Unumgapy isolopes．
August $30^{\prime \prime \prime}, 2016$
Abstract

 plethora of counterterms in the action and the need for ine－tuning of masses and couping constants．The present investigates these problems using，as a representaive nontrivial model，supersymmetric $\mathcal{N}=1$ Quantum Chromodynamics（SQCD）．

 squark field（ $Z_{A_{4}}$ ）．In this study we also describe the perturbative calculation of the renormalization of quark bilinear operators which，unlike the non－supersymmetric case，exhibit a rich pattern of operator mixing at the quantum level．

Continuum Action of SQCD

The construction of the Lagrangian of SQCD involves chiral superfields and vector superfields． scalar boson（squark），ψ which is a two－component spinor（quark forkin $\frac{1}{\frac{1}{2} \text { ）and } F \text { which is an }}$ auxiliary complex scalar field．In superspace notation（ x ：spacetime coordinates，$\theta / \bar{\theta}$ ： anticommuting coordinates）the chiral superfield Φ in terms of the above component fields is． $\Phi(x, \theta, \bar{\theta})=A(x)+\sqrt{2} \theta \psi(x)+\theta \theta F(x)+i \theta \sigma^{\mu} \bar{\theta} \partial_{\mu} A(x)$

The general form of a vector superfield $V(x, \theta, \bar{\theta})$ is
$V(x, \theta, \bar{\theta})=C(x)+i \theta \chi(x)-i \bar{\theta} \bar{\chi}(x)+\frac{i}{2} \theta \theta[M(x)+i N(x)]-\frac{i}{2} \bar{\theta} \bar{\theta}[M(x)-i N(x)] \quad$（2） $\theta \sigma^{\mu} \bar{\theta} u_{\mu}(x)+i \theta \theta \bar{\theta}\left[\bar{\lambda}(x)+\frac{i}{2} \bar{\sigma}^{\mu} \partial_{\mu} \chi(x)\right]-i \bar{\theta} \bar{\theta} \theta\left[\lambda(x)+\frac{i}{2} \sigma^{\mu} \partial_{\mu} \bar{\chi}(x)\right]$ $+\frac{1}{2} \theta \theta \bar{\theta} \bar{\theta}\left[\boldsymbol{D}(x)+\frac{1}{2} \partial_{\mu} \partial^{\mu} C(x)\right]$
We can choose a special gauge where the components $\boldsymbol{C}, \chi, M, N$ are zero．This defines the Wess－Zumino（WZ）gauge．A vector superfield in Wess Zumino gauge reduces to the form：
$V(x, \theta, \bar{\theta})=-\theta \sigma^{\mu} \bar{\theta} u_{\mu}(x)+i \theta \theta \bar{\theta} \bar{\lambda}(x)-i \bar{\theta} \bar{\theta} \theta \lambda(x)+\frac{1}{2} \theta \theta \bar{\theta} \bar{\theta} D(x)$ ． where $\boldsymbol{u}_{\alpha}^{\alpha}$ is the gluon field，λ^{α} is the gluino field which tran
of the gauge group and D^{α} is an auxiliary real scalar field．
In order to obtain a renormalizable theory，we need to construct a Lagrangian with products of保 invariance under supersymmetric gauge transformations：

$$
\begin{aligned}
& \Phi_{+}^{\prime}=e^{-i \Lambda^{\prime}} \Phi_{+} \\
& \Phi^{\prime}=\Phi \Phi_{-i}
\end{aligned}
$$

$\mathcal{L}=\frac{1}{16 k g} \operatorname{Tr}\left(\left.W^{\alpha} W_{\alpha}\right|_{\theta \theta}+\left.\bar{W}_{\dot{\alpha}} \bar{W}^{\dot{\alpha}}\right|_{\bar{\theta} \bar{\theta}}\right)+\left.\left(\Phi_{+}^{\dagger} e^{V} \Phi_{+}+\Phi_{-} e^{-V} \Phi_{-}^{\dagger}\right)\right|_{\theta \theta \bar{\theta} \bar{\theta}}+\boldsymbol{m}\left(\left.\Phi_{-} \Phi_{+}\right|_{\theta \theta}+\Phi_{+}^{\dagger} \Phi_{-}^{\dagger} \mid \bar{\theta} \bar{\theta}\right)$ where $\operatorname{Tr}\left(\boldsymbol{T}^{\alpha} \boldsymbol{T}^{\beta}\right)=k \delta^{\alpha \beta}, W_{\alpha}=-\frac{1}{4} \overline{\mathcal{D}} \overline{\mathcal{D}} e^{-V} \mathcal{D}_{\alpha} e^{V}$ is the supersymmetric field strength and ${ }^{(5)}$ he supersymmetric covariant derivative is defined

