X(3872) production in heavy ion collisions

F.S. Navarra

University of São Paulo

IFUSP São Paulo Brazil

Introduction

X production

Nucleus-nucleus collisions

Hadronic effects on X production

Summary

Martinez Torres, Khemchandani, FSN, Nielsen, Abreu, arXiv:1405.7583 ; 1604.07716

XIIth Quark Confinement and the Hadron Spectrum

from 28 August 2016 to 3 September 2016 Europe/Athens timezone

The X (3872) structure

Mixture?
$$\begin{cases} X = a |c\bar{c}\rangle + b |c\bar{c}q\bar{q}\rangle \\ X = a |\chi'_{c1}\rangle + b |D\bar{D}^*\rangle \end{cases}$$

The X (3872) production

B decays: $e^+ + e^- \rightarrow B^+ + B^ B^+ \rightarrow X + K^+ \longrightarrow X \rightarrow J / \psi + \pi^+ + \pi^-$

Nucleus-nucleus: ?

ExHIC Collab., Cho et al., PRL 106, 212001 (2011); PRC 84, 064910 (2011).

B decays

Meson Molecule

Tetraquark

Meson coalescence Small binding energy

E. Braaten, M. Kusunoki, hep-ph/0404161

Diquark-antidiquark picture

Non-relativistic potential

S.J. Brodsky, D.S. Hwang, R.F. Lebed, arXiv:1406.7281

Both approaches work !

Proton-proton

Meson molecule

Charm quark pairs generated with PYTHIA Fragmentation into D and D* Model for binding D and D* $\sigma_{\rm th} \simeq 0.01 \, \sigma_{\rm exp}$ (CDF) Bignamini et al., arXiv:0906.0882 Bignamini et al., arXiv:09012.5064 Guerrieri et al., arXiv:1405.7929 NRQCD

D D* rescattering

Relative momentum ~ pion mass

Artoisenet, Braaten, arXiv:0911.2016 Artoisenet, Braaten, arXiv:1007.2868 Dall'Osso et al., POS (Beauty 2013) 066 Charmonium - Molecule Mixture

$$X = a \left| \chi_{c1}^{\prime} \right\rangle + b \left| D \bar{D}^* \right\rangle$$

NRQCD

Meng, Han, Chao, arxiv:1304.6710

Pure D D* molecule ruled out !

K. Toms, ICHEP 2016 Chicago

Short distance interactions

~1 fm

Double parton scattering

Binding as in the Color Evaporation Model

Carvalho, Cazaroto, Goncalves, FSN, Phys. Rev. D93, 034004 (2016)

Nucleus - Nucleus

More charm from the initial state

Deconfined medium: quark-gluon plasma

Hadron gas phase after reconfinement

quark coalescence during the phase transition

meson-meson fusion in the hadron gas phase

meson coalescence in the end of the hadron gas phase

Quark coalescence during hadronization

Cho et al. ExHIC Collab., PRL 106, 212001 (2011); PRC 84, 064910 (2011)

X in the hadron gas phase

X absorption by light hadrons

Cho et al. ExHIC Collab., PRL 106, 212001 (2011); PRC 84, 064910 (2011)

X in a hadron gas

Production $\begin{cases} D + \overline{D} \to X + \pi \\ D + \overline{D}^* \to X + \pi \\ D^* + \overline{D}^* \to X + \pi \end{cases}$ Absorption $\begin{cases} X + \pi \to D + \overline{D} \\ X + \pi \to D + \overline{D}^* \\ X + \pi \to D^* + \overline{D}^* \end{cases}$

