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The vertex and the three-gluon Green's function

Tree-level Symanzik gauge action

The gauge fields are to be nonperturbatively obtained from lattice QCD simulations 
and applied then to get the gluon Green's functions   



  

The vertex and the three-gluon Green's function

In Landau gauge and for particular kinematical configurations, transversality and 
Bose symmetry make possible a simple tensorial decomposition of the gluon 
Green's function   

Γαμ ν(q , r , p) = ΓT
sym(q2) λαμν

tree (q , r , p)+ ΓS
sym(q2) λαμν

S (q , r , p)

Gαμ ν(q , r , p) = T sym(q2) λαμ ν
tree (q , r , p) + S sym(q2) λαμν

S (q , r , p)

Symmetric configuration:
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The vertex and the three-gluon Green's function

Γαμ ν(q , r , p) = ΓT
sym(q2) λαμν

tree (q , r , p) + ΓS
sym(q2) λαμ ν

S (q , r , p)

Gαμ ν(q , r , p) = T sym(q2) λαμ ν
tree (q , r , p) + S sym(q2) λαμ ν

S (q , r , p)

Asymmetric configuration:

W αμ ν= λαμ ν
tree + λαμ ν

S /2

q→0 ; r2= p2=− p⋅r

In Landau gauge and for particular kinematical configurations, transversality and 
Bose symmetry make possible a simple tensorial decomposition of the gluon 
Green's function   



  

The vertex and the three-gluon Green's function

After the required projection and the appropriate renormalization, one can define a 
QCD coupling from the Green's functions, and relate it to the 1PI vertex form factor, 
in both symmetric...

Symmetric configuration:

  MOM renormalization prescription:

g sym(μ2)ΓT , R
sym (q2 ;μ2) =

g sym(q2)

[q2ΔR(q
2 ;μ2)]3/2



  

The vertex and the three-gluon Green's function

  MOM renormalization prescription:

g asym(μ2)ΓT , R
asym(q2 ;μ2) =

g asym(q2)

[q2ΔR(q
2 ;μ2)]3 /2

Asymmetric configuration:

q→0 ; r2= p2=− p⋅r

After the required projection and the appropriate renormalization, one can define a 
QCD coupling from the Green's functions, and relate it to the 1PI vertex form factor, 
in both symmetric and asymmetric kinematical configurations.



  

The vertex and the three-gluon Green's function

αsym(q2) =
(g sym(q2))2

4π
= q6

4π
[T sym(q2)]2

[Δ(q2)]3
Let's focus on the symmetric coupling:

of the order of  ΛQCD

Logarithmic running 
accounted for by 
perturbation theory

A k4 power law 
clearly appears to 
rise up from data 
within the IR 
domain 
Can we somehow 
interpret this 
feature?

Two domains, wherein very different running behaviors appear to dominate each, lie 
separated by a momentum scale of the order of ΛQCD



  

Multi-instanton background

The classical gauge field solution from a multi-instanton ensemble can be cast as the so-
called ratio ansatz [E.V. Shuryak; Nucl.Phys.B302(1988)574] 

yi=x− zi

ρi
ημ ν , R(i)

aα
`t Hooft symbols and color rotation matrices

instanton radius

http://www.physics.adelaide.edu.au/theory/staff/leinweber/VisualQCD/QCDvacuum/ 

“Visualizations of QCD” by Derek B. Leinweber

http://www.physics.adelaide.edu.au/theory/staff/leinweber/VisualQCD/QCDvacuum/


  

Multi-instanton background

f(z) is a shape function [f(0)=1] that might be eventually obtained by minimization of the 
action per particle for some statistical ensemble of instantons (classical background). 

yi=x− zi

Then:

ρi
ημ ν , R(i)

aα
`t Hooft symbols and color rotation matrices

instanton radius

The classical gauge field can be effectively accounted for by an independent pseudo-particule 
sum ansatz approach in both large- and low-distance regimes. 

D. Diakonov, V. Petrov; Nucl.Phys.B45386(1992)236

Boucaud et al.; Phys.Rev.D70(2004)114503

The classical gauge field solution from a multi-instanton ensemble can be cast as the so-
called ratio ansatz [E.V. Shuryak; Nucl.Phys.B302(1988)574] 



  

Multi-instanton background

g 0
mG(m)(k 2) = 1

N
W a1…am

μ1…μm 〈g 0 Aμ1

a1(k 1)…g0 Aμm

am(km)〉

G(2)(k 2)=Δ(k 2) ; G(3)(k 2)=T sym(k 2)
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Multi-instanton background
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o ( z∞ )

The asymptotic behavior at both the large- and low-momentum limits appears to be 
driven by the fourth power of the momentum, the result relying on a very general ground, 
irrespective of the details of the profile and its breaking of the scale independence.    

Instanton density



  

Multi-instanton background

αsym(k 2) = k 6

4π
[G(3) (k 2)]2

[G(2)(k 2)]3
= k 4

18π n
〈ρ9 I 3(k ρ)〉2

〈ρ6 I 2(k ρ)〉3

The asymptotic behavior at both the large- and low-momentum limits appears to be 
driven by the fourth power of the momentum, the result relying on a very general ground, 
irrespective of the details of the profile and its breaking of the scale independence. 
This is consistent with the low-momentum behavior obtained from the lattice gluon 
correlation functions!!!    



  

Multi-instanton background

αsym(k 2) = k 6

4π
[G(3) (k 2)]2

[G(2)(k 2)]3
= k 4

18π n
〈ρ9 I 3(k ρ)〉2

〈ρ6 I 2(k ρ)〉3

The asymptotic behavior at both the large- and low-momentum limits appears to be 
driven by the fourth power of the momentum, the result relying on a very general ground, 
irrespective of the details of the profile and its breaking of the scale independence. 
This is consistent with the low-momentum behavior obtained from the lattice gluon 
correlation functions!!!    

