Studies of Λ_c production in pp and p-Pb collisions with ALICE at the LHC

Elisa Meninno (University of Salerno and INFN) on behalf of the ALICE Collaboration

Introduction

Why study Λ_c?
- Charm production is a sensitive probe of the Quark-Gluon Plasma (QGP), produced in ultra-relativistic heavy-ion collisions. Charm quarks produced in hard parton scattering processes in the early stages of the collision, traverse the QCD medium, interact with its constituents and experience the whole evolution of the medium.
- Together with charmed mesons, the measurement of Λ_c in Pb-Pb collisions could give an insight into the hadronization mechanisms in the QGP, measuring the Λ_c decay ratio in the heavy-quark sector.

Λ_c in pp collisions
- Useful test for perturbative Quantum Chromo Dynamics (pQCD)
- Evaluate the baryon contribution to the total cross section of charm production at the LHC with ALICE.
- Existing Λ_c measurements in pp collisions are in different energy [2] or kinematic regime [3].
- Reference for Pb-Pb collisions.

Λ_c in p-Pb collisions
- Reference for Pb-Pb collisions.
- Study of cold nuclear matter effects not due to the QGP formation, such as nuclear modification of the Parton Distribution Functions (PDF), k_T broadening or energy loss.

ALICE detectors essential for this analysis

Inner Tracking System (ITS)
- Measurement of primary and secondary vertex.
- Λ_c measurement in Pb-Pb collisions is challenging with the impact parameter resolution of the current ITS.

Time of Flight (TOF)
- Particle Identification (PID) of π, K, p with time-of-flight measurements.

Time Projection Chamber (TPC)
- Tracking
- Particle Identification (PID) of π, K, p with dE/dx measurements.

Data sample:
- pp: 1.3×10^{31} minimum bias events analyzed at $\sqrt{s} = 7$ TeV.
- $p-Pb$: 1.0×10^{8} minimum bias events analyzed at $\sqrt{s} = 5.02$ TeV.

Reconstruction of $\Lambda_c \rightarrow pK\bar{n}$

K^0_S candidates building
- K^0_S candidates selected from pairs of opposite charge tracks forming a vertex displaced from the interaction vertex.

Cuts applied:
- High-quality single tracks cuts
- DCA between tracks, radius of fiducial volume, cosine of θ pointing angle.
- Proton candidates selected according to track selection and PID, combined with selected K^0_S to build Λ_c candidates.

Particle Identification (PID)
- PID is essential to identify protons.
- Detector used: TOF and TPC.
- Used approach: number of sigma cuts and combined PID.
- Using PID, the background is suppressed by a factor 20!

Time projection cuts to reconstruct Λ_c

In both analyses:
- Λ_c is reconstructed in a wide momentum range.
- A good agreement with Monte Carlo expectations is observed.

Reconstruction of $\Lambda_c \rightarrow pK\bar{n}$

Signal extraction, after further selection:
- Standard topological cuts on variables offering good S/B separation.
- Cut on multivariate discriminator (BDT) [4].

The analyses are ongoing:
- Beauty feed-down fraction estimated with two methods, using measured yield and expected Λ_b from theoretical calculations (FONLL predictions) [5].
- Efficiency and acceptance corrections estimated using Monte Carlo simulations.
- Systematic uncertainty determination.

Perspectives for feature measurements

- Improve impact parameter resolution by a factor of ~3
- Improve tracking efficiency and p_T resolution at low p_T
- Record data with higher rate

- Charmed baryons Λ_c (as well as beauty baryons Λ_b via the decay $\Lambda_b \rightarrow \Lambda_c + n$) will be accessible for the first time
- Baryon/meson ratios (Λ_c/π), and elliptic flow of charmed baryons will also be accessible

References