The non-perturbative unquenched quark model

XIIth Quark Confinement and the Hadron Spectrum

Thessaloniki, September 2016
D.R. Entem, P.G. Ortega, F. Fernández

University of Salamanca

Introduction

\square The naive quark model has been very successful classifying the particle spectra
\square However higher Fock components should be included (already considered in the Cornell model)
\square Unquenching the quark model includes these effects in a similar way as lattice unquenched calculations using dynamical quarks
\square The higher Fock components became more relevant in 2003 with the $X(3872)$ an other XYZ states
\square The $X(3872) \rightarrow J / \Psi \pi \pi$ decay is a clear indication that it can not be a pure $c \bar{c}$ state and can be naturally explained if a $D D^{*}$ component is present.
\square Excited states can be close to a hadron-hadron threshold and the multiquark component can be enhanced
\square One expects ground states (usually far from thresholds) to have small multiquark components

Introduction

\square Different approaches
\square Mass shift and mixing (as Phys. Rev. D17, 3090)
\square Systems of one or more $q \bar{q}$ coupled with close two meson channels (as Phys. Rev. D21, 772)
\square Unitarized quark models including two meson loops (as Phys. Rev. D29, 110)
\square Models usually study the influence of two-meson loops on the $c \bar{c}$ states
\square E. Eichten et al., Phys. Rev. D21 203
E. van Beveren and G. Rupp, hep-ph/0304105

■ J. Ferreti et al., Phys. Rev. D90 054010
\square A slightly different point of view P.G. Ortega et al., PRD 81, 054023
\square The influence on the dynamics of two meson channels of $q \bar{q}$ states is studied
\square This allows to study the shifts in mass and width of naive quark model states but also generates new states.
\square The $q \bar{q}$ components are always expanded as an expansion on the Eigenstates of the $q \bar{q}$ Hamiltonian.
\square Naive quark model states have to be chosen a priori
\square In this contribution we propose a new method to include all states leaving the $q \bar{q}$ wave function as an unknown, in order to check the convergence of the expansion on Eigenstates.

The Cornell Model

E. Eichten et al., Phys. Rev. D 17, 3090

The Hamiltonian is

$$
\begin{aligned}
H_{I} & =\frac{1}{2} \int d^{3} x d^{3} y: \rho_{a}(\vec{x}) \frac{3}{4} V(\vec{x}-\vec{y}) \rho_{a}(\vec{y}): \\
\rho_{a}(\vec{x}) & =\sum_{\text {flavors }} \psi^{\dagger}(\vec{x}) \frac{1}{2} \lambda_{a} \psi(\vec{x})
\end{aligned}
$$

$$
\Omega_{n m}(z)=\sum_{T} \int d^{3} p_{1} d^{3} p_{2}
$$

$$
\begin{equation*}
\times \frac{\langle n| U\left|\tau \overrightarrow{\mathrm{p}}_{1} \overrightarrow{\mathrm{p}}_{2}\right\rangle\langle m| U\left|\tau \overrightarrow{\mathrm{p}}_{2} \overrightarrow{\mathrm{p}}_{2}\right\rangle^{*}}{z-E_{1}-E_{2}} \tag{3.23}
\end{equation*}
$$

FIG. 8. The propagation of a $c \bar{c}$ pair in the presence of open and closed decay channels as described in the Green's function 9 .

(a)

(b)

(c)

$$
\begin{equation*}
\operatorname{Det}\left|\left(z-\epsilon_{n}\right) \delta_{n m}-\Omega_{n m}(z)\right|=0 \tag{3.28}
\end{equation*}
$$

Framework

The needed pieces are
\square The interaction between quarks: the Chiral Quark Model
\square The interaction between mesons: obtained from the quark interactions using the RGM
\square Coupling between one meson and two meson states: the ${ }^{3} P_{0}$ model
\square Solve the coupled system: Different approaches
\square Perturbatively: Mass shifts, widths and mixing
\square Study the two meson dynamics including coupling coupling with the one meson sectorSolving the coupled equations allows to obtain states above threshold