Cross sections from SU(4) effective Lagrangians Cho and Lee, arXiv:1302.6381, PRC (2013)

$$\mathcal{L}_{PPV} = -ig_{PPV} \langle V^{\mu}[P, \partial_{\mu}P] \rangle \qquad \qquad \mathcal{L}_{VVV} = ig_{VVV} \langle (V^{\mu}\partial_{\nu}V_{\mu} - \partial_{\nu}V_{\mu}V^{\mu})V^{\nu}) \rangle$$

$$P = \begin{pmatrix} \frac{\eta}{\sqrt{3}} + \frac{\eta'}{\sqrt{6}} + \frac{\pi^{0}}{\sqrt{2}} & \pi^{+} & K^{+} & \bar{D}^{0} \\ \pi^{-} & \frac{\eta}{\sqrt{3}} + \frac{\eta'}{\sqrt{6}} - \frac{\pi^{0}}{\sqrt{2}} & K^{0} & D^{-} \\ K^{-} & \bar{K}^{0} & -\frac{\eta}{\sqrt{3}} + \sqrt{\frac{2}{3}}\eta' & D^{-}_{s} \\ D^{0} & D^{+} & D^{+}_{s} & \eta_{c} \end{pmatrix} \qquad V_{\mu} = \begin{pmatrix} \frac{\omega + \rho^{0}}{\sqrt{2}} & \rho^{+} & K^{*+} & \bar{D}^{*0} \\ \rho^{-} & \frac{\omega - \rho^{0}}{\sqrt{2}} & K^{*0} & D^{*-} \\ K^{*-} & \bar{K}^{*0} & \phi & D^{*-}_{s} \\ D^{*0} & D^{*+} & D^{*+}_{s} & J/\psi \end{pmatrix}_{\mu}$$

$$\mathcal{L}_{D^*D\pi} = ig_{D^*D\pi} (D^*_{\mu} \partial^{\mu} \pi \bar{D} - D \partial^{\mu} \pi \bar{D}^*_{\mu})$$

$$\mathcal{L}_{XD^*D} = g_{XD^*D} X^{\mu} \bar{D}^*_{\mu} D$$
Cho and Lee,
arXiv:1302.6381

Some processes not included ! $D + \overline{D}^* \rightarrow X + \pi \qquad X + \pi \rightarrow D + \overline{D}^*$

Anomalous coupling terms

Martinez Torres, Khemchandani, FSN, Nielsen, Abreu, arXiv:1405.7583

$$\mathcal{L}_{D^*D^*\pi} = -g_{D^*D^*\pi} \epsilon^{\mu\nu\alpha\beta} \partial_\mu D^*_\nu \pi \partial_\alpha \bar{D^*}_\beta$$

$$\mathcal{L}_{XD^*D^*} = i g_{XD^*D^*} \epsilon^{\mu\nu\alpha\beta} \partial_\mu X_\nu \psi^\mu \bar{D}^*_\alpha D^*_\beta$$

L. Maiani, F. Piccinini, A.D. Polosa and V. Riquer, PRD 71 (2005) 014028

 $^{g}D^{*}D^{*}\pi^{i}$ from QCD sum rules Bracco, Chiapparini, FSN, Nielsen, arXiv:1104.2864, Prog. Part. Nucl. Phys. (2012)

Loop diagrams to calculate the X D* D* coupling

Divergences regularized by a cut-off: 700 - 1000 MeV

Thermally averaged cross sections

$$\langle \sigma_{ab \to cd} \, v_{ab} \rangle = \frac{\int d^3 \mathbf{p}_a d^3 \mathbf{p}_b \, f_a(\mathbf{p}_a) \, f_b(\mathbf{p}_b) \, \sigma_{ab \to cd} \, v_{ab}}{\int d^3 \mathbf{p}_a d^3 \mathbf{p}_b \, f_a(\mathbf{p}_a) \, f_b(\mathbf{p}_b)}$$

Corrections are very large !

Absorption MUCH stronger than production !