Upon functionally integrating over the auxiliary fields；restoring the coupling g by rescaling $\boldsymbol{V} \rightarrow \mathbf{2 g} \boldsymbol{V}$ and after a Wick rotation，the form of the Euclidean action in 4 dimensions in Dirac notation $\mathcal{S}_{\text {Soci }}^{E}$ is
$\mathcal{S}_{\mathrm{SQCD}}^{E}=\int d^{4} x\left[\frac{1}{4} u_{\mu \nu}^{(\alpha)} u_{\mu \nu}^{(\alpha)}+\frac{1}{2} \bar{\lambda}_{M}^{(\alpha)}\right\rangle_{\mu}^{E} \mathcal{D}_{\mu} \lambda_{M}^{(\alpha)}$
$\mathcal{D}_{\mu} A_{+}^{\dagger} \mathcal{D}_{\mu} A_{+}+\mathcal{D}_{\mu} A_{-} \mathcal{D}_{\mu} A_{-}^{\dagger}+\bar{\psi}_{D} \gamma_{\mu}^{E} \mathcal{D}_{\mu} \psi_{D}$
$+i \sqrt{2} g\left(A_{+}^{\dagger} \bar{\lambda}_{M}^{(\alpha)} \boldsymbol{T}^{(\alpha)} \boldsymbol{P}_{+}^{E} \psi_{D}-\bar{\psi}_{D} \boldsymbol{P}_{-}^{E} \lambda_{M}^{(\alpha)} \boldsymbol{T}^{(\alpha)} \boldsymbol{A}_{+}+\boldsymbol{A}_{-} \bar{\lambda}_{M}^{(\alpha)} \boldsymbol{T}^{(\alpha)} \boldsymbol{P}_{-}^{E} \psi_{D}-\bar{\psi}_{D} \boldsymbol{P}_{+}^{E} \lambda_{M}^{(\alpha)} \boldsymbol{T}^{(\alpha)} \boldsymbol{A}_{-}^{\dagger}\right)$
$\left.+\frac{1_{2}^{2}}{2} g^{2}\left(\boldsymbol{A}_{+}^{\dagger} \boldsymbol{T}^{(\alpha)} \boldsymbol{A}_{+}-\boldsymbol{A}_{-} \boldsymbol{T}^{(\alpha)} \boldsymbol{A}_{-}^{\dagger}\right)^{\mathbf{2}}-\boldsymbol{m}\left(\bar{\psi}_{D} \psi_{D}-\boldsymbol{m} \boldsymbol{A}_{+}^{\dagger} \boldsymbol{A}_{+}-\boldsymbol{m} \boldsymbol{A}_{-} \boldsymbol{A}_{-}^{\dagger}\right)\right]$
where $\lambda_{M}=\binom{\lambda_{a}}{\bar{\lambda}^{a}}$ and $\psi_{D}^{T}=\binom{\psi_{+}}{\bar{\psi}_{-}^{a}}, P_{ \pm}^{E}=\frac{1 \pm \gamma_{亏}^{E}}{2}, \gamma_{亏}^{E}=\gamma_{0}^{E} \gamma_{1}^{E} \gamma_{2}^{E} \gamma_{3}^{E} . \mathcal{S}_{\text {SQCD }}^{E}$ is invariant under supersymmetric transformations（ ξ_{M} ：Majorana spinor parameter）：

$$
\begin{aligned}
\delta_{\xi} A_{+} & =-\sqrt{2} \bar{\xi}_{M} P_{+}^{E} \psi_{D}, \\
\delta_{\xi} A_{-} & =-\sqrt{2} \bar{D}_{D} \boldsymbol{P}_{+}^{E} \xi_{M}, \\
\delta_{\xi}\left(\boldsymbol{P}_{+}^{E} \psi_{D}\right) & =\sqrt{2}\left(\mathcal{D}_{\mu} A_{+}\right) \boldsymbol{P}_{+}^{E} \gamma_{\mu}^{E} \xi_{M}-\sqrt{2} m \boldsymbol{P}_{+}^{E} \xi_{M} A_{-}^{\dagger}, \\
\delta_{\xi}\left(\boldsymbol{P}_{-}^{E} \psi_{D}\right) & =\sqrt{2}\left(\mathcal{D}_{\mu} A_{-}\right)^{\dagger} \boldsymbol{P}_{-}^{H} \gamma_{\mu}^{E} \xi_{M}-\sqrt{2} m A_{+} \boldsymbol{P}_{-}^{E} \xi_{M}
\end{aligned}
$$