The Chiral Quark Model

J. Vijande et al., J. Phys. G 31

\square Spontaneous Chiral Symmetry Breaking \rightarrow
\rightarrow Goldstone bosons

$$
\begin{gathered}
\mathcal{M}=\bar{\Psi}\left(i \gamma^{\mu} \partial_{\mu}-M U^{\gamma_{5}}\right) \Psi \\
U^{\gamma_{5}}=e^{i \pi^{a} \lambda^{a} \gamma_{5} / f_{\pi}} \sim 1+\frac{1}{f_{\pi}} \gamma_{5} \lambda^{a} \pi^{a}-\frac{1}{2 f_{\pi}^{2}} \pi^{a} \pi^{a}
\end{gathered}
$$

\rightarrow Goldstone bosons exchange
\rightarrow Scalar boson exchanges

Gluon coupling

$$
\mathcal{L}_{g q q}=i \sqrt{4 \pi \alpha_{s}} \bar{\Psi} \gamma_{\mu} G_{c}^{\mu} \lambda^{c} \Psi
$$

\rightarrow One gluon exchange
\square Confinement
\square Interactions:

$$
V_{q_{i} q_{j}}=\left\{\begin{array}{l}
q_{i} q_{j}=n n \Rightarrow V_{C O N}+V_{O G E}+V_{G B E}+V_{S B E} \\
q_{i} q_{j}=n Q \Rightarrow V_{C O N}+V_{O G E} \\
q_{i} q_{j}=Q Q \Rightarrow V_{C O N}+V_{O G E}
\end{array}\right.
$$

The RGM

The hadron wave function

$$
\psi_{H}=\phi_{H}\left(\vec{p}_{\xi_{H}}\right) \chi_{S F} \xi_{c}
$$

The two hadron wave function

$$
\begin{aligned}
\psi_{H_{1} H_{2}} & =\mathcal{A}\left[\chi(\vec{P}) \psi_{H_{1}}^{S F} H_{2}\right] \\
& =\mathcal{A}\left[\phi_{H_{1}}\left(\vec{p}_{\xi_{H_{1}}}\right) \phi_{H_{2}}\left(\vec{p}_{\xi_{H_{2}}}\right) \chi(\vec{P}) \chi_{H_{1}}^{S F} H_{2} \xi_{c}\right]
\end{aligned}
$$

Rayleigh-Ritz variational principle (Resonating Group Method)

$$
\begin{gathered}
\left(\mathcal{H}-E_{T}\right)|\psi\rangle=0 \Rightarrow\langle\delta \psi|\left(\mathcal{H}-E_{T}\right)|\psi\rangle=0 \\
\left(\frac{\vec{P}^{\prime 2}}{2 \mu}-E\right) \chi\left(\vec{P}^{\prime}\right)+\int\left({ }^{\mathrm{RGM}_{D}} V_{D}\left(\vec{P}^{\prime}, \vec{P}_{i}\right)+{ }^{\mathrm{RGM}} K\left(\vec{P}^{\prime}, \vec{P}_{i}\right)\right) \chi\left(\vec{P}_{i}\right) d \vec{P}_{i}=0 \\
T_{\alpha}^{\alpha^{\prime}}\left(z ; p^{\prime}, p\right)=V_{\alpha}^{\alpha^{\prime}}\left(p^{\prime}, p\right)+\sum_{\alpha^{\prime \prime}} \int d p^{\prime \prime} p^{\prime \prime 2} V_{\alpha^{\prime \prime}}^{\alpha^{\prime}}\left(p^{\prime}, p^{\prime \prime}\right) \frac{1}{z-E_{\alpha^{\prime \prime}\left(p^{\prime \prime}\right)}} T_{\alpha}^{\alpha^{\prime \prime}}\left(z ; p^{\prime \prime}, p\right)
\end{gathered}
$$

Lippmann-Schwinger Equation

The $M_{1} M_{2}$ system

\square Quark interactions \rightarrow Cluster interaction.
For the $D D^{*}$ system only direct RGM Potential:

$$
\begin{aligned}
{ }^{R G M} V_{D}\left(\vec{P}^{\prime}, \vec{P}_{i}\right)= & \sum_{i \in A, j \in B} \int d \vec{p}_{\xi_{A}^{\prime}} d \vec{p}_{\xi_{B}^{\prime}} d \vec{p}_{\xi_{A}} d \vec{p}_{\xi_{B}} \\
& \phi_{A}^{*}\left(\vec{p}_{\xi_{A}^{\prime}}\right) \phi_{B}^{*}\left(\vec{p}_{\xi_{B}^{\prime}}\right) V_{i j}\left(\vec{P}^{\prime}, \vec{P}_{i}\right) \phi_{A}\left(\vec{p}_{\xi_{A}}\right) \phi_{B}\left(\vec{p}_{\xi_{B}}\right)
\end{aligned}
$$

$\square \phi_{C}\left(\vec{p}_{C}\right)$ is the wave function for cluster C solution of Schrödinger's equation using Gaussian Expansion Method.

