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The vertex and the three-gluon Green's function
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The gauge fields are to be nonperturbatively obtained from lattice QCD simulations

and applied then to get the gluon Green's functions




The vertex and the three-gluon Green's function

Symmetric configuration:
q2 = r2 = pzaﬂdq-r= qgp=rp= _qszZ.,

A5(g, 1, p) =T$),,(a: 7 P)Pora@ Py (F)Pyr(p).

"li,uv(q! rs P) = (J" - P)ﬂ:(p - q)#(q - r)v/rz-

A (g) = (A%QAL(—9)) = 6 A(PY)Pu(q),

where P,,(q) = 6,, — q.4,/9*, implies directly that G is totally
transverse: g¢-G=r-G=p-G =0.

In Landau gauge and for particular kinematical configurations, transversality and

Bose symmetry make possible a simple tensorial decomposition of the gluon
Green's function



The vertex and the three-gluon Green's function

Symmetric configuration:
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A (g) = (A%QAL(—9)) = 6 A(PY)Pu(q),

where P,,(q) = 6,, — q.4,/9*, implies directly that G is totally
transverse: g¢-G=r-G=p-G =0.

In Landau gauge and for particular kinematical configurations, transversality and

Bose symmetry make possible a simple tensorial decomposition of the gluon
Green's function



The vertex and the three-gluon Green's function

Symmetric configuration:

ﬁﬁ(q, F, P) = (A';(Q)Ai(r)ﬂi(m) = fﬂbcgcmv(q, D), F=r=pandgr=gp=rp=—g/2
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A (g) = (A%QAL(—9)) = 6 A(PY)Pu(q),

where P,,(q) = 6,, — q.4,/9*, implies directly that G is totally
transverse: g¢-G=r-G=p-G =0.

"li,uv(qv rs P) = (J" - P)ﬂ:(p - q)#(q - r)v/rz-

In Landau gauge and for particular kinematical configurations, transversality and

Bose symmetry make possible a simple tensorial decomposition of the gluon
Green's function



The vertex and the three-gluon Green's function
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Asymmetric configuration:
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A (g) = (A%QAL(—9)) = 6 A(PY)Pu(q),

where P,,(q) = 6,, — q.4,/9*, implies directly that G is totally
transverse: g¢-G=r-G=p-G =0.

In Landau gauge and for particular kinematical configurations, transversality and

Bose symmetry make possible a simple tensorial decomposition of the gluon
Green's function



The vertex and the three-gluon Green's function

Symmetric configuration:

ﬁﬁ(q, F, P) = (A';(Q)Ai(r)ﬂi(m) = fﬂbcgcmv(q, D), F=r=pandgr=gp=rp=—g/2
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After the required projection and the appropriate renormalization, one can define a

QCD coupling from the Green's functions, and relate it to the 1Pl vertex form factor,
in both symmetric...



The vertex and the three-gluon Green's function

Asymmetric configuration:

G (g, 1, p) = (AXUPALNASPD)) = F¥*Goy(q. T, D),
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After the required projection and the appropriate renormalization, one can define a

QCD coupling from the Green's functions, and relate it to the 1Pl vertex form factor,
in both symmetric and asymmetric kinematical configurations.



The vertex and the three-gluon Green's function

Let's focus on the symmetric coupling:
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Logarithmic running

—» accounted for by

perturbation theory

power law
clearly appears to
rise up from data
within the IR
domain

Can we somehow
interpret this
feature?

Two domains, wherein very different running behaviors appear to dominate each, lie

separated by a momentum scale of the order of




Multi-instanton background

The classical gauge field solution from a multi-instanton ensemble can be cast as the so-
called rafio ansatz [E.V. Shuryak; Nucl.Phys.B302(1988)574]
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physics.adelaide.edu.au/theory/staff/leinweber/VisualQCD/QCDvacuum/
ations of QCD” by Derek B. Leinweber



http://www.physics.adelaide.edu.au/theory/staff/leinweber/VisualQCD/QCDvacuum/

Multi-instanton background

The classical gauge field solution from a multi-instanton ensemble can be cast as the so-
called rafio ansatz [E.V. Shuryak; Nucl.Phys.B302(1988)574]
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aventually obtained by minimization of the

f(z) i
il f instantons (classical background).

| konov, V. Petrov; Nucl.Phys.B45386(1992)236
et al.; Phys.Rev.D70(2004)114503
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The classical gauge field can be effectively accounted for by an independent pseudo-particule
sum ansatz approach in both large- and low-distance regimes.



Multi-instanton background
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Multi-instanton background |
/ Instanton density
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Multi-instanton background |
/ Instanton density
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Multi-instanton background |
/ Instanton density
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Multi-instanton background |
/ Instanton density

= n(p"I"kp) )
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where p =

V{(p?) and 8p° = ((p — p)?)

The asymptotic behavior at both the large- and low-momentum limits appears to be
driven by , the result relying on a very general ground,
irrespective of the details of the profile and its breaking of the scale independence.
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where 5 = /(p?) and §p° = ((p — p)?)

The asymptotic behavior at both the large- and low-momentum limits appears to be
driven by , the result relying on a very general ground,
irrespective of the details of the profile and its breaking of the scale independence.

This is consistent with the low-momentum behavior obtained from the lattice gluon
correlation functions!!!
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The large-momentum limit in
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solution appears here hidden
by the quantum UV
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where 5 = /(p?) and §p° = ((p — p)?)

The asymptotic behavior at both the large- and low-momentum limits appears to be
driven by , the result relying on a very general ground,
irrespective of the details of the profile and its breaking of the scale independence.

This is consistent with the low-momentum behavior obtained from the lattice gluon
correlation functions!!!




The Wilson flow smoothing procedure

The Wilson flow B (¢, x) of an SU(N) gauge field is defined by [V. Luescher;
JHEP02(2010)071]

0,B,=D,G,,
where ¢ =4’ © is the so-called flow time and

G, =0,B,—0,B,+|B,,B,
D, = au+[Bw ' }

tree-level:

The Wilson flow has been proven to be an useful tool to deprive the lattice gauge fields
from their short-distance (UV) quantum fluctuations.




The Wilson flow smoothing procedure

The Wilson flow B (¢, x) of an SU(N) gauge field is defined by [V. Luescher;
JHEP02(2010)071]
0,B,=D,G,,

where ¢ =4’ Tt is the so-called flow time and

Table 1
Gpw = @M B v 8V B " —+ [ B u> B v Estimates for the densities, obtained as explained
in the text, for the different flow times, also ex-
D — a + [ B . } pressed in physical units. For this to be done, ac-
u W w>’ cording to [27], we have defined /8ty = 0.3 fm,
whence ty = a?ty = 0.0113 fm? and t = rinfﬂ- At
T =4, in the unquenched case, the characteristic
diffusion length is so small that quantum fluctua-
tions have not been properly removed yet.

with the in

T t/tg n (fm™)
Quenched 4 6.84
8 13.7
15 25.6
2 Unquenched 181 igg
K(t;x)= 15 8.84

47[1)2

(

The Wilson flow has been proven to be an useful tool to deprive the lattice gauge fields
from their short-distance (UV) quantum fluctuations.



The Wilson flow smoothing procedure
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Table 1

Estimates for the densities, obtained as explained
in the text, for the different flow times, also ex-
pressed in physical units. For this to be done, ac-
cording to [27], we have defined /8ty = 0.3 fm,
whence ty = a?ty = 0.0113 fm? and t = rinfﬂ- At
T =4, in the unquenched case, the characteristic
diffusion length is so small that quantum fluctua-
tions have not been properly removed yet.

T t/tg n (fm™*

Quenched 4 6.84 3.5(1)
_2 L 1 | 1 L 1 1 i 1 1 1 1 | 1 1 | 1 1 1 1 L [ ] | 1 1 1 L L Ll | | 1 L B 13? 1?5(4]
04 0.2 0 0.2 15 256 0.98(5)
Log[k /1 GeV]
Unquenched 4 2.34

8 4,70
15 8.84
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The Wilson flow has been proven to be an useful tool to deprive the lattice gauge fields

from their short-distance (UV) quantum fluctuations.



The Wilson flow smoothing procedure
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imates for the densities, obtained as explained
in the text, for the different flow times, also ex-
pressed in physical units. For this to be done, ac-
cording to [27], we have defined /8ty = 0.3 fm,
whence ty = a?ty = 0.0113 fm? and t = rinfﬂ- At
T =4, in the unquenched case, the characteristic
diffusion length is so small that quantum fluctua-
tions have not been properly removed yet.
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B T T e ariet 8 13.7 1.75(4)
g e b o 15 256  0.98(5)
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8 470

998)014505] 13 8.84

The Wilson flow has been proven to be an useful tool to deprive the lattice gauge fields
from their short-distance (UV) quantum fluctuations.

The main features observed in the gluon correlations obtained with lattice flown gauge
fields can be well described within the multi-instanton approach framework.