$\delta_{\xi u_{\mu}^{(\alpha)}}=-\bar{\xi}_{\mu} \gamma_{\mu}^{E} \lambda_{\mu}^{(\alpha)}$,
$\delta_{\xi} \lambda_{M}^{(\alpha)}=\frac{1}{4} u_{\mu \nu}^{(\alpha)}\left[\gamma_{\mu}^{E}, \gamma_{\nu}^{E}\right] \xi_{M}-2 \boldsymbol{i g} \gamma_{5}^{E} \xi_{M}\left(\boldsymbol{A}_{+}^{\dagger} \boldsymbol{T}^{(\alpha)} \boldsymbol{A}_{+}-\boldsymbol{A}_{-} \boldsymbol{T}^{(\alpha)} \boldsymbol{A}_{-}^{\dagger}\right)$.
Vertices arising from this action are shown in Fig．

 corresponds to squarks gluinos）．．octet also that tit．
diagrams we write \pm in order to distinguish them．

The Calculation
 We calculate perturbatively the relevant 2－pt Green＇s functions up to one－loop，both in the continuum and on the lattice．The quantities that we study are the self energies of the quark (ψ) ，gluon $\left(u_{\mu}\right)$ ，squark (A) and gluino (λ) fields，as well as the 2 －pt Green＇s functions of the (ψ) ，gluon $\left(u_{\mu}\right)$ ，squark (A) and gluino (λ) fields，as well as the 2 －pt Green＇s functions quantities $\mathcal{O}, \dot{\psi}(x)=\bar{\psi}(x) \Gamma_{i} \psi(x)$ ，using both dimensional regularization（DR）and lattice regularization (L) The index $" i^{\prime \prime}$ refers to the possibibities of the gamma matrices： regularization（ L ）．The index＂i＂refers to the possibilities of the gamma matrices：
 $$
\begin{gathered} \text { (scalar) } \Gamma_{S}=1, \\ \text { (pseducoscalar) } \Gamma_{P}=\gamma_{5} \\ \text { (vector) } \Gamma_{V}=\gamma_{\mu} \text {, } \\ \text { (axial) } \Gamma_{A}=\gamma_{s} \gamma_{\mu}, \\ \text { (tensor) } \Gamma_{T}=\gamma_{\mu} \gamma_{\nu} . \end{gathered}
$$
 The first step in our perturbative procedure is to calculate the 2 －pt Green＇s functions in the scheme we can construct their RI＇counterparts using conversion factors which are scheme we can construct their RI counterparts using conversion factors which are immediately extracted from our computation to the required perturbative order．Being renormaiization functions．
 | ψ^{R} | $=\sqrt{Z_{\psi}} \psi^{B}$, |
| ---: | :--- |
| $A_{ \pm}^{R}$ | $=\sqrt{Z_{A_{ \pm}}} A_{ \pm}^{B}$ |
| u_{μ}^{R} | $=\sqrt{Z_{u}} u_{\mu}^{B}$, |
| λ_{μ}^{R} | $=\sqrt{Z_{\lambda}} \lambda^{B}$, |
| \mathcal{O}_{i}^{R} | $=Z_{i} \mathcal{O}_{i}^{B}$, |

 continuum where we regularize the theory in D －dimensions $(\boldsymbol{D}=4-2 \epsilon$ ．The continuumcalculations are necessary in order to compute the $\overline{\text { MS }}$－renormalized Green＇s functions；the enter the calculation of the corresponding Green＇s functions using lattice regularization and MS renormalization．The continuum results also provide the renormalization functions of the quark
field（ $\mathbf{Z}_{\text {，}}$ ）squark field（ $\mathbf{Z}_{\text {a }}$ ）gluon field（ $\mathbf{Z}_{\text {）}}$ and gluino field（ $\mathbf{Z}_{\text {）}}$ and for a complete set of
 quark bilinear operators $\mathcal{O}_{i}\left(\bar{Z}_{i}\right)$ ．For the extraction of the renormalization functions，we applied
the $\overline{\mathbf{M S}}$ scheme at a scale $\bar{\mu}$ ．Once we have computed the renormalization functions in the $\overline{\mathbf{M S}}$ regularization independent，these same conversion factors can then be also used for lattice