The $M_{1} M_{2}$ system

\square Quark interactions \rightarrow Cluster interaction.
For the $D D^{*}$ system only direct RGM Potential:

$$
\begin{aligned}
{ }^{R G M} V_{D}\left(\vec{P}^{\prime}, \vec{P}_{i}\right)= & \sum_{i \in A, j \in B} \int d \vec{p}_{\xi_{A}^{\prime}} d \vec{p}_{\xi_{B}^{\prime}} d \vec{p}_{\xi_{A}} d \vec{p}_{\xi_{B}} \\
& \phi_{A}^{*}\left(\vec{p}_{\xi_{A}^{\prime}}\right) \phi_{B}^{*}\left(\vec{p}_{\xi_{B}^{\prime}}\right) V_{i j}\left(\vec{P}^{\prime}, \vec{P}_{i}\right) \phi_{A}\left(\vec{p}_{\xi_{A}}\right) \phi_{B}\left(\vec{p}_{\xi_{B}}\right)
\end{aligned}
$$

$\square \phi_{C}\left(\vec{p}_{C}\right)$ is the wave function for cluster C solution of Schrödinger's equation using Gaussian Expansion Method.

Rearrangement processes (like $D D^{*} \rightarrow J / \psi \omega$)

${ }^{3} P_{0}$ model

Pair creation Hamiltonian:

$$
\mathcal{H}=g \int d^{3} x \bar{\psi}(x) \psi(x)
$$

\square Non relativistic reduction:

$$
T=-3 \sqrt{2} \gamma^{\prime} \sum_{\mu} \int d^{3} p d^{3} p^{\prime} \delta^{(3)}\left(p+p^{\prime}\right)\left[\mathcal{Y}_{1}\left(\frac{p-p^{\prime}}{2}\right) b_{\mu}^{\dagger}(p) d_{\nu}^{\dagger}\left(p^{\prime}\right)\right]^{C=1, I=0, S=1, J=0}
$$

with $\gamma^{\prime}=2^{5 / 2} \pi^{1 / 2} \gamma, \gamma=\frac{g}{2 m}$ (in the light quark sector)
\square Transition potential:

$$
\left\langle\phi_{M_{1}} \phi_{M_{2}} \beta\right| T\left|\psi_{\alpha}\right\rangle=P h_{\beta \alpha}(P) \delta^{(3)}\left(\vec{P}_{c m}\right)
$$

${ }^{3} P_{0}$ model

J. Segovia, DRE, F. Fernández, Phys. Lett. B 715, 322 (2012)

Running coupling

$$
\gamma(\mu)=\frac{\gamma_{0}}{\log \left(\frac{\mu}{\mu_{0}}\right)}
$$

$\gamma_{0}=0,81 \pm 0,02$
$\mu_{0}=(49,84 \pm 2,58) \mathrm{MeV}$

Table 1

Meson decay widths which have been taken into account in the fit of the scaledependent strength, γ. Some properties of these mesons are also shown.

Meson	I	J	P	C	Mass (MeV)	$\Gamma_{\text {Exp. }}(\mathrm{MeV})$	
$D_{1}(2420)^{ \pm}$	$1 / 2$	1	+1	-	2423.4 ± 3.1	25 ± 6	$[21]$
$D_{2}^{*}(2460)^{ \pm}$	$1 / 2$	2	+1	-	2464.4 ± 1.9	37 ± 6	$[21]$
$D_{s 1}(2536)^{ \pm}$	0	1	+1	-	2535.12 ± 0.25	1.03 ± 0.13	$[22]$
$D_{s 2}^{*}(2575)^{ \pm}$	0	2	+1	-	2571.9 ± 0.8	17 ± 4	$[21]$
$\psi(3770)$	0	1	-1	-1	3778.1 ± 1.2	27.5 ± 0.9	$[21]$
$\Upsilon(4 S)$	0	1	-1	-1	10579.4 ± 1.2	20.5 ± 2.5	$[21]$

${ }^{3} P_{0}$ model

Table 3
Strong total decay widths calculated through the ${ }^{3} P_{0}$ model of the mesons which belong to charmed, charmed-strange, hidden charm and hidden bottom sectors. The value of the parameter γ in every sector is given by Eq. (10).

