs pp @mid-y:

Stronger excited states suppression with respect to $\Upsilon(1S)$ Initial state effects similar for the three Υ states

→ Final states effects in p-Pb?

p-Pb vs PbPb @mid-y:

even stronger suppression of excited states in PbPb

 $\Upsilon(2S)/\Upsilon(1S)$ (ALICE)

°2.03<y<3.53:° 0.27±0.08±0.04 (2012)

-4.46<y<-2.96: 0.26±0.09±0.04

compatible with pp results 0.26 ± 0.08 (ALICE, pp@7TeV)

Rapidity dependent final state effects at play?

Conclusions

Run1 results at $\sqrt{s}=2.76$ TeV highlight the role of suppression and recombination mechanisms at play on the various quarkonium states

First Run2 results at $\sqrt{s}=5.02$ TeV confirm the picture, showing a rather similar suppression level

Interplay of shadowing and energy loss describes J/ψ and Υ production

Comover-like effects seem to affect excited quarkonium states

August 30th 2016 Roberta Arnaldi CONF12

Backup slides

AA: From Suppression.

the original idea:

quarkonium production suppressed via color screening in the QGP

sequential melting

differences in the quarkonium binding energies lead to a sequential melting with increasing temperature

 $T>>T_c$

 $\psi(2S)$ $J/\psi \Upsilon(1S)$

Quarkonium as QGP thermometer

Evolution of J/y « D-2»

TM1: Zhao et al., Nucl.Phys.A859 (2011) 114 TM2: Zhou et al. Phys.Rev.C89 (2014)054911

$$\mathsf{r}_{\mathsf{A}\mathsf{A}} = rac{\langle p_T^2 \rangle_{\mathsf{A}\mathsf{A}}}{\langle p_T^2 \rangle_{\mathsf{pp}}}$$

r_{AA} centrality evolution strongly depends on √s

decreasing r_{AA} trend, observed at LHC
 → due to (re)combination, which dominates J/ψ production at low p_T

transport models, already describing J/ψ R_{AA} , also reproduce the r_{AA} evolution

J/Wat very low o

Strong R_{AA} enhancement in peripheral collisions for $0 < p_T < 0.3$ GeV/c

- significance of the excess is $5.4 (3.4)\sigma$ in 70-90% (50-70%)
- behaviour not predicted by transport models
 - excess might be due to coherent J/ψ photoproduction in PbPb (as measured also in UPC)

if excess is "removed" requiring $p_T^{J/\psi}$ >0.3GeV/c \rightarrow ALICE R_{AA} lowers by 20% at maximum (in the most peripheral bin)

RAA VS DT

Multi-oiferential / y studies4

 p_T -centrality multi-differential studies allows detailed comparison with theory models

0-20% 20-40% 40-90%

TM1

TM1 Zhao et al., Nucl.Phys.A859 (2011) 114
TM2 Zhou et al. Phys.Rev.C89 (2014)054911

····· Primordial J/ψ (TM1)

---Regenerated J/ψ (TM1)

-·· Primordial J/ψ (TM2)

--- Regeneration J/ψ (TM2)

Model provide a fair description of the data, even if with different balance of primordial/regeneration components

Still rather large theory uncertainties: models will benefit from precise measurement of σ_{cc} and CNM effects

VIOW

The contribution of J/ ψ from (re)combination should lead to a significant elliptic flow

Hint for J/ ψ flow at LHC, contrary to $v_2 \sim 0$ observed at RHIC!

ALICE: qualitative agreement with transport models including regeneration CMS: path-length dependence suppression effect?

LHC RUN-ZJV results

model	σ _{cē}	N-N σ _{J/ψ}	comover σ _{J/ψ}	Shadowing
Transport(Rapp)	0.57 mb	3.14 µb		EPS09
Transport(Zhou)	0.82 mb	3.5 µb	-	EPS09
Stat. hadronization	0.45 mb	5 1	-	EPS09
Comovers	[0.45,0.7] mb	3.53 µb	0.65 mb	Glauber-Gribov theory

Forward-to-Backward Ratio :

$$\begin{split} R_{\mathrm{FB}}(p_{\mathrm{T}},y) &= \frac{d^2\sigma(p_{\mathrm{T}},y>0)/dp_{\mathrm{T}}dy}{d^2\sigma(p_{\mathrm{T}},y<0)/dp_{\mathrm{T}}dy} \\ &= \frac{\mathrm{p\text{-}going}\left(\mathrm{x}\!\!\sim\!\!10^{\text{-}4}\right)}{\mathrm{Pb\text{-}going}\left(\mathrm{x}\!\!\sim\!\!10^{\text{-}2}\right)} \end{split}$$

From DA to AA

- Once CNM effects are measured in pPb, what can we learn on J/ψ production in PbPb?
 - Hypothesis:
- $2\rightarrow 1$ kinematics for J/ ψ production
- CNM effects (dominated by shadowing) factorize in p-A
- CNM obtained as $R_{pA} \times R_{Ap}$, similar x-coverage as PbPb

CNM effects not enough to explain PbPb data at high p_T

Evidence for hot matter effects in Pb-Pb!

VIZSI DEOCUCTION IN DA

- Being more weakly bound than the J/ ψ , the ψ (2S) is an interesting probe to have further insight on the charmonium behaviour in pA
- \longrightarrow Low energy $\psi(2S)$ p-A results from NA50, E866 and HERA-B:

$mid-y (x_F \sim 0)$:

 $\psi(2S)$ suppression stronger than J/ψ one, interpreted via pair break-up

→ fully formed resonances traversing the nucleus

charmonium formation time < crossing time

forward-y (high x_F):

suppression becomes identical

→ dominated by energy loss

VIZSI VERSUS CROSSING TIME 40

D. McGlinchey, A. Frawley and R.Vogt, PRC 87,054910 (2013)

Forward-y: $\tau_c << \tau_f$ interaction with nuclear matter cannot play a role

Backward-y: $\tau_c \lesssim \tau_f$ indication of effects related to break-up in the nucleus?

Comparison to theoretical models41

QGP+hadron resonance gas (Rapp) or comovers models (Ferreiro) reasonably describe both J/ ψ and ψ (2S) suppression at RHIC and LHC

J/w

→ small suppression beyond CNM effects

$\psi(2S)$

→ strongly
affected by
comovers due
to its larger size
→ comovers
more important
in the A-going
direction

ΨISI/ I/Ψ double ratio 42

Similar suppression trend observed versus centrality, by both ALICE and PHENIX

QGP+hadron resonance gas (Rapp) or comovers models (Ferreiro) describe the observed suppression

V VS EV. ACTIVITY

- Is the multiplicity affecting the Y(nS)?
- Are the Y(nS) produced differently with multiplicity?

Y compared to theory

