# Upgrade of the ALICE Inner Tracking System

## Pasquale Di Nezza

on behalf of the ALICE Collaboration







## ALICE upgrade strategy

# The Collaboration prepares a major upgrade for the LHC LS2 (2019-2020)

Motivation: QGP precision studies High precision measurements of rare probes from low to high transverse momentum

Requirements: -Excellent tracking efficiency and resolution at low p<sub>T</sub> -Large statistics -PID capability (even at high rate)

## ALICE upgrade strategy

- Target for upgrade programme (LHC Run3+Run4):
  - Pb-Pb luminosity > 10 nb<sup>-1</sup>  $\rightarrow$  8x10<sup>10</sup> events
- Upgrade detectors, readout systems and online systems to:
  - readout all Pb-Pb interactions at the maximum rate of 50 kHz (L=6x10<sup>27</sup> cm<sup>-2</sup>s<sup>-1</sup>) with MB trigger. At present the rate is 500 Hz
- Gain a factor 100 in statistics over the originally approved programme Run1+Run2
- Significant improvement of vertexing and tracking capabilities at low p<sub>T</sub> (150 MeV/c)

The new Inner Tracking System (ITS) TDR endorsed by LHCC The construction matches the LHC LS2



CERN-LHCC-2013-24



J. Phys. G (41) 087002

3

## ALICE: the current setup



## ALICE: the current setup



## ALICE: the new ITS



## ITS upgrade design objectives

- 1. Improve impact parameter resolution by a factor of ~3
- Get closer to IP (position of first layer): 39mm **>**23mm
- Reduce  $X/X_0$  /layer: ~1.14%  $\Rightarrow$  ~ 0.3% (for inner layers)
- Reduce pixel size: currently 50μm x 425μm → O(30μm x 30μm)
- 2. Improve tracking efficiency and  $\boldsymbol{p}_{T}$  resolution at low  $\boldsymbol{p}_{T}$
- Increase granularity:
  - 6 layers 

    7 layers
  - silicon drift and strips ⇒ pixels
- 3. Fast readout
- readout Pb-Pb interactions at > 100 kHz and pp interactions at ~ several 10<sup>5</sup> Hz (currently limited at 1kHz with full ITS)
- 4. Fast insertion/removal for yearly maintenance
- possibility to replace non functioning detector modules during yearly shutdown



#### ITS – Performance of new detector



Fundamental improvement of the impact parameter resolution (left) and tracking efficiency (right) from the old to the new ITS

### ITS – Physics Performance

- $\Lambda_c$  (c $\tau$ =60 µm) currently inaccessible in Pb-Pb, most promising channel  $\Lambda_c \rightarrow pK^-\pi^+$ ;
- Ability to reconstruct  $\Lambda_c \rightarrow \text{also } \Lambda_b$  production can be measured from  $p_T$  of 5-7 GeV/c.
- Other decay channels and other baryon species (e.g.  $\chi_c$ ) will be investigated.



