Chiral symmetry breaking in continuum QCD

Mario Mitter

Ruprecht-Karls-Universität Heidelberg

Thessaloniki, August 2016
fQCD collaboration - QCD (phase diagram) with FRG:

fQCD collaboration - QCD (phase diagram) with FRG:

large part of this effort: vacuum YM-theory and QCD
QCD with the FRG

- use only perturbative QCD input
 - $\alpha_s(\Lambda = \mathcal{O}(10) \text{ GeV})$
 - $m_q(\Lambda = \mathcal{O}(10) \text{ GeV})$
QCD with the FRG

- use only perturbative QCD input
 - $\alpha_S(\Lambda = \mathcal{O}(10) \text{ GeV})$
 - $m_q(\Lambda = \mathcal{O}(10) \text{ GeV})$

- Wetterich equation with initial condition $S[\Phi] = \Gamma_\Lambda[\Phi]$

\[
\partial_k \Gamma_k[A, \bar{c}, c, \bar{q}, q] = \frac{1}{2} \quad - \quad - \quad -
\]

\Rightarrow effective action $\Gamma[\Phi] = \lim_{k \to 0} \Gamma_k[\Phi]$
QCD with the FRG

- use only perturbative QCD input
 - $\alpha_S(\Lambda = O(10) \text{ GeV})$
 - $m_q(\Lambda = O(10) \text{ GeV})$

- Wetterich equation with initial condition $S[\Phi] = \Gamma_\Lambda[\Phi]$

$$\partial_k \Gamma_k[A, \bar{c}, c, \bar{q}, q] = \frac{1}{2} \quad \Rightarrow \text{effective action } \Gamma[\Phi] = \lim_{k \to 0} \Gamma_k[\Phi]$$

- ∂_k: integration of momentum shells controlled by regulator
- full field-dependent equation with $(\Gamma^{(2)}[\Phi])^{-1}$ on rhs
- gauge-fixed approach (Landau gauge): ghosts appear
Vertex Expansion

- approximation necessary - vertex expansion

\[\Gamma[\Phi] = \sum_n \int_{p_1, \ldots, p_{n-1}} \Gamma_{\Phi_1 \cdots \Phi_n}^{(n)}(p_1, \ldots, p_{n-1}) \Phi^1(p_1) \cdots \Phi^n(-p_1 - \cdots - p_{n-1}) \]
Vertex Expansion

- approximation necessary - vertex expansion

\[\Gamma[\Phi] = \sum_n \int_{p_1, \ldots, p_{n-1}} \Gamma^{(n)}_{\Phi_1 \cdots \Phi_n}(p_1, \ldots, p_{n-1}) \Phi^1(p_1) \cdots \Phi^n(-p_1 - \cdots - p_{n-1}) \]

- functional derivatives with respect to \(\Phi_i = A, \bar{c}, c, \bar{q}, q \):
 \(\Rightarrow \) equations for 1PI \(n \)-point functions, e.g. gluon propagator:

\[\partial_t \begin{array}{c} 1 \\ \end{array} = \begin{array}{c} -2 \\ \end{array} + \frac{1}{2} \]
Vertex Expansion

- approximation necessary - vertex expansion

\[\Gamma[\Phi] = \sum_n \int_{p_1, \ldots, p_{n-1}} \Gamma^{(n)}_{\Phi_1 \cdots \Phi_n}(p_1, \ldots, p_{n-1}) \Phi^1(p_1) \cdots \Phi^n(-p_1 - \cdots - p_{n-1}) \]

- functional derivatives with respect to \(\Phi_i = A, \bar{c}, c, \bar{q}, q \):
 \(\Rightarrow \) equations for 1PI \(n \)-point functions, e.g. gluon propagator:

\[\partial_t \begin{array}{c} -1 \\ \end{array} \begin{array}{c} \end{array} = \begin{array}{c} -2 \\ \end{array} + \frac{1}{2} \]

- want “apparent convergence” of \(\Gamma[\Phi] = \lim_{k \to 0} \Gamma_k[\Phi] \)
Landau gauge QCD

