Probing QCD perturbation theory at high energies with continuum extrapolated lattice data

Mattia Dalla Brida a , Patrick Fritzsch b , Tomasz Korzec c , Alberto Ramos d , Stefan Sint e , Rainer Sommer a,f

a NIC-DESY, Zeuthen, Germany
b IFT-CSIC, Madrid, Spain
Bergische Universität Wuppertal, Germany
d CERN, Geneva, Switzerland
Trinity College Dublin, Ireland
f Humboldt Universität, Berlin, Germany

XIIth Quark Confinement and the Hadron Spectrum

Thessaloniki, 1 September 2016

Wanted: QCD observables, O, which ...

 are gauge invariant & non-perturbatively defined through the (Euclidean) QCD path integral:

$$\langle O \rangle = \mathcal{Z}^{-1} \int D[A, \psi, \overline{\psi}] O[A, \psi, \overline{\psi}] \exp\{-S\}$$

- depend on a single scale $\mu=1/L$, with L^4 the space-time volume. Other dimensionful parameters (momenta, distances,...) are scaled with L or set to zero (quark masses);
- can be expanded perturbatively in $\alpha_s(\mu) = \bar{g}^2(L)/(4\pi)$:

$$\langle O \rangle = c_0 + c_1 \alpha_s(\mu) + c_2 \alpha_s^2(\mu) + \dots$$

⇒ give rise to non-perturbatively defined couplings:

$$\alpha_O(\mu) \stackrel{\text{def}}{=} \frac{\langle O \rangle - c_0}{c_1} = \alpha_s(\mu) + c_1' \alpha_s^2(\mu) + c_2' \alpha_s^3(\mu) + \dots$$

Example: a family of SF couplings

• Dirichlet b.c.'s in Euclidean time, abelian boundary values C_k , C_k' :

$$A_k(x)|_{x_0=0} = C_k(\eta, \nu), \qquad A_k(x)|_{x_0=L} = C'_k(\eta, \nu)$$

 \Rightarrow induce family of abelian, spatially constant background fields B_{μ} with parameters η, ν (\rightarrow 2 abelian generators of SU(3)):

$$B_k(x) = C_k(\eta, \nu) + \frac{x_0}{L} \left(C'_k(\eta, \nu) - C_k(\eta, \nu) \right), \qquad B_0 = 0.$$

- Induced background field is unique up to gauge equivalence
- Effective action

$$e^{-\Gamma[B]} = \int D[A, \psi, \overline{\psi}] e^{-S[A, \psi, \overline{\psi}]}, \qquad \Gamma[B] = \frac{1}{g_0^2} \Gamma_0[B] + \Gamma_1[B] + O(g_0^2)$$

• Define family of SF couplings, parameter ν :

$$\frac{1}{\bar{g}_{\nu}^{2}(L)} \stackrel{\text{def}}{=} \left. \frac{\partial_{\eta} \Gamma[B]}{\partial_{\eta} \Gamma_{0}[B]} \right|_{\eta=0} = \left. \frac{\langle \partial_{\eta} S \rangle}{\partial_{\eta} \Gamma_{0}[B]} \right|_{\eta=0} = \frac{1}{\bar{g}^{2}(L)} - \nu \bar{v}(L)$$

⇒ response of the system to a change of a colour electric background field. [Narayanan et al. '92]

Testing perturbation theory: use the Λ -parameter I

• Non-perturbatively defined coupling $\bar{g}^2(L)$ implies non-perturbative definition of β -function:

$$\beta(\bar{g}) \stackrel{\text{def}}{=} -L \frac{\partial \bar{g}(L)}{\partial L}, \qquad \beta(g) = -b_0 g^3 - b_1 g^5 + \dots$$

with universal coefficients b_0 , b_1 (i.e. b_k , $k \geq 2$ scheme dependent)

$$b_0 = (11 - \frac{2}{3}N_{\rm f})/(4\pi)^2, \qquad b_1 = (102 - \frac{38}{3}N_{\rm f})/(4\pi)^4.$$