The large-momentum limit in 
the field of a multi-instanton 
solution appears here hidden 
by the quantum UV 
fluctuations!!! 



  

The Wilson flow smoothing procedure

The Wilson flow has been proven to be an useful tool to deprive the lattice gauge fields 
from their short-distance (UV) quantum fluctuations.

The Wilson flow               of an SU(N) gauge field is defined byBμ(t , x) [M. Luescher; 
JHEP02(2010)071]

∂t Bμ= DνGνμ

where                 is the so-called flow time and t = a2 τ

Gμν = ∂μ Bν−∂ν Bμ+[Bμ , Bν ]
Dμ= ∂μ+[Bμ ,⋅ ]

with the initial condition                           . Bμ (0, x) = Aμ (x)

Then, the expansion in terms of            gives at tree-level:Aμ(x)

Bμ(t , x) =∫d 4 y K (t ; x− y) Aμ(x)

K (t ; x)= e−x
2/4t

(4π t )2
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The Wilson flow smoothing procedure

The Wilson flow has been proven to be an useful tool to deprive the lattice gauge fields 
from their short-distance (UV) quantum fluctuations.

α(k 2) = k 4

18π n
×

β=4.20



  

The Wilson flow smoothing procedure

The Wilson flow has been proven to be an useful tool to deprive the lattice gauge fields 
from their short-distance (UV) quantum fluctuations. 
The main features observed in the gluon correlations obtained with lattice flown gauge 
fields can be well described within the multi-instanton approach framework. 

α(k 2) = k 4

18π n
×

δρ2 /ρ2 = 0.014 → σ p /ρ≃√2 ln (2)δρ2 /ρ2 = 0.14

Fairly consistent with lattice estimates made by applying direct 
instanton detection:                                  σ p /ρ∼0.17−0.22 [D.A. Smith, M.J. Teper; PRD58(1998)014505]

β=4.20



  

The Wilson flow smoothing procedure

The Wilson flow has been proven to be an useful tool to deprive the lattice gauge fields 
from their short-distance (UV) quantum fluctuations. 
The main features observed in the gluon correlations obtained with lattice flown gauge 
fields can be well described within the multi-instanton approach framework. 

β=1.95

α(k 2) = k 4

18π n
×

δρ2 /ρ2 = 0.013 → σ p /ρ≃√2 ln (2)δρ2 /ρ2 = 0.13



  

The zero-crossing of the three-gluon vertex

g i(μ2)ΓT , R
i (q2 ;μ2)=

g i(q2)

[q2ΔR(q
2 ;μ2)]3/2

i=sym ,asym.

The form factor for the tree-level tensor structure of the 1PI three-gluon vertex appear to show 
similar IR behavior in both symmetric and asymmetric kinematic configurations of momenta. 
The asymmetric case is however noisier than the symmetric one!  

g sym(q2) = q3T
sym(q2)

[Δ(q2)]3 /2

g asym(q2) = q3 T asym(q2)
Δ(0)[Δ(q2)]1 /2



  

The zero-crossing of the three-gluon vertex

g sym(μ2)ΓT , R
sym (q2 ;μ2) =

g sym(q2)

[q2ΔR(q
2 ;μ2)]3/2

Let's then focus (again) on the symmetric case: the form factor appears to change its sign at 
very deep IR momenta and show then a zero-crossing. This feature, happening below ~0.2 
GeV, is not accounted for by the semiclassical instanton picture.  

g sym(q2) = q3T
sym(q2)

[Δ(q2)]3 /2

zero-crossing

A.C Aguilar et al.; PRD89(2014)05008
A. Blum et al.; PRD89(2014)061703
G. Eichmann et al.; PRD89(2014)105014
A.K. Cyrol et al.; arXiv:1605.01856[hep-ph]
A. Cucchieri, A. Maas, T. Mendes; 
PRD74(2006)014503;PRD77(2008)094510 
   



  

The zero-crossing of the three-gluon vertex

Let's then focus (again) on the symmetric case: the form factor appears to change its sign at 
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A.C Aguilar et al.; PRD89(2014)05008
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The zero-crossing of the three-gluon vertex

Let's then focus (again) on the symmetric case: the form factor appears to change its sign at 
very deep IR momenta and show then a zero-crossing. This feature, happening below ~0.2 
GeV, is not accounted for by the semiclassical instanton picture. It's a soft quantum effect!!!  

A.C Aguilar et al.; PRD89(2014)05008
M.Tissier, N.Wschebor; PRD84(2011)045018

Ghost loop contribution!!!



  

The zero-crossing of the three-gluon vertex

The data for the asymmetric case display a behavior much noisier... but compatible with the 
predicted one on the basis of the soft quantum effect that comes out from the ghost sector. 

A.C Aguilar et al.; PRD89(2014)05008
M.Tissier, N.Wschebor; PRD84(2011)045018



  

Conclusions:

● 2- and 3-gluon Green functions have been deprived from the UV 
quantum fluctuations by applying the Wilson flow and then shown to be 
well described as correlations in the field of a multi-instanton ensemble.

● The Wilson flow smoothing procedure leaves the low-momentum 
domain of these Green functions essentially unmodified; and gets rid of 
the fundamental QCD scale         (which indicates where the mechanism 
driving the transition from asymptotically free to confinement regimes take 
place).

● Nevertheless, the three-gluon Green function shows a feature at very 
low-momentum not fitting in the multi-instanton picture: the zero-crossing 
which can be explained as a soft quantum effect induced by the 
contribution of unprotected (by a mass) ghost-loops.  

ΛQCD
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