One loop continuum Feynman Diagrams

The one－loop Feynman diagrams（one－particle irreducible（1PII））contributing to $\langle\psi(\boldsymbol{x}) \bar{\psi}(\boldsymbol{y})\rangle$ are shown in Fig．2，those contributing to $\left\langle\boldsymbol{A}(\boldsymbol{x}) \mathrm{A}^{\dagger}(y)\right\rangle$ in Fig．3．One－loop Feynman diagrams
contributing to the Green＇s function $\left\langle\boldsymbol{u}^{(\alpha)}(x) \boldsymbol{u}^{(\beta)}(y)\right\rangle$ and $\left\langle\boldsymbol{\lambda}^{(\alpha)}(x) \bar{\lambda}^{(\beta)}(y)\right\rangle$ are shown in Fig． and Fig．5，respectively．The Feynman diagrams that enter the calculation of the Green＇s functions $\left\langle\psi(x) \mathcal{O}_{i}(z) \psi(y)\right\rangle$ up to one－loop are shown in Fig． 6 ．

Figure 6：One－loop Feynman diagram contributing to the 2 －pt Greer＇s function of $\left\langle\psi(x) \mathcal{O}_{i}(z) \bar{\Psi}(y)\right\rangle$ ，where \mathcal{O}_{i} are all
cocal quark bilinear operators．The circle cross denotes the quark bilinear operator insertion

Continuum Resultis

Here we can collect all our results for the 2 －pt Green＇s functions：
$\left.\langle\psi(x) \bar{\psi}(y)\rangle_{\text {amp }}^{D R}\right|_{m=0}=i / A\left[1-\frac{g^{2} C_{F}}{16 \pi^{2}}\left(\frac{2+\alpha}{\epsilon}+4+\alpha+(2+\alpha) \log \left(\frac{\bar{\mu}^{2}}{q^{2}}\right)\right)\right] \quad$（13）
where $N_{c}\left(N_{f}\right)$ is the number of colors（flavors）， $\boldsymbol{C}_{F}=\left(N_{c}^{2}-\mathbf{1}\right) /\left(\mathbf{2} N_{c}\right)$ is the quadratic Casimir operator in the fundamental representation，α is the gauge parameter $(\alpha=\mathbf{1 (0)}$ corresponds to
the Feynman（Landau）gauge）．A Kronecker delta for color indices is understood in Eqs．（13）
and（14）．

$$
\left.\left\langle A_{ \pm}(x) A_{ \pm}^{\dagger}(y)\right\rangle_{\text {amp }}^{D R}\right|_{m=0}=q^{2}\left[1-\frac{g^{2} C_{F}}{16 \pi^{2}}\left(\frac{1+\alpha}{\epsilon}+\frac{16}{3}+(1+\alpha) \log \left(\frac{\bar{\mu}^{2}}{q^{2}}\right)\right)\right]
$$

$\left.\left\langle u_{\mu}^{(\alpha)}(x) u_{\nu}^{(\beta)}(y)\right\rangle_{\mathrm{amp}}^{D R}\right|_{m=0}=\frac{1}{\alpha} \delta^{(\alpha)(\beta)} q_{\mu} q_{\nu}+\delta^{(\alpha)(\beta)}\left(q^{2} \delta_{\mu \nu}-q_{\mu} q_{\nu}\right) \times$

$$
\begin{aligned}
& {\left[1-\frac{g^{2} N_{f}}{16 \pi^{2}}\left(\frac{1}{\epsilon}+2+\log \left(\frac{\bar{\mu}^{2}}{q^{2}}\right)\right)\right.} \\
& \left.-\frac{g^{2} N_{c}}{16 \pi^{2}}\left(\frac{1+\alpha}{\epsilon}+\frac{7}{2}-\alpha-\frac{\alpha^{2}}{2}+(1+\alpha) \log \left(\frac{\bar{\mu}^{2}}{q^{2}}\right)\right)\right]
\end{aligned}
$$