Time evolution of the X abundance

$$\frac{dN_X(\tau)}{d\tau} = R_{QGP}(\tau) + \sum_{l,c,c'} \left(\langle \sigma_{cc' \to lX} v_{cc'} \rangle n_c(\tau) N_{c'}(\tau) - \langle \sigma_{lX \to cc'} v_{lX} \rangle n_l(\tau) N_X(\tau) \right)$$
gain loss

Cooling and expansion

$$\begin{cases} T(\tau) = T_C - (T_H - T_F) \left(\frac{\tau - \tau_H}{\tau_F - \tau_H}\right)^{\frac{4}{5}}, \\ V(\tau) = \pi \left[R_C + v_C \left(\tau - \tau_C\right) + \frac{a_C}{2} \left(\tau - \tau_C\right)^2 \right]^2 \tau_C. \end{cases} \\ \begin{cases} N_{c'}(\tau) \approx \frac{1}{2\pi^2} \gamma_C g_D m_{D^{(*)}}^2 T(\tau) V(\tau) K_2 \left(\frac{m_{D^{(*)}}}{T(\tau)}\right), \\ n_c(\tau) \approx \frac{1}{2\pi^2} \gamma_C g_D m_{D^{(*)}}^2 T(\tau) K_2 \left(\frac{m_{D^{(*)}}}{T(\tau)}\right), \\ n_{\pi}(\tau) \approx \frac{1}{2\pi^2} \gamma_{\pi} g_{\pi} m_{\pi}^2 T(\tau) K_2 \left(\frac{m_{\pi}}{T(\tau)}\right), \end{cases} \end{cases}$$

D, D* and pion abundancies

Cho and Lee, arXiv1302.6381

Au-Au collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$

Dependence on the expansion model

Summary

- We want to use HIC to know the structure of the X
- X tetraquark is produced at the end of the plasma phase by quark coalescence
- In the hadron phase X can be produced and destroyed
- This is described by Effective Lagrangians.
- Here we have introduced terms with anomalous couplings
- Cross sections much larger
- Significant reduction of the X abundance
- X molecule is produced at the end of the hadron phase by meson coalescence

Conjecture: if we see any X in HIC, then it is a molecule !

Back ups

	Temp.(MeV)	Time (fm/c)
$R_C = 8.0 \text{ fm}$	$T_{C} = 175$	$\tau_C = 5.0$
$v_C = 0.4c$	$T_H = 175$	$\tau_H = 7.5$
$a_C = 0.02c^2/\mathrm{fm}$	$T_F = 125$	$\tau_F = 17.3$

	$\mathbf{J}^p = 1^+$	$\mathbf{J}^p = 2^-$
$g_{X_J D^* D}$	$3.5\pm0.7~{\rm GeV}$	189 ± 36
$g_{X_J\psi\rho}$	0.14 ± 0.03	$-0.29\pm0.08~{\rm GeV^{-1}}$
$g'_{X_J\psi\rho}$		$0.28 \pm 0.09 \text{ GeV}^{-1}$

$$F(\vec{q}) = \frac{\Lambda^2}{\Lambda^2 + \vec{q}^2},$$

$$R_{QGP}(\tau) = \begin{cases} N_X^0 / (\tau_H - \tau_C), & \tau_C < \tau < \tau_H \\ 0, & \text{otherwise} \end{cases}$$

Hadron production through coalescence $\rightarrow c \times exp\left(-\frac{M}{T}\right) \times [overlap]$

Introduction

New charmonium states

- 2003 Observation of X(3872) by BELLE $X \rightarrow J/\psi + \pi^+ + \pi^-$ (CDF, CMS, ATLAS...)
- 2008 Observation of Z⁺(4430) by BELLE $Z \rightarrow \psi^{'} + \pi^{+}$
- 2016 More than 20 confirmed states !

New "exotic" charmonium states : not just $c \overline{c}$

Summary I

Study X production to understand the X structure In B decays all models work In pp a pure molecular approach is disfavored Charmonium - molecule mixture seems to work Tetraquarks not fully explored yet

Double parton scattering may be very important !

 $D + \overline{D}^* \rightarrow X + \pi$

$$D + \overline{D}^* \rightarrow X + \pi$$

 $X D^* \overline{D}^*$ vertex is very important

Fit the tree level calculation to the loop calculation and extract the coupling :

 $g_{XD^*D^*} = 1.95 \pm 0.22$

Dependence on the cooling

Behavior of T?