Meson	1	J	P	C	n	Mass (MeV)	$\Gamma_{\text {Exp. }}(\mathrm{MeV})$	[21]	$\Gamma_{\text {The }}(\mathrm{MeV})$
$D^{*}(2010)^{ \pm}$	0.5	1	-1	-	1	2010.28 ± 0.13	$0.096 \pm 0.004 \pm 0.022$		0.036
$D_{0}^{*}(2400)^{ \pm}$	0.5	0	+1	-	1	$2403 \pm 14 \pm 35$	$283 \pm 24 \pm 34$		212.01
$D_{1}(2420)^{ \pm}$	0.5	1	+1	-	1	2423.4 ± 3.1	25 ± 6		25.27
$D_{1}(2430)^{0}$	0.5	1	+1	-	2	$2427 \pm 26 \pm 25$	$384_{-75}^{+107} \pm 74$		229.12
$D_{2}^{*}(2460)^{ \pm}$	0.5	2	+1	-	1	2464.4 ± 1.9	37 ± 6		64.07
$D(2550)^{0}$	0.5	0	-1	-	2	$2539.4 \pm 4.5 \pm 6.8$	$130 \pm 12 \pm 13$	[29]	132.07
$D^{*}(2600)^{0}$	0.5	1	-1	-	2	$2608.7 \pm 2.4 \pm 2.5$	$93 \pm 6 \pm 13$	[29]	96.91
D $(2750)^{0}$	0.5	$\left[\begin{array}{l} 2 \\ 3 \end{array}\right]$	-1	-	1	$2752.4 \pm 1.7 \pm 2.7$	$71 \pm 6 \pm 11$	[29]	$\left[\begin{array}{l}229.86 \\ 107.64\end{array}\right]$
D) ${ }^{*}(2760)^{0}$	0.5	1	-1	-	3	$2763.3 \pm 2.3 \pm 2.3$	$60.9 \pm 5.1 \pm 3.6$	[29]	338.63
$D_{51}(2536)^{ \pm}$	0	1	+1	-	1	2535.12 ± 0.25	1.03 ± 0.13	[22]	0.99
$D_{s 2}^{*}(2575)^{ \pm}$	0	2	+1	-	1	2571.9 ± 0.8	17 ± 4		18.67
$D_{s 1}^{*}(2710)^{ \pm}$	0	1	-1	-	2	$2710 \pm 2_{-7}^{+12}$	$149 \pm 7_{-52}^{+39}$	[30]	170.76
$D_{s j}^{*}(2860)^{ \pm}$	0	$\left[\begin{array}{l} 1 \\ 3 \end{array}\right]$	-1	-	$\left[\begin{array}{l} 3 \\ 1 \end{array}\right]$	$2862 \pm 2_{-2}^{+5}$	$48 \pm 3 \pm 6$	[30]	[$\left.\begin{array}{l}153.19 \\ 85.12\end{array}\right]$
$D_{s j}(3040)^{ \pm}$	0	1	+1	-	$\left[\begin{array}{l}3 \\ 4\end{array}\right]$	$3044 \pm 8_{-5}^{+30}$	$239 \pm 35_{-42}^{+46}$	[30]	$\left[\begin{array}{l}301.52 \\ 432.54\end{array}\right]$
$\psi(3770)$	0	1	-1	-1	3	3778.1 ± 1.2	27.5 ± 0.9		26.47
$\psi(4040)$	0	1	-1	-1	4	4039 ± 1	80 ± 10		111.27
$\psi(4160)$	0	1	-1	-1	5	4153 ± 3	103 ± 8		115.95
$X(4360)$	0	1	-1	-1	6	$4361 \pm 9 \pm 9$	$74 \pm 15 \pm 10$	[31]	113.92
ψ (4415)	0	1	-1	-1	7	4421 ± 4	62 ± 20		159.02
X (4640)	0	1	-1	-1	8	4634_{-7-8}^{+8+5}	92_{-24-21}^{+40+10}	[32]	206.37
$X(4660)$	0	1	-1	-1	9	$4664 \pm 11 \pm 5$	$48 \pm 15 \pm 3$	[31]	135.06
$\gamma(45)$	0	1	-1	-1	6	10579.4 ± 1.2	20.5 ± 2.5		20.59
r (10860)	0	1	-1	-1	8	10876 ± 11	55 ± 28		27.89
$r(11020)$	0	1	-1	-1	10	11019 ± 8	79 ± 16		79.16

