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Abstract

In recent years the prospects of extracting nonperturbative information for Supersymmetric Theories through lattice simulations are being studied extensively, from a number of viewpoints. There are a number of important physical questions regarding SUSY to be ultimately addressed on the lattice, such
as the nature of SUSY breaking, and the phase diagram of SUSY models. Such questions have become increasingly relevant in recent years, in the context of investigations of BSM Physics. Many notorious problems arise when formulating SUSY models on the lattice, such as the emergence of a
plethora of counterterms in the action and the need for fine-tuning of masses and coupling constants.The present investigates these problems using, as a representative nontrivial model, supersymmetricN = 1 Quantum Chromodynamics (SQCD).
We study the self energies of all particles which appear in a lattice regularization of supersymmetric QCD (N = 1). We compute, perturbatively to one-loop, the relevant two-point Green’s functions using both the dