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Wanted: QCD observables, O, which ...

o are gauge invariant & non-perturbatively defined through the (Euclidean) QCD
path integral:

©) = 21 / DIA, 4, FIOLA, 1, F] exp {5}

o depend on a single scale u = 1/L, with L* the space-time volume. Other
dimensionful parameters (momenta, distances,..) are scaled with L or set to
zero (quark masses);

@ can be expanded perturbatively in as(u) = g2(L)/(4n):
(0) = co+ cras(p) + c2a2(p) + . ..

= give rise to non-perturbatively defined couplings:

def (O) — ¢
ap(p) = <>0710 = as(p) + cha2(p) + chad(p) + . ..



Example: a family of SF couplings

@ Dirichlet b.cs in Euclidean time, abelian boundary values Cy, C,’c:
Ak(z)‘xozo :Ck:(nvl’)’ Ak(x)|x0:L = Cllc(nv V)

= induce family of abelian, spatially constant background fields B, with
parameters n, v (— 2 abelian generators of SU(3)):

Bi(x) = Cr(nv) + 7 (CLn.v) = Culn.v)) . Bo=0.

@ Induced background field is unique up to gauge equivalence

o Effective action

e TIB) = / DIA, %, gleS4¥¥] T[B] = LT0[B] + I'1[B] + O(g3)

%
o Define family of SF couplings, parameter v:

1 aer 9,I'[B] (3y5)
G(L)  OyTolBl| _,~ ,TolB]

—vo(L)

!
=2
n—o (L)

= response of the system to a change of a colour electric background field.
[Narayanan et al. '92]



Testing perturbation theory: use the A-parameter |

o Non-perturbatively defined coupling g?(L) implies non-perturbative definition of
[B-function:

_,def 0g(L)

B(g) = —bog® —b1g° +...
with universal coefficients by, b1 (i.e. by, k > 2 scheme dependent)
bo = (11 — ZNy)/(4m)?, by = (102 — 3B Ng)/(4m)* .
o Exact solution of Callan-Symanzik equation [LO/OL — 8(g)0/9g] LA =0

LA = »(g(D))

) [b *2]7;71% ~ Shog { /gd { S bl}}
w(@ = |bog e exp | — 9| =+ =5 5

0 Blg)  bog® big
@ Scheme dependence of A almost trivial:

A C.
9% (1) = g% (1) + exy 9y (W) + . = ﬁ:e xv/2bo

= use A = Asf,, — o as reference.



Testing perturbation theory: use the A-parameter Il

o Introduce a reference scale 1/Lg through:

1

)
Lo)=2012 = —— = _— __
9" (Lo) 92(Lo)  2.012

v X 9(Lg) (s. below)

o Consider

LoA = Lo/L  x MM x 0 @Gu(L)
~—~— ~—~—
known exp(—vx1.25516)

o Non-perturbative results for 1/Lo < pu < 1/L (s. below)

o Perturbation theory for > 1/L by replacing 3. (g9) — B, 3-100p(g) in:

9, (L) 1 1 by
gu (L x exp{— dg{ —i————]}
# (9 (L) /0 5o(9) " bog®  Bg
Busioop(9) = —bog® —big® —baug’,
b2, = (=0.06(3) — v x 1.26)/(4n)3 [Bode, Weisz, Wolff '99]

e N.B.: LoA must be independent of L and v = excellent test of PT!



Non-perturbative running in steps and determination of Lg/L

Vary scale by factor 2, define step-scaling function [Liischer, Weisz, Wolff '91]:

o) =g L)y

@ Connection to B-function:

o o(u) can be constructed as the continuum limit of lattice approximants (s.
below)

@ Once o(u) is available for a range of values u € [umin, uo]

= iteratively step up the energy scale:
uo = g*(Lo), un =0(unt1) =g>(Ln) =5 (27"Lo), n=0,1,..

= scale ratios are Lo/Ln = 2™, where n is the number of steps.



Lattice approximants X (u, a/L) for o(u)

o choose go and L/a =4,
measure g2 (L) = u (defines
value of u)

@ double the lattice and measure
S(u, 1/4) = §°(2L)

@ now choose L/a = 6 and tune
gfy such that g2(L) = u is
satisfied

@ double the lattice and measure

(u,1/6) = g2(2L)

= 1li > L
o(w) = Jim E(ue/L)

o change u and repeat...

(AL

£(2.u.1/4)

z(2,u,1/8)

(g9?



Continuum extrapolation of ¥ (u,a/L)

Example for global fit ansatz:

a? a?

3(u,a/L) =u+ sou? + s1u® + crut + cou® + p1u4ﬁ + p2u5§

@ sg, s1 fixed to perturbative values: sg = 2bpIn2, s; = sg + 2b1 In2

@ 4 parameters: cy,c2, p1,p2; 19 data points, xz/d.o.f. ~1
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Result for LgA
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@ All results agree at a = 0.1, we quote

LoA = 0.0303(8) error < 3% !

o For v = 0.3 this result could be inferred from larger values of «, but not for
v = —0.5!



Continuum results v = w(u) = vy +u X vo + . ..

— two-loop PT
011 e b b b b b b v b b by
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

a(l/Ly)

0.14 F ]
3 0.13F .
[ 3dy,...,ds ]

0.12 - =4y, ...,d; b

o Continuum extrapolation analogous to o(u)

@ LoA calculation for v # 0 requires v(Lo) = w(2.012) = 0.1199(10)
(u=2.012 < a = 0.16)

@ Observe large deviation from perturbation theory at a = 0.19:

(w(§2) —v1 — 112§2) Jv1 = —3.7(2)a?



Conclusions

SF, schemes have very advantageous properties for perturbative expansion:
@ Euclidean, finite space-time volume => no renormalon issues;
@ perturbative coefficients of S-function well-behaved for any choice v = O(1);

@ large gap to secondary minimum of the action: AS = 1072/3 = negligible
perturbative effect on observables for a < 0.2.

Stringent test of PT by studying remnant L, v-dependence of LoA for
1/Lo =~ 4GeV < 1/L < 128 GeV

@ 3% accuracy for A can be safely quoted provided o = 0.1 is reached:
LoA = 0.0303(8) = LOA%:S =0.0791(21)
o For v = —0.5 uncertainties much larger if data limited to o > 0.15
= perturbative uncertainties may be to blame for inconsistent s determinations.

o For A%:B in physical units and an estimate of as(myz)
cf. next talk by Mattia Dalla Brida!

o For running quark mass results cf. talk by Patrick Fritzsch on August 29th.