Coupling $q \bar{q}$ and $q \bar{q} \bar{q} q$ sectors

Hadronic state: $|\Psi\rangle=\sum_{\alpha} c_{\alpha}|\psi\rangle+\sum_{\beta} \chi_{\beta}(P)\left|\phi_{M 1} \phi_{M 2} \beta\right\rangle$
\square Solving the coupling with $c \bar{c}$ states \rightarrow Schrödinger type equation:

$$
\sum_{\beta} \int\left(H_{\beta^{\prime}{ }_{\beta}}^{M_{1} M_{2}}\left(P^{\prime}, P\right)+V_{\beta^{\prime}{ }_{\beta}}^{e f f}\left(P^{\prime}, P\right)\right) \chi_{\beta}(P) P^{2} d P=E \chi_{\beta^{\prime}}\left(P^{\prime}\right)
$$

with

$$
V_{\beta^{\prime} \beta}^{e f f}\left(P^{\prime}, P\right)=\sum_{\alpha} \frac{h_{\beta^{\prime} \alpha}\left(P^{\prime}\right) h_{\alpha \beta}(P)}{E-M_{\alpha}}
$$

\square The $c \bar{c}$ amplitudes are given by,

$$
c_{\alpha}=\frac{1}{E-M_{\alpha}} \sum_{\beta} \int h_{\alpha \beta}(P) \chi_{\beta}(P) P^{2} d P
$$

Resonance states

Lippmann-Schwinger equation

$$
T^{\beta^{\prime} \beta}\left(E ; P^{\prime}, P\right)=V_{T}^{\beta^{\prime} \beta}\left(P^{\prime}, P\right)+\sum_{\beta^{\prime \prime}} \int d P^{\prime \prime} P^{\prime \prime 2} V_{T}^{\beta^{\prime} \beta^{\prime \prime}}\left(P^{\prime}, P^{\prime \prime}\right) \frac{1}{E-E_{\beta^{\prime \prime}}\left(P^{\prime \prime}\right)} T^{\beta^{\prime \prime} \beta}\left(E ; P^{\prime \prime}, P\right)
$$

with $V_{T}^{\beta^{\prime} \beta}\left(P^{\prime}, P\right)=V^{\beta^{\prime} \beta}\left(P^{\prime}, P\right)+V_{e f f}^{\beta^{\prime} \beta}\left(P^{\prime}, P\right), V_{\beta^{\prime}{ }_{\beta}}^{e f f}\left(P^{\prime}, P\right)=\sum_{\alpha} \frac{h_{\beta^{\prime} \alpha}\left(P^{\prime}\right) h_{\alpha \beta}(P)}{E-M_{\alpha}}$

Resonance states

Lippmann-Schwinger equation

$$
T^{\beta^{\prime} \beta}\left(E ; P^{\prime}, P\right)=V_{T}^{\beta^{\prime} \beta}\left(P^{\prime}, P\right)+\sum_{\beta^{\prime \prime}} \int d P^{\prime \prime} P^{\prime \prime 2} V_{T}^{\beta^{\prime} \beta^{\prime \prime}}\left(P^{\prime}, P^{\prime \prime}\right) \frac{1}{E-E_{\beta^{\prime \prime}}\left(P^{\prime \prime}\right)} T^{\beta^{\prime \prime} \beta}\left(E ; P^{\prime \prime}, P\right)
$$

with $V_{T}^{\beta^{\prime} \beta}\left(P^{\prime}, P\right)=V^{\beta^{\prime} \beta}\left(P^{\prime}, P\right)+V_{e f f}^{\beta^{\prime} \beta}\left(P^{\prime}, P\right), V_{\beta^{\prime}{ }_{\beta}}^{e f f}\left(P^{\prime}, P\right)=\sum_{\alpha} \frac{h_{\beta^{\prime} \alpha}\left(P^{\prime}\right) h_{\alpha \beta}(P)}{E-M_{\alpha}}$
Solution (Baru et al. Eur. Phys. Jour. A 44, 93 (2010))