$\left.\left\langle\lambda^{(\alpha)}(x) \bar{\lambda}^{(\beta)}(y)\right\rangle_{\text {amp }}^{D R}\right|_{m=0}=\frac{i}{2} \delta^{(\alpha)(\beta)} \alpha\left[1-\frac{g^{2} N_{f}}{16 \pi^{2}}\left(2+\frac{1}{\epsilon}+\log \left(\frac{\bar{\mu}^{2}}{q^{2}}\right)\right)\right.$

$$
\begin{equation*}
\left.-\frac{g^{2} N_{c}}{16 \pi^{2}}\left(4+\frac{4 \alpha}{\epsilon}+4 \alpha \log \left(\frac{\bar{\mu}^{2}}{q^{2}}\right)\right)\right] \tag{16}
\end{equation*}
$$

$\left.\left\langle\psi(x) \mathcal{O}_{S}(z) \bar{\psi}(y)\right\rangle_{\operatorname{mpp}}^{D R}\right|_{m=0}=\mathbb{1}\left[1+\frac{g^{2} C_{F}}{16 \pi^{2}}\left(\frac{3+\alpha}{\epsilon}+\mathbf{4}+2 \alpha+(3+\alpha) \log \left(\frac{\bar{\mu}^{2}}{q^{2}}\right)\right)\right]$ $\left.\left\langle\psi(x) \mathcal{O}_{P}(z) \bar{\psi}(y)\right\rangle_{\text {amp }}^{D R}\right|_{m=0}=\gamma_{5}\left[1+\frac{g^{2} C_{F}}{16 \pi^{2}}\left(\frac{\mathbf{3}+\alpha}{\epsilon}+\mathbf{1 2}+2 \alpha+(3+\alpha) \log \left(\frac{\bar{\mu}^{2}}{q^{2}}\right)\right)\right]$（18） $\left.\left\langle\psi(x) \mathcal{O}_{V}(z) \bar{\psi}(y)\right\rangle_{\operatorname{amp}}^{D R}\right|_{m=0}=\gamma_{\mu}\left[1+\frac{g^{2} C_{F}}{16 \pi^{2}} \alpha\left(\frac{1}{\epsilon}+1+\log \left(\frac{\bar{\mu}^{2}}{q^{2}}\right)\right)\right]-2 \alpha \frac{q_{\mu} q^{2} g^{2} C_{F}}{q^{2}} 16 \pi^{2}$

$$
\begin{equation*}
-2 \alpha \gamma_{5} \frac{q_{\mu} q g^{2} g^{2} C_{F}}{q^{2}} \frac{16 \pi^{2}}{} \tag{21}
\end{equation*}
$$

$\left.\left\langle\psi(x) \mathcal{O}_{T}(z) \bar{\psi}(y)\right\rangle_{\text {amp }}^{D R}\right|_{m=0}=\gamma_{\mu} \gamma_{\nu}\left[1+\frac{g^{2} C_{F}}{16 \pi^{2}}(\alpha-1)\left(\frac{1}{\epsilon}+\log \left(\frac{\bar{\mu}^{2}}{q^{2}}\right)\right)\right]$
One can observe that there is no one－loop longitudinal part for the gluon self－energy．Thus the renormalization function for the gauge parameter receives no one－loop contribution．From the above results we can extract the renormalization functions：

$$
\begin{aligned}
& Z_{\psi}^{D R, \overline{M S}}=1+\frac{g^{2} C_{F}}{16 \pi^{2}} \frac{1}{\epsilon}(2+\alpha) \\
& Z_{A_{ \pm}}^{D, \overline{M S}}=1+\frac{g^{2} C_{F} 1}{16 \pi^{2} \epsilon}(1+\alpha) \\
& Z_{u}^{D R, \overline{M S}}=1+\frac{g^{2}}{16 \pi^{2} \epsilon} \frac{1}{\epsilon}\left(\frac{1+\alpha}{2} N_{c}+N_{f}\right) \\
& Z_{\lambda}^{D R, \overline{\mathrm{MS}}}=1+\frac{g^{2}}{16 \pi^{2}} \frac{1}{\epsilon}\left(4 \alpha N_{c}+N_{f}\right) \\
& Z_{S}^{D R, \overline{\mathrm{MS}}}=1-\frac{g^{2} C_{F} \frac{1}{16 \pi^{2} \epsilon}}{} \\
& Z_{P}^{D R, \mathrm{MS}}=1-\frac{g^{2} C_{F} 1}{16 \pi^{2} \epsilon} \\
& Z_{V}^{D R, M S}=1+\frac{g^{2} C_{F} 2}{16 \pi^{2} \epsilon} \\
& Z_{A}^{D R, \mathrm{MS}}=1+\frac{g^{2} C_{F} 2}{16 \pi^{2} \epsilon} \\
& Z_{T}^{D R, \overline{M S}}=1+\frac{g^{2} C_{F} 3}{16 \pi^{2} \epsilon} .
\end{aligned}
$$