First measurements of  $\Lambda_c$  in Pb-Pb collisions at LHC

#### Example: $D^0 \rightarrow K^-p^+$

| (ພາ <sup>/</sup> ) | 10 <sup>3</sup>  | z coordinate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                           | Current, $0.1 \mathrm{nb}^{-1}$    |                            | Upgrade, $10  \mathrm{nb}^{-1}$    |                            |
|--------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------|----------------------------|------------------------------------|----------------------------|
| + vertex           | -                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Observable                                                | $p_{ m T}^{ m min} \ ({ m GeV}/c)$ | statistical<br>uncertainty | $p_{ m T}^{ m min} \ ({ m GeV}/c)$ | statistical<br>uncertainty |
| ¥<br>۲             | F                | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                           | Heavy Flavour                      |                            |                                    |                            |
| °-'-               | 10 <sup>2</sup>  | **_*_*_*_*_*_*_*_*_*_*_*_*_*_*_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D meson $R_{AA}$                                          | 1                                  | 10%                        | 0                                  | 0.3 %                      |
| tion               | F                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $D_s meson R_{AA}$                                        | 4                                  | 15%                        | < 2                                | 3%                         |
| olut               | E                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D meson from B $R_{AA}$                                   | 3                                  | 30%                        | 2                                  | 1%                         |
| res                | F                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ${ m J}/\psi$ from B $R_{ m AA}$                          | 1.5                                | $15\%$ (p_{\rm T}-int.)    | 1                                  | 5%                         |
| И                  | 10 <sup>-1</sup> | $\begin{bmatrix} & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & $ | $B^+$ yield                                               | not accessible                     |                            | 3                                  | 10%                        |
|                    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\Lambda_{ m c}  R_{ m AA}$                               | not accessible                     |                            | 2                                  | 15%                        |
|                    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\Lambda_{ m c}/{ m D}^0$ ratio                           | not accessible                     |                            | 2                                  | 15%                        |
|                    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\Lambda_{ m b}$ yield                                    | not accessible                     |                            | 7                                  | 20%                        |
| _                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D meson $v_2 \ (v_2 = 0.2)$                               | 1                                  | 10%                        | 0                                  | 0.2%                       |
| (m                 |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\mathrm{D_s\ meson}\ v_2\ (v_2=0.2)$                     | not accessible                     |                            | < 2                                | 8%                         |
| i) Xé              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D from B $v_2 (v_2 = 0.05)$                               | not accessible                     |                            | 2                                  | 8%                         |
| erte               |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\mathrm{J}/\psi~\mathrm{from}~\mathrm{B}~v_2~(v_2=0.05)$ | not accessible                     |                            | 1                                  | 60%                        |
| ר<br>לא            |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\Lambda_{ m c}  v_2  \left( v_2 = 0.15  ight)$           | not accessible                     |                            | 3                                  | 20%                        |
| ¥<br>↑             | 10 <sup>2</sup>  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                           | Dielectrons                        |                            |                                    |                            |
| Õ                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Temperature (intermediate mass)                           | not accessible                     |                            |                                    | 10%                        |
| tion               |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Elliptic flow $(v_2 = 0.1)$                               | not a                              | ccessible                  |                                    | 10%                        |
| solu               |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Low-mass spectral function                                | not a                              | ccessible                  | 0.3                                | 20%                        |
| x re               |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Hypernuclei                                               |                                    |                            |                                    |                            |
|                    | 10               | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $^{3}_{\Lambda}$ H yield                                  | 2                                  | 18%                        | 2                                  | 1.7%                       |
|                    | 101              | $10^{-1}$ $1$ $10^{-1}$ $p_T D^0$ (GeV/c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                           |                                    |                            | L                                  |                            |

## ITS new layout

12.5 G-pixel camera  $(\sim 10 m^2)$ 

~24.000 pixel chips



7-layer barrel geometry based on MAPS

r coverage: 23 – 400 mm

 $\eta$  coverage:  $|\eta| \le 1.22$ for tracks from 90% most luminous region

- **3** Inner Barrel layers (**IB**)
- 4 Outer Barrel layers (OB)

Material /layer :  $0.3\% X_0$  (IB),  $1\% X_0$  (OB)



#### CMOS Pixel Sensor using TowerJazz $0.18 \mu m$ CMOS Imaging Process



#### Tower Jazz 0.18 µm CMOS

- feature size 180 nm
- metal layers 6
- → Suited for high-density, low-power
- Gate oxide 3nm
- ➔ Circuit rad-tolerant
- High-resistivity (>  $1k\Omega$  cm) p-type epitaxial layer ( $18\mu$ m to  $30\mu$ m) on p-type substrate
- Small n-well diode (2 μm diameter), ~100 times smaller than pixel => low capacitance
- Application of (moderate) reverse bias voltage to substrate (contact from the top) can be used to increase depletion zone around NWELL collection diode
- Deep PWELL shields NWELL of PMOS transistors to allow for full CMOS circuitry within active area

## ITS new layout



### **Inner Barrel**



Printed Circuit (22%)