- two crucial phenomena: $S\chi_{SB}$ and confinement
- similar scales - hard to disentangle
- quenched QCD: allows separate investigation:

see e.g. [Williams, Fischer, Heupel, 2015]
Landau gauge QCD

- two crucial phenomena: $S\chi_{SB}$ and confinement
- similar scales - hard to disentangle
- quenched QCD: allows separate investigation:
 - pure YM-theory (cf. talk Anton Cyrol)
 - quenched matter part
 - outlook: unquenching

See e.g. [Williams, Fischer, Heupel, 2015]

[Cyrol, Fister, MM, Pawlowski, Strodthoff, 2016]

[MM, Strodthoff, Pawlowski, 2014]

[Cyrol, MM, Strodthoff, Pawlowski, in preparation]
Chiral symmetry breaking

- $\chi_{SB} \Leftrightarrow$ resonance in 4-Fermi interaction λ (pion pole):

\[
\frac{\partial}{\partial t} \lambda = a\lambda^2 + b\lambda\alpha + c\alpha^2, \\
b > 0, \\
a, c \leq 0
\]
Chiral symmetry breaking

- $\chi_{SB} \iff$ resonance in 4-Fermi interaction λ (pion pole):
 - resonance \Rightarrow singularity without momentum dependency

$$\partial_t \lambda = a \lambda^2 + b \lambda \alpha + c \alpha^2, \quad b > 0, \quad a, c \leq 0$$

[Braun, 2011]
(transverse) running couplings

agreement in perturbative regime required by gauge symmetry
non-degenerate in nonperturbative regime: reflects gluon mass gap
\(\alpha_{\bar{q}Aq} > \alpha_{cr} \): necessary for chiral symmetry breaking
area above \(\alpha_{cr} \) very sensitive to errors
4-Fermi vertex via dynamical hadronization

- change of variables: particular 4-Fermi channels \rightarrow meson exchange
- efficient inclusion of momentum dependence \Rightarrow no singularities
- calculation of model parameters from QCD

$$\partial_k \Gamma_k = \frac{1}{2}$$

[MM, Strodthoff, Pawlowski, 2014]

[Braun, Fister, Haas, Pawlowski, Rennecke, 2014]

[MM, Strodthoff, Pawlowski, 2014]
Vertex Expansion

[MM, Strodthoff, Pawlowski, 2014],

[Cyrol, Fister, MM, Strodthoff, Pawlowski, 2016]
Vertex Expansion

[MM, Strodthoff, Pawlowski, 2014],

[Cyrol, Fister, MM, Strodthoff, Pawlowski, 2016]
Vertex Expansion

[MM, Strodthoff, Pawlowski, 2014],

[Cyrol, Fister, MM, Strodthoff, Pawlowski, 2016]
\[\Gamma_{AA}^{(2)}(p) \propto Z_A(p) \, p^2 \left(\delta^{\mu\nu} - p^\mu p^\nu / p^2 \right) \]

- band: family of decoupling solutions bounded by scaling solution
- more details ⇒ Talk Anton K. Cyrol, Thursday 6pm

Quark propagator

\[\Gamma_{\bar{q}q}^{(2)}(p) \propto Z_q(p) (\not{p} + M(p)) \]

- FRG vs. lattice: bare mass, quenched, scale set via gluon propagator

Bowman et al., '05

1/Z_q

M_q
Quark propagator

- $\Gamma_{\bar{q}q}^{(2)}(p) \propto Z_q(p) (\not{p} + M(p))$

![Graph showing quark propagator dressings vs. momentum p in GeV.](image)

- FRG vs. lattice: bare mass, quenched, scale set via gluon propagator
- Agreement not sufficient: need apparent convergence at $\mu \neq 0$