attice calculation

Even though，the lattice breaks supersymmetry explicitly，due to the appearance of lattice artifacts and the doubling problem，it is the only regulator that describes many aspects o
strong interactions also nonperturbatively．We use a standard discretization where the quid squarks and gluinos iline on the lattice sites and the gluons live on the links of the lattice：
 non－supersymmetric gauge theories．For Wilson－type fermions and gluons，the Euclidean
action $\mathcal{S}^{E, L}$ ，on the latice becomes：
$\mathcal{S}_{\mathrm{scCD}}^{E, L}=a^{4} \sum_{x}\left[\frac{2 N_{c}}{g^{2}} \sum_{\mu \nu}\left(1-\frac{1}{N_{c}} R e \operatorname{Tr} U_{\mu \nu}\right)+\operatorname{Tr}\left(\bar{\lambda}_{M} \gamma_{\mu}^{E} \mathcal{D}_{\mu} \lambda_{M}\right)\right.$
$+\mathcal{D}_{\mu} A_{+}^{\dagger} \mathcal{D}_{\mu} A_{+}+\mathcal{D}_{\mu} A_{-} \mathcal{D}_{\mu} A_{-}^{\dagger}+\bar{\psi}_{D} \gamma_{\mu}^{E} \mathcal{D}_{\mu} \psi_{D}$
$+i \sqrt{2} g\left(\boldsymbol{A}_{+}^{A} \bar{\lambda}_{M}^{(\alpha)} \boldsymbol{T}^{(\alpha)} \boldsymbol{P}_{+}^{E} \psi_{\boldsymbol{D}}-\bar{\psi}_{D} \boldsymbol{P}_{-}^{E} \lambda_{M}^{(\alpha)} \boldsymbol{T}^{(\alpha)} \boldsymbol{A}_{+}+\boldsymbol{A}_{-} \bar{\lambda}_{M}^{(\alpha)} \boldsymbol{T}^{(\alpha)} \boldsymbol{P}_{-}^{E} \psi_{\boldsymbol{D}}-\bar{\psi}_{D} \boldsymbol{P}_{+}^{E} \lambda_{M}^{(\alpha)} \boldsymbol{T}^{(\alpha)} \boldsymbol{A}_{-}^{\dagger}\right)$
$\left.+\frac{1}{2^{2}} \boldsymbol{g}^{2}\left(\boldsymbol{A}_{+}^{\dagger} \boldsymbol{T}^{(\alpha)} \boldsymbol{A}_{+}-\boldsymbol{A}_{-} \boldsymbol{T}^{(\alpha)} \boldsymbol{A}_{-}^{\dagger}\right)^{2}-\boldsymbol{m}\left(\bar{\psi}_{D} \psi_{D}-\boldsymbol{m} A_{+}^{\dagger} \boldsymbol{A}_{+}-\boldsymbol{m} \boldsymbol{A}_{-} \boldsymbol{A}_{-}^{\dagger}\right)\right] . \quad$（31） where：$U_{\mu \nu}(x)=U_{\mu}(x) U_{\nu}(x+a \hat{\mu}) U_{\mu}^{\dagger}(x+a \hat{\nu}) U_{\nu}^{\dagger}(x)$ ，

$$
\mathcal{D}_{\mu} \lambda_{M}=\frac{1}{2 a}\left[U_{\mu}(x) \lambda_{M}(x+a \hat{\mu}) U_{\mu}^{\dagger}(x)-U_{\mu}^{\dagger}(x-a \hat{\mu}) \lambda_{M}(x-a \hat{\mu}) U_{\mu}^{\dagger}(x-a \hat{\mu})\right]
$$