• Exact solution of Callan-Symanzik equation $[L\partial/\partial L - \beta(\bar{g})\partial/\partial \bar{g}] L\Lambda = 0$

$$\begin{split} L\Lambda &=& \varphi\left(\bar{g}(L)\right) \\ \varphi\left(\bar{g}\right) &=& \left[b_{0}\bar{g}^{2}\right]^{-\frac{b_{1}}{2b_{0}^{2}}} \mathrm{e}^{-\frac{1}{2b_{0}\bar{g}^{2}}} \exp\left\{-\int_{0}^{\bar{g}} dg \left[\frac{1}{\beta(g)} + \frac{1}{b_{0}g^{3}} - \frac{b_{1}}{b_{0}^{2}g}\right]\right\} \end{split}$$

ullet Scheme dependence of Λ almost trivial:

$$g_{\rm X}^2(\mu) = g_{\rm Y}^2(\mu) + c_{\rm XY} g_{\rm Y}^4(\mu) + \dots \quad \Rightarrow \quad \frac{\Lambda_{\rm X}}{\Lambda_{\rm Y}} = {\rm e}^c {\rm x_Y}^{/2b_0}$$

 \Rightarrow use $\Lambda = \Lambda_{SF,\nu} = 0$ as reference.

Testing perturbation theory: use the Λ -parameter II

• Introduce a reference scale $1/L_0$ through:

$$\bar{g}^2(L_0) = 2.012 \quad \Rightarrow \quad \frac{1}{\bar{g}_{\nu}^2(L_0)} = \frac{1}{2.012} - \nu \times \bar{v}(L_0) \quad \text{(s. below)}$$

Consider

$$L_0 \Lambda = \underbrace{L_0/L}_{\mathrm{known}} \quad \times \quad \underbrace{\Lambda/\Lambda_{\nu}}_{\mathrm{exp}(-\nu \times 1.25516)} \times \quad \varphi \left(\bar{g}_{\nu}(L)\right)$$

- Non-perturbative results for $1/L_0 \le \mu \le 1/L$ (s. below)
- Perturbation theory for $\mu > 1/L$ by replacing $\beta_{\nu}(g) \to \beta_{\nu,3\text{-loop}}(g)$ in:

$$\begin{split} \varphi\left(\bar{g}_{\nu}(L)\right) & \propto & \exp\left\{-\int_{0}^{\bar{g}_{\nu}(L)} dg \left[\frac{1}{\beta_{\nu}(g)} + \frac{1}{b_{0}g^{3}} - \frac{b_{1}}{b_{0}^{2}g}\right]\right\} \\ \beta_{\nu,3\text{-loop}}(g) & = & -b_{0}g^{3} - b_{1}g^{5} - b_{2,\nu}g^{7}, \\ b_{2,\nu} & = & (-0.06(3) - \nu \times 1.26)/(4\pi)^{3} \quad \text{[Bode, Weisz, Wolff '99]} \end{split}$$

• N.B.: $L_0\Lambda$ must be independent of L and $\nu \Rightarrow$ excellent test of PT!

Non-perturbative running in steps and determination of L_0/L

Vary scale by factor 2, define step-scaling function [Lüscher, Weisz, Wolff '91]:

$$\sigma(u) = \bar{g}^2(2L) \Big|_{u = \bar{g}^2(L)},$$

• Connection to β -function:

$$\int_{\sqrt{u}}^{\sqrt{\sigma(u)}} \frac{dg}{\beta(g)} = -\ln 2$$

- $\sigma(u)$ can be constructed as the continuum limit of lattice approximants (s. below)
- Once $\sigma(u)$ is available for a range of values $u \in [u_{\min}, u_0]$
- ⇒ iteratively step up the energy scale:

$$u_0 = \bar{g}^2(L_0), \quad u_n = \sigma(u_{n+1}) = \bar{g}^2(L_n) = \bar{g}^2(2^{-n}L_0), \quad n = 0, 1, \dots$$

 \Rightarrow scale ratios are $L_0/L_n=2^n$, where n is the number of steps.