with
$T_{V}^{\beta^{\prime} \beta}\left(E ; P^{\prime}, P\right)=V^{\beta^{\prime} \beta}\left(P^{\prime}, P\right)+\sum_{\beta^{\prime \prime}} \int d P^{\prime \prime} P^{\prime \prime 2} V^{\beta^{\prime} \beta^{\prime \prime}}\left(P^{\prime}, P^{\prime \prime}\right) \frac{1}{z-E_{\beta^{\prime \prime}}\left(P^{\prime \prime}\right)} T_{V}^{\beta^{\prime \prime} \beta}\left(E ; P^{\prime \prime}, P\right)$

Resonance states

Solution (Baru et al. Eur. Phys. Jour. A 44, 93 (2010))

with

$$
\begin{aligned}
\phi^{\alpha \beta^{\prime}}(E ; P) & =h_{\alpha \beta^{\prime}}(P)-\sum_{\beta} \int \frac{T_{V}^{\beta^{\prime} \beta}(E ; P, q) h_{\alpha \beta}(q)}{q^{2} / 2 \mu-E} q^{2} d q \\
\bar{\phi}^{\alpha \beta}(E ; P) & =h_{\alpha \beta}(P)-\sum_{\beta^{\prime}} \int \frac{h_{\alpha \beta^{\prime}}(q) T_{V}^{\beta^{\prime} \beta}(E ; q, P)}{q^{2} / 2 \mu-E} q^{2} d q
\end{aligned}
$$

Resonance states

Solution (Baru et al. Eur. Phys. Jour. A 44, 93 (2010))

with

$$
\begin{aligned}
\Delta^{\alpha^{\prime} \alpha}(E) & =\left\{\left(E-M_{\alpha}\right) \delta^{\alpha^{\prime} \alpha}+\mathcal{G}^{\alpha^{\prime} \alpha}(E)\right\} \\
\mathcal{G}^{\alpha^{\prime} \alpha}(E) & =\sum_{\beta} \int d q q^{2} \frac{\phi^{\alpha \beta}(q, E) h_{\beta \alpha^{\prime}}(q)}{q^{2} / 2 \mu-E}
\end{aligned}
$$

Resonance states

\square Resonance mass (pole position)

$$
\left|\Delta^{\alpha^{\prime} \alpha}(\bar{E})\right|=\left|\left(\bar{E}-M_{\alpha}\right) \delta^{\alpha^{\prime} \alpha}+\mathcal{G}^{\alpha^{\prime} \alpha}(\bar{E})\right|=0
$$

\square Bare $c \bar{c}$ probabilities

$$
\left\{M_{\alpha} \delta^{\alpha \alpha^{\prime}}-\mathcal{G}^{\alpha^{\prime} \alpha}(\bar{E})\right\} c_{\alpha^{\prime}}(\bar{E})=\bar{E} c_{\alpha}(\bar{E})
$$

\square Molecular wave function

$$
\chi_{\beta^{\prime}}\left(P^{\prime}\right)=-2 \mu_{\beta^{\prime}} \sum_{\alpha} \frac{\phi_{\beta^{\prime} \alpha}\left(E ; P^{\prime}\right) c_{\alpha}}{P^{\prime 2}-k_{\beta^{\prime}}^{2}}
$$

\square Normalization

$$
\sum_{\alpha}\left|c_{\alpha}\right|^{2}+\sum_{\beta}<\chi_{\beta} \mid \chi_{\beta}>=1
$$

Non-perturbative version

\square Hadronic state: $|\Psi\rangle=\sum_{\alpha} \mathcal{N}_{\alpha}\left|\psi_{\alpha}\right\rangle+\sum_{\beta} \chi_{\beta}(P)\left|\phi_{M 1} \phi_{M 2} \beta\right\rangle$
\square Here α doesn't mean a bare $c \bar{c}$ state but a $c \bar{c}$ partial wave (for example ${ }^{3} P_{1}$ or ${ }^{3} P_{2}$ and ${ }^{3} F_{2}$ for a coupled case)
\square We don't make an expansion of the $c \bar{c}$ component in Eigenstates of the $c \bar{c}$ Hamiltonian but in a basis (the GEM basis):

$$
\left|\psi_{\alpha}\right\rangle=\sum_{n=1}^{n_{\max }} c_{n}^{\alpha} \phi_{n l}^{G}(r)|l j m\rangle\left|\xi_{c}\right\rangle
$$