The Wilson flow smoothing procedure
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Estimates for the densities, obtained as explained
in the text, for the different flow times, also ex-
pressed in physical units. For this to be done, ac-
cording to [27], we have defined /8ty = 0.3 fm,
whence ty = a?ty = 0.0113 fm? and t = rinfﬂ- At

T =4, in the unquenched case, the characteristic
diffusion length is so small that quantum fluctua-
tions have not been properly removed yet.

T t/tg n (fm™*
Quenched 4 6.84 3.5(1)
8 13.7 1.75(4)
15 25.6 0.98(5)
Unquenched 4 2.34

8 4.70 é.s{:a]
884  3.0(2)

The Wilson flow has been proven to be an useful tool to deprive the lattice gauge fields

from their short-distance (UV) quantum fluctuations.
The main features observed in the gluon correlations obtained with lattice flown gauge
fields can be well described within the multi-instanton approach framework.




The zero-crossing of the three-gluon vertex

g'(q’)
4" Al 1)
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[=sym,asym.

sym 2 — 3Tsym(q2>
g""(q")=q [A(qz)]yz |
asym 2y 3 Tasym qz

—

g(uw) I'(p,p)

i
—a

The form factor for the tree-level tensor structure of the 1PI three-gluon vertex appear to show
similar IR behavior in both symmetric and asymmetric kinematic configurations of momenta.
The asymmetric case is however noisier than the symmetric one!



The zero-crossing of the three-gluon vertex

zero-crossing

A.C Aguilar et al.; PRD89(2014)05008

A. Blum et al.; PRD89(2014)061703

G. Eichmann et al.; PRD89(2014)105014
A.K. Cyrol et al.; arXiv:1605.01856[hep-ph]
A. Cucchieri, A. Maas, T. Mendes;

PRD74(2006)014503;PRD77(2008)094510

gV R (g% 1) = \/

2

Inp? [A(p2 )

sym( 2
()T = —E )
¢ Aglg’ )]
2F~
- Tsym(q2) N/"‘\ 1
3% 2 — 3
g""(q’) AT =

+  Bp=5.6-6.2 (Wilson)
+ B=4.2 (1Sym)

B=3.8 (tISym)
= = Instanton

lI..lllLI.llll.l.lllll..llll!lLl.L.I..Ll

q [GeV]

Let's then focus (again) on the symmetric case: the form factor appears to change its sign at
very deep IR momenta and show then a zero-crossing. This feature, happening below ~0.2

GeV, is not accounted for by the semiclassical instanton picture.




The zero-crossing of the three-gluon vertex ACAgularetal; PRD8(2014)05008
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Let's then focus (again) on the symmetric case: the form factor appears to change its sign at
very deep IR momenta and show then a zero-crossing. This feature, happening below ~0.2

GeV, is not accounted for by the semiclassical instanton picture.



The zero-crossing of the three-gluon vertex ACAgularetal; PRD8(2014)05008

ql;_zml + clog q—2

e

a+ blog

bl oy : i —1¢p2. 2
+m’, [—] Tra(E50) = FO; )5 AR (6342,

—

-1 ey — 2
ﬂR {qzlf-"- ).f:ﬂ q

-------

2 — +  Bp=5.6-6.2 (Wilson)
; - B=4.2 (tISym)

3 H B=3.8 (tISym)
I — - Instanton

lI.lllLI.lllI.I.lllLI.lllL!lLlI..I..Ll
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Let's then focus (again) on the symmetric case: the form factor appears to change its sign at
very deep IR momenta and show then a zero-crossing. This feature, happening below ~0.2

GeV, is not accounted for by the semiclassical instanton picture.



- I i A.C Aguilar et al.; PRD89(2014)05008
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Let's then focus (again) on the symmetric case: the form factor appears to change its sign at
very deep IR momenta and show then a zero-crossing. This feature, happening below ~0.2

GeV, is not accounted for by the semiclassical instanton picture. It's a soft quantum effect!!!



A.C Aguilar et al.; PRD89(2014)05008

The zero-crossing of the three-gluon vertex ;2290
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The data for the asymmetric case display a behavior much noisier... but compatible with the
predicted one on the basis of the soft quantum effect that comes out from the ghost sector.




Conclusions:

 2- and 3-gluon Green functions have been deprived from the UV
quantum fluctuations by applying the Wilson flow and then shown to be
well described as correlations in the field of a multi-instanton ensemble.

» The Wilson flow smoothing procedure leaves the low-momentum
domain of these Green functions essentially unmodified; and gets rid of
the fundamental QCD scale Aycp (which indicates where the mechanism
driving the transition from asymptotically free to confinement regimes take
place).

reen function shows a feature at very
I-instanton picture: the zero-crossing

contribution of unprotected (by a mass) ¢
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