### Inner Barrel: full-scale prototype



## Outer Barrel





**Outer Barrel Stave** 





Length 1500 mm Space Frame total weight 30 gr 16



#### Flexible Printed Circuit (FPC) interconnection





### Flexible Printed Circuit (FPC) interconnection

- Flux-less soldering of 200 μm diameter Sn/ Ag (96.5/3.5) balls (227 °C melting T) in vacuum (<10<sup>-1</sup> mbar)
- IR diode laser, 976 nm, 25 W, 50 μm focal length, 250 μm beam spot size
- Laser power modulated by pyrometer, programmable T profile ensures precise limitation of heating
- Solder provides both electrical and mechanical connection
- Pre-melting ? Conductive glue? Wirebonding? ... possible options





### Flexible Printed Circuit (FPC) interconnection



Optical and electrical inspection together with the quality of metallization is according to required spec



Laser Soldering not mature enough to guarantee an adequate yield

#### Many issues were solved

- Quality of the metallization of FPC VIAs
- Excessive warping of pixel chip
- Assembly jigs out of tolerance

Yield continues to be below requirements
=> too often "cold" soldering or partial wetting of the pad



## Interconnection of pixel chip to flex PCB

#### A Large Ion Collider Experiment



#### New baseline: wire bonding



#### Tests with pALPIDE-3 single-chip HIC

- 5 assemblies with 25µm Al wire and standard wedge tool (Bari)
- 1 assembly with 25µm Al wire and deep access wedge tool (Trieste)
- Results: all working according to specs

- The chip is glued on the electrical substrate (FPC)
- Electrical interconnection to the FPC using standard wedge (AI) wire bonding trough the FPC VIAs



Wire Bonding There will be multiple connections

### Responsibilities and schedule





### pALPIDE Characterization

## ALICE chip

#### Intensive test beam campaign:

-PS: 5-7 GeV π<sup>-</sup> -SPS: 120 GeV π<sup>-</sup> -PAL(Korea): 60 MeV e<sup>-</sup> -BTF (Frascati): 450 MeV e<sup>-</sup> -DESY: 5.8 GeV e<sup>+</sup> -SLRI(Thailand): 1.2 GeV

#### Scan of main parameters $\rightarrow$ ~ 200 settings

#### 7-plane telescope based on pALPIDE ch





Irradiation studies at: Legnaro, Louvain La Neuve, Prague, PSI, LBNL

### Test Beam: ALPIDE-3

#### Efficiency and fake hit rate



large margin over design requirements

 $\lambda_{\text{fake}} \ll 10^{-5}$  / event/pixel and  $\varepsilon_{\text{det}} > 99\%$  over a wide threshold range

Chip of 50  $\mu$ m thick: 3 non irradiated and 3 irradiate with neutrons to 10<sup>13</sup> (1MeV n<sub>eal</sub>/cm<sup>2</sup>  $\rightarrow$  excellent performance also after the irradiation

## Test Beam: ALPIDE-2

Spatial resolution and cluster size



Space point resolution (including tracking error  $\sim 3 \mu m$ ) < 5  $\mu m$ 

Chip of 50  $\mu$ m thick: 3 non irradiated and 3 irradiate with neutrons to 10<sup>13</sup> (1MeV n<sub>eq)</sub>/cm<sup>2</sup>  $\rightarrow$  excellent performance also after the irradiation

#### Spatial resolution and cluster size



Space point resolution (including tracking error  $\sim 3 \mu m$ ) < 5  $\mu m$ 

Chip of 50  $\mu$ m thick: 3 non irradiated and 3 irradiate with neutrons to 10<sup>13</sup> (1MeV n<sub>eq)</sub>/cm<sup>2</sup>  $\rightarrow$  excellent performance also after the irradiation

## Conclusions



- ✓ ALICE is going to extend his already excellent capabilities to measure highenergy nuclear collisions at the LHC
- The ITS plays a key role in the upgrade in order to achieve precision measurements of rare probes over a large kinematic range

#### The new ITS represents one of the most advanced solid state detectors

- ✓ 7 layers of 24.000 monolithic CMOS pixel sensors over 10  $m^2$  surface
- ✓ An intensive R&D program is presently being completed
- ✓ The production will start at the beginning of 2017. The detector will be ready for the LHC LS2 in 2019-2020





Pasquale Di Nezza