Production in all phases

SU(4) matrices

Detailed balance

Molecula X tetraquark nas diversas fases

Citar exhic

M.Nielsen, F.S. Navarra and S.H. Lee, Phys. Rept. 497, 41 (2010) arXiv:0911.1958
M. Nielsen and F.S. Navarra, Mod. Phys. Lett. A 29, 1430005 (2014) arXiv:1401.2913

X production in nucleus - nucleus

Cho et al. ExHIC Collab., PRL 106, 212001 (2011); PRC 84, 064910 (2011)

Double parton scattering (DPS) in pp collisions

Two partons from the target scatter with two partons from the projectile Landshoff, Polkinghorne, PRD (1978) — M. Diehl, arXiv:1306.6059

Single parton scattering (SPS)

Double parton scattering (DPS)

DPS is enhanced by G(x) which is very large at the LHC

Double charm production in pp collisions

uncorrelated partons independent scatterings

$$\sigma_{h_{1}h_{2} \to Q_{1}\bar{Q}_{1}Q_{2}\bar{Q}_{2}}^{DPS} = \frac{\sigma_{h_{1}h_{2} \to Q_{1}\bar{Q}_{1}}^{SPS} \sigma_{h_{1}h_{2} \to Q_{2}\bar{Q}_{2}}^{SPS}}{\sigma_{eff}}$$

LHC: DPS = SPS !!!

Luszczak, Maciula, Szczurek, arXiv:1111.3255

Cazaroto, Goncalves, FSN, arXiv:1306.4169 Antideuteron production: the test of the roman model!

CMS data

A. Guerrieri et al., arXiv:1405.7929

Energy (TeV)	$\sigma_{c\bar{c}}$ (mb)	$\sigma_{\rm inel}~({\rm mb})$	σ_X (nb)
7	8.5 [28]	73.2 [27]	30.0 [9]
14			44.6 ± 17.7

Carvalho, Cazaroto, Goncalves, FSN, Phys. Rev. D93, 034004 (2016)

 $D^* + \overline{D}^* \rightarrow X + \pi$

anomalous terms

 $D^* + \overline{D}^* \rightarrow X + \pi$

 $X D^* \overline{D}^*$ vertex is very important !

Time evolution of the X abundancy

Some processes not included ! $D + \overline{D}^* \rightarrow X + \pi \qquad X + \pi \rightarrow D + \overline{D}^*$

Exotic hadrons :

New hadrons: which are not $q\overline{q}$ or qqq states. Multiquark systems!

Observed in many experiments:

e+e-, pp, AA (?)

20 new states ! Best known: X(3872) (PDG)

The X (3872) structure

Meson molecule Tetraguark π large compact nge $\begin{cases} X = a |\chi'_{c1}\rangle + b |D\bar{D}^*\rangle \\ X = a |c\bar{c}\rangle + b |c\bar{c}q\bar{q}\rangle \\ X = a |c\bar{c}\rangle + b |D\bar{D}^*\rangle \\ X = a |c\bar{c}q\bar{q}\rangle + b |D\bar{D}^*\rangle \end{cases}$ color exchange loosely bound meson exchange

Browse: Home / Déjeuner sur l'herbe (diptych), Alain Jacquet, 1964 DÉJEUNER SUR L'HERBE (DIPTYCH), ALAIN JACQUET, 1964

Proton-proton: $\sigma_{\rm exp} \simeq 30 \, {\rm nb}$ (CMS)

Meson molecule <

"Roman model"

Bignamini et al., arXiv:0906.0882

Charm quark pairs generated with PYTHIA Fragmentation into D mesons pairs Model for binding the D mesons

Result:

 $\sigma_{\rm th} \simeq 0.01 \, \sigma_{\rm exp}$

Problem for the molecular approach !

NRQCD plus rescattering in the final state: molecular approach describes the CDF data !

Predictions for the LHC :

P. Artoisenet, E. Braaten, arXiv:0911.2016

M. Dall'Osso et al., POS (Beauty 2013) 066 • The measured differential cross section (times the product of the relevant branching fractions) for prompt production of X(3872) is presented on the left, and the non-prompt production is presented on the right. The X(3872) is modeled as a mixture of a $\chi_{c1}(2P)$ and a \overline{D}^0D^{*0} molecular state.