$\frac{r}{2 a}\left[U_{\mu}(x) \lambda_{M}(x+a \hat{\mu}) U_{\mu}^{\dagger}(x)-2 \lambda_{M}(x)+U_{\mu}^{\dagger}(x-a \hat{\mu}) \lambda_{M}(x-a \hat{\mu}) U_{\mu}^{\dagger}(x-a \hat{\mu})\right](32)$
$\mathcal{D}_{\mu} \psi_{D}(x)=\frac{1}{2 a}\left[U_{\mu}(x) \psi_{D}(x+a \hat{\mu})-U_{\mu}^{\dagger}(x-a \hat{\mu}) \psi_{D}(x-a \hat{\mu})\right]$
$\begin{aligned} & -\frac{1}{2 a}\left[U_{\mu}(x) \psi_{D}(x+a \hat{\mu})-2 \psi_{D}(x)+U_{\mu}^{\dagger}(x-a \hat{\mu}) \psi_{D}(x-a \hat{\mu})\right] \\ \mathcal{D}_{\mu} A_{+} & =\frac{1}{2 a}\left[U_{\mu}(x) A_{+}(x+a \hat{\mu})-U_{\mu}^{\dagger}(x-a \hat{\mu}) A_{+}(x-a \hat{\mu})\right] \\ \mathcal{D}_{\mu} A_{+}^{\dagger} & =\frac{1}{2 a}\left[A_{+}^{\dagger}(x+a \hat{\mu}) U_{\mu}^{\dagger}(x)-A_{+}^{\dagger}(x-a \hat{\mu}) U_{\mu}(x-a \hat{\mu})\right] \\ \mathcal{D}_{\mu} A_{-} & =\frac{1}{2 a}\left[A_{-}(x+a \hat{\mu}) U_{\mu}^{\dagger}(x)-A_{-}(x-a \hat{\mu}) U_{\mu}(x-a \hat{\mu})\right] \\ \mathcal{D}_{\mu} A_{-}^{\dagger} & =\frac{1}{2 a}\left[U_{\mu}(x) A_{-}^{\dagger}(x+a \hat{\mu})-U_{\mu}^{\dagger}(x-a \hat{\mu}) A_{-}^{\dagger}(x-a \hat{\mu})\right]\end{aligned}$
Calculating the same Green＇s functions as before on the lattice，and combining them with our results from the continuum，we will be able to extract $Z_{Z}^{L}, Z_{,}^{L}, Z_{,}^{L}, Z_{A^{\prime}}^{L}$ and Z_{Γ}^{L} in the $\overline{\text { MS }}$ scheme
and on the lattice．On the lattice we have to calculate all the diagrams which were presented and on the lattice．On the lattice we have to calculate all the diagrams which were presented
here as well as further tadpole diagrams containing closed gluon loops．For the algebraic operations involved in evaluating Feynman diagrams，we make use of our symbolic package in Mathematica．

Mixing of quark bilinear operators with gluino bilinear operators

In general，the renormalization of quark bilinears using other 2－pt Green＇s functions，e．g $\left\langle\lambda(x) \mathcal{O}_{i}(z) \lambda(y)\right\rangle$ is nontrivial．A serious complication in this case is that operators of equal and
ower dimensionality，with the same quantum numbers，potentially including also non gauge ower dimensionality，with the same quantum numbers，potentially including also non gauge
invariant quantities，can mix with \mathcal{O}_{i} at the quantum level．We identified all operators which can possibly mix with \mathcal{O}_{i} and all Green＇s functions which must be calculated in order to compute those elements of the mixing matrix which are relevant for the renormalization of \mathcal{O}_{i} ．We list the flavor singlet case（ $\bar{\psi} \Gamma_{i} \psi \equiv \sum_{f} \bar{\psi}_{f} \Gamma_{i} \psi_{f}$ ）．

Table 1：Mixing patterss in the fllavor non－singlet case．Flavor non－singlet operators in the leftmost column can mix
at the quantum evel with the remaining operators in the same row．

\section*{| $\bar{\psi} \psi$ | $\bar{\lambda} \lambda$ | $\boldsymbol{A}_{-} \boldsymbol{A}_{-}^{\dagger}$ | $\boldsymbol{A}_{+}^{\dagger} \boldsymbol{A}_{+}$ | $\boldsymbol{A}_{-} \boldsymbol{A}_{+}$ | $\boldsymbol{A}_{+}^{\dagger} \boldsymbol{A}_{-}^{\dagger}$ | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\bar{\psi} \gamma_{5} \psi$ | $\bar{\lambda} \gamma_{5} \boldsymbol{\lambda}$ | | | | | | |
| $\bar{\psi} \gamma_{\mu} \psi$ | $\overline{\boldsymbol{\lambda}} \gamma_{\mu} \boldsymbol{\lambda}$ | $\boldsymbol{A}_{-} \boldsymbol{\partial}_{\mu} \boldsymbol{A}_{-}^{\dagger}$ | $\boldsymbol{A}_{+}^{\dagger} \boldsymbol{\partial}_{\mu} \boldsymbol{A}_{+}$ | $\boldsymbol{A}_{-} \boldsymbol{\partial}_{\mu} \boldsymbol{A}_{+}$ | $\boldsymbol{A}_{+}^{\dagger} \boldsymbol{\partial}_{\mu} \boldsymbol{A}_{-}^{\dagger}$ | | |
 ${ }_{\psi} \gamma_{5} \gamma_{\mu} \psi \lambda \gamma_{5} \gamma_{\mu} \lambda$
 $\psi \gamma_{5} \gamma_{\mu} \psi$

$\psi \gamma_{\mu} \gamma_{5} \gamma_{\mu} \lambda$
$\psi \gamma_{\mu}$}

Table 2：Mixing patterns in the fliavor singlet case．Flavor singlet operators in the leftmost column can mix at the
Additional 3－squark operators may mix with some of the \mathcal{O}_{i} operators for $N_{f} \geq 3$ ．In order to calculate the mixing coefficients we must evaluate Feynman diagrams shown in Fig． 7 ． matrix．

Future Plans－Conclusion
 Determination of the Renormalization Functions of all fields and parameters which appear in

 $\mathcal{S}_{\text {Socd }}^{E}$ and of a complete set of quark bilinear operators on the lattice，which are necessaryingredients in the prediction of physical probability amplitudes from lattice matrix elements． Investigation of relationships between different Green＇s functions involved in SUSY Ward identities．
－Study of the mixing among operators．
－Innovation of this computation：This will be the first calculation of the renormalization
unctions for SQCD on the lattice，providing a thorough set of results for all counterterms，

References

II S．Weinberg，Phys．Rev．D22（1980） 1694.

［3］S．Weinber，Thager，Supersy（i）
 ．Weinoerg，The quantum theory of fiedds，Volume III Supersymmetry，Cambridge University Press（2000）．

［4］S．P．Martin，［hep－ph／9709356］．
．A．Skouroupathis and H．Panagopoulos，Phys．Rev．D76（2007）094514，［arXiv：0707．2906］．
［6］K．G．Chetyrkin and A．Rétey，［hep－ph／0007088］．
［7］J．A．Gracey，Nucl．Phys．B662（2003）247，［hep－ph／03041 13］．
［8］G．Curci，G．Veneziano，Nucl．Phys．B292（1987） 555.
［9］R．D．C．Miller，Phys．Lett．B129（1983） 72.
10］H．Suzuki，Nucl．Phys．B861（2012） 290.
［11］J．Giedt Int．J．Mod．Phys．A24（2009） 4045
［12］A．Feo，Mod．Phys．Lett．A19（2004） 2387.
［13］S．Catterall，E．Dzienkowski，J．Giedt，A．Joseph，R．Wells，JHEP 4 （2011） 74
［14］H．Suzuki，Y．Taniguchi，JHEP 10 （2005） 082.
［15］J．Giedt，E．Poppitz，JHEP 9 （2004） 029.
［16］A．Feo，Nucl．Phys．B119（2003） 198.
［17］M．Creutz，Rev．of Mod．Phys．73：1（2001）119－150．
［18］S．Catterall，D．B．Kaplan，M．Ünsal，Phys．Rep． 484 （2009） 71. ［19］A．Feo，Phys．Rev．D88（2013） 091501. ［20］S．Catterall，D．Schaich，P．H．Damgaard，T．DeGrand J．Giedt．Phys．Rev．D90（2014） 065013.