We follow the same procedure but now the vertex function is

$$
h_{\beta \alpha}(P)=\sum_{n=1}^{n_{\max }} c_{n}^{\alpha} h_{\beta \alpha}^{n}(P)
$$

\square And the Equations become

$$
\begin{aligned}
\sum_{\alpha, n}\left[\mathcal{H}_{n^{\prime}{ }_{n}}^{\alpha^{\prime} \alpha}-\mathcal{G}_{n^{\prime}{ }_{n}}^{0 \alpha^{\prime} \alpha}(E)\right] c_{n}^{\alpha} & =E N_{n^{\prime} n}^{\alpha^{\prime}} c_{n}^{\alpha^{\prime}} \\
\sum_{\beta} \int H_{\beta^{\prime} \beta}\left(P^{\prime}, P\right) \chi_{\beta}(P) P^{2} d P+\sum_{\alpha} h_{\beta^{\prime}{ }_{\alpha}}\left(P^{\prime}\right) & =E \chi_{\beta^{\prime}}\left(P^{\prime}\right)
\end{aligned}
$$

with

$$
\mathcal{G}_{n^{\prime} n}^{0}{ }^{\alpha^{\prime} \alpha}(E)=-\delta^{\alpha^{\prime} \alpha} \delta_{n^{\prime} n} \sum_{\beta} \int h_{\alpha^{\prime} \beta}^{n^{\prime}}(P) \chi_{\beta}(P) P^{2} d P
$$

Non-perturbative version

Again we use the solution T_{V}

$$
T_{V}^{\beta^{\prime} \beta}\left(E ; P^{\prime}, P\right)=V^{\beta^{\prime} \beta}\left(P^{\prime}, P\right)+\sum_{\beta^{\prime \prime}} \int d P^{\prime \prime} P^{\prime \prime 2} V^{\beta^{\prime} \beta^{\prime \prime}}\left(P^{\prime}, P^{\prime \prime}\right) \frac{1}{z-E_{\beta^{\prime \prime}}\left(P^{\prime \prime}\right)} T_{V}^{\beta^{\prime \prime} \beta}\left(E ; P^{\prime \prime}, P\right)
$$

Now

$$
\phi_{\alpha \beta^{\prime}}(E ; P)=h_{\alpha \beta^{\prime}}(P)-\sum_{\beta} \int \frac{T_{V}^{\beta^{\prime} \beta}(E ; P, q) h_{\alpha \beta}(q)}{q^{2} / 2 \mu-E} q^{2} d q
$$

and so

$$
\phi_{\alpha \beta^{\prime}}^{n}(E ; P)=h_{\alpha \beta^{\prime}}^{n}(P)-\sum_{\beta} \int \frac{T_{V}^{\beta^{\prime} \beta}(E ; P, q) h_{\alpha \beta}^{n}(q)}{q^{2} / 2 \mu-E} q^{2} d q
$$

\square We end up with an Schrödinger like equation

$$
\sum_{\alpha, n}\left[\mathcal{H}_{n^{\prime}{ }_{n} \alpha^{\prime}{ }^{\alpha}}-\mathcal{G}_{n^{\prime}{ }_{n}}^{\alpha^{\prime} \alpha}(E)\right] c_{n}^{\alpha}=E N_{n^{\prime}{ }_{n}}^{\alpha^{\prime}} c_{n}^{\alpha^{\prime}}
$$

with the energy-dependent complete mass-shift matrix

$$
\mathcal{G}_{n^{\prime} n}^{\alpha^{\prime} \alpha}(E)=\sum_{\beta} \int d q q^{2} \frac{\phi_{\alpha^{\prime}{ }_{\beta}}^{n^{\prime}}(q, E) h_{\beta \alpha}^{n}(q)}{q^{2} / 2 \mu-E-i 0^{+}}
$$

Non-perturbative version

\square Molecular wave function

$$
\chi_{\beta^{\prime}}\left(P^{\prime}\right)=-2 \mu_{\beta^{\prime}} \sum_{\alpha, n=1}^{n_{\max }} \frac{\phi_{\beta^{\prime} \alpha}\left(E ; P^{\prime}\right) c_{n}^{\alpha}}{P^{\prime 2}-k_{\beta^{\prime}}^{2}-i 0^{+}}
$$