Lattice approximants $\Sigma(u, a/L)$ for $\sigma(u)$

- choose g_0 and L/a=4, measure $\bar{g}^2(L)=u$ (defines value of u)
- double the lattice and measure

$$\Sigma(u, 1/4) = \bar{g}^2(2L)$$

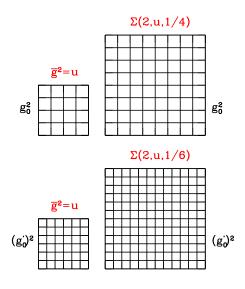
- now choose L/a=6 and tune g_0' such that $\bar{g}^2(L)=u$ is satisfied
- double the lattice and measure

$$\Sigma(u, 1/6) = \bar{g}^2(2L)$$

• ...

$$\sigma(u) = \lim_{a/L \to 0} \Sigma(u, a/L)$$

ullet change u and repeat...

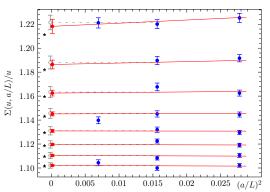


Continuum extrapolation of $\Sigma(u, a/L)$

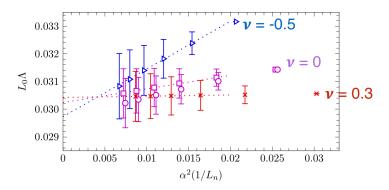
Example for global fit ansatz:

$$\Sigma(u, a/L) = u + s_0 u^2 + s_1 u^3 + c_1 u^4 + c_2 u^5 + \rho_1 u^4 \frac{a^2}{L^2} + \rho_2 u^5 \frac{a^2}{L^2}$$

- s_0 , s_1 fixed to perturbative values: $s_0=2b_0\ln 2$, $s_1=s_0^2+2b_1\ln 2$
- 4 parameters: c_1, c_2, ρ_1, ρ_2 ; 19 data points, $\chi^2/\text{d.o.f.} \approx 1$



Result for $L_0\Lambda$



 \bullet All results agree at $\alpha=0.1,$ we quote

$$L_0\Lambda = 0.0303(8)$$
 error $< 3\%$!

• For $\nu=0.3$ this result could be inferred from larger values of α , but not for $\nu=-0.5!$

Continuum results $\bar{v} = \omega(u) = v_1 + u \times v_2 + \dots$



- Continuum extrapolation analogous to $\sigma(u)$
- $L_0\Lambda$ calculation for $\nu \neq 0$ requires $\bar{v}(L_0) = \omega(2.012) = 0.1199(10)$ $(u=2.012 \Leftrightarrow \alpha=0.16)$
- Observe large deviation from perturbation theory at $\alpha = 0.19$:

$$\left(\omega(\bar{g}^2) - v_1 - v_2\bar{g}^2\right)/v_1 = -3.7(2)\alpha^2$$

Conclusions

 SF_{ν} schemes have very advantageous properties for perturbative expansion:

- Euclidean, finite space-time volume ⇒ no renormalon issues;
- **②** perturbative coefficients of β -function well-behaved for any choice $\nu = O(1)$;
- large gap to secondary minimum of the action: $\Delta S = 10\pi^2/3 \Rightarrow$ negligible perturbative effect on observables for $\alpha < 0.2$.

Stringent test of PT by studying remnant L,ν -dependence of $L_0\Lambda$ for $1/L_0\approx 4\,{\rm GeV}<1/L<128\,{\rm GeV}$

• 3% accuracy for Λ can be safely quoted provided $\alpha=0.1$ is reached:

$$L_0 \Lambda = 0.0303(8) \quad \Rightarrow \quad L_0 \Lambda_{\overline{MS}}^{N_f=3} = 0.0791(21)$$

- For $\nu=-0.5$ uncertainties much larger if data limited to $\alpha>0.15$
- \Rightarrow perturbative uncertainties may be to blame for inconsistent $lpha_s$ determinations.
 - For $\Lambda_{\overline{\rm MS}}^{N_{\rm f}=3}$ in physical units and an estimate of $\alpha_s(m_Z)$ cf. next talk by Mattia Dalla Brida!
 - For running quark mass results cf. talk by Patrick Fritzsch on August 29th.