Outlook: unquenching
extended truncation:

\[
\Gamma_{AA}^{(2)}(p) \quad \Gamma_{\bar{c}c}^{(2)}(p) \quad \Gamma_{\bar{A}c}^{(3)}(p, q) \quad \Gamma_{A3}^{(3)}(p, q) \quad \Gamma_{A4}^{(4)}(p_{\text{sym}})
\]
classical tensor

\[
\Gamma_{\bar{q}q}^{(2)}(p) \quad \Gamma_{\bar{A}q}^{(3)}(p, q) \quad \Gamma_{A\bar{q}q}^{(4)}(p_{\text{sym}}) \quad \Gamma_{A\bar{q}q}^{(5)}(p_{\text{sym}}) \quad \Gamma_{\bar{q}qqq}^{(4)}(p, p, -p)
\]
\(\bar{q}D^n q\) complete, \(n \leq 3\)
mom.–ind. tensors

\[
\Gamma_{\phi \phi}^{(2)}(p) \quad \Gamma_{\bar{q}q\phi}^{(3)}(p, -p) \quad \Gamma_{qq\phi}^{(4)}(p, -p, 0) \quad \Gamma_{qq\phi\phi}^{(5)}(p, -p, 0, 0) \quad \Gamma_{\phi^n}^{(n)}(0)
\]
“classical” tensor

\(\phi \in \{\sigma, \vec{\pi}\}\)

systematics of improving the truncation?
Outlook: unquenching

extended truncation:

ła

⇒ BRST-invariant operators, e.g. $\bar{\psi} D^n \psi$
Outlook: running couplings

\[\alpha_{cAc} = \frac{\left(\Gamma_{cAc}^{(3)}(p) \right)^2}{4\pi Z_A(p)Z_c(p)^2} \]

\[\alpha_{AAA} = \frac{\left(\Gamma_{AAA}^{(3)}(p) \right)^2}{4\pi Z_A(p)^3} \]

\[\alpha_{A^4} = \frac{\left(\Gamma_{A^4}^{(4)}(p) \right)}{4\pi Z_A(p)^2} \]

\[\alpha_{qAq} = \frac{\left(\Gamma_{qAq}^{(3)}(p) \right)^2}{4\pi Z_A(p)Z_q(p)^2} \]

\[\alpha_{cAc,prop} = \frac{1}{4\pi Z_A(p)Z_c(p)^2} \]
Outlook: gluon propagator

Sternbeck et al., '2012
FRG

Outlook: quark propagator

[Cyrol, MM, Pawlowski, Strodthoff, in preparation]

\begin{itemize}
 \item comparison FRG with lattice: bare mass and scale setting
\end{itemize}

Summary and Outlook

QCD with functional RG
- vertex expansion
- sole input $\alpha_S(\Lambda = \mathcal{O}(10)\text{ GeV})$ and $m_q(\Lambda = \mathcal{O}(10)\text{ GeV})$
- good agreement with lattice correlators

Outlook
- QCD phase diagram: order parameters, equation of state and fluct. of cons. charges
- bound-state properties (form factors, PDA, ...)
- more checks on convergence of vertex expansion

Poster: “fQCD: QCD with the Functional RG”

M. Mitter (U Heidelberg)
Summary and Outlook

QCD with functional RG

- vertex expansion
- sole input $\alpha_S(\Lambda = O(10) \text{ GeV})$ and $m_q(\Lambda = O(10) \text{ GeV})$
- good agreement with lattice correlators

Outlook

- QCD phase diagram:
 - order parameters, equation of state and fluct. of cons. charges
- bound-state properties (form factors, PDA . . .
- more checks on convergence of vertex expansion
Summary and Outlook

QCD with functional RG

- vertex expansion
- sole input $\alpha_S(\Lambda = \mathcal{O}(10) \text{ GeV})$ and $m_q(\Lambda = \mathcal{O}(10) \text{ GeV})$
- good agreement with lattice correlators

Outlook

- QCD phase diagram:
 order parameters, equation of state and fluct. of cons. charges
- bound-state properties (form factors, PDA . . .)
- more checks on convergence of vertex expansion

Poster: “fQCD: QCD with the Functional RG”