\square Normalization

$$
\sum_{\alpha^{\prime}, \alpha} \sum_{n^{\prime}, n=1}^{n_{\max }} c_{n^{\prime}}^{\alpha^{\prime} *} N_{n^{\prime} n}^{\alpha^{\prime} \alpha} c_{n}^{\alpha}+\sum_{\beta}<\chi_{\beta} \mid \chi_{\beta}>=1
$$

The 1^{++}sector

Charge symmetry breaking is included with the right threshold positions of charged states

$$
\begin{aligned}
\left|D^{ \pm} D^{* \mp}\right\rangle & =\frac{1}{\sqrt{2}}\left(\left|D D^{*} I=0\right\rangle-\left|D D^{*} I=1\right\rangle\right) \\
\left|D^{0} D^{* 0}\right\rangle & =\frac{1}{\sqrt{2}}\left(\left|D D^{*} I=0\right\rangle+\left|D D^{*} I=1\right\rangle\right)
\end{aligned}
$$

Lower states in the 1^{++}channel

$\gamma^{3} P_{0}$	$M(\mathrm{MeV})$	$c \bar{c}$	$D^{0} D^{* 0}$	$D^{ \pm} D^{* \pm}$	$\mathrm{I}=\mathbf{0}$	$\mathrm{I}=\mathbf{1}$
$\mathbf{0 . 2 6 0}$	3949	$56,71 \%$	$22,47 \%$	$20,82 \%$	$43,10 \%$	$0,25 \%$
	3867	$30,22 \%$	$51,37 \%$	$18,40 \%$	$64,72 \%$	$5,06 \%$
	3468	$95,70 \%$	$2,18 \%$	$2,12 \%$	$4,30 \%$	$0,0 \%$
$\mathbf{0 . 2 1 8}$	3944	$56,82 \%$	$22,10 \%$	$21,07 \%$	$42,89 \%$	$0,51 \%$
	3871	$3,94 \%$	$93,46 \%$	$2,61 \%$	$55,79 \%$	$38,90 \%$
	3481	$97,10 \%$	$1,47 \%$	$1,43 \%$	$2,9 \%$	$0,0 \%$

In order to obtain the correct binding energy of the $X(3872)$ we fine tune γ

The 1^{++}sector

We can project on the naive quark model basis

$\gamma^{3} P_{0}$	$M(M e V)$	$c \bar{c}$	$1^{3} P_{1}$	$2^{3} P_{1}$	$3^{3} P_{1}$	$4^{3} P_{1}$
$\mathbf{0 . 2 6 0}$	3949	$56,71 \%$	$1,61 \%$	$96,33 \%$	$1,28 \%$	$0,78 \%$
	3867	$30,22 \%$	$1,80 \%$	$98,14 \%$	$0,06 \%$	$0,0 \%$
	3468	$95,70 \%$	$99,99 \%$	$0,01 \%$	$0,0 \%$	$0,0 \%$
$\mathbf{0 . 2 1 8}$	3944	$56,82 \%$	$0,61 \%$	$99,01 \%$	$0,38 \%$	$0,0 \%$
	3871	$3,94 \%$	$2,11 \%$	$97,75 \%$	$0,14 \%$	$0,0 \%$
	3481	$97,10 \%$	$100,0 \%$	$0,0 \%$	$0,0 \%$	$0,0 \%$

The 1^{++}sector

Coupling only with $1 P$ and $2 P$ bare states in the old approach Coupling with all states in the new approach

The 1^{++}sector

X (3940)

Coupling only with $1 P$ and $2 P$ bare states in the old approach Coupling with all states in the new approach

Summary

\square The unquenched quark model is a useful tool to study the $X Y Z$ states
\square In the unquenched quark model we include

- The $q \bar{q}$ interaction to obtain naive quark model states.
- The interaction between meson derived from the same quark interaction through the RGM.
- The coupling between one meson and two meson states using the ${ }^{3} P_{0}$ model.
\square We have developed the framework to include all states of the bare Hamiltonian on the $q \bar{q}$ content of physical states
\square On the small coupling limit the two approaches agree
\square In the charmonium sector the coupling is small an only small variations on previous results are found.
\square We will study lighter sectors where the coupling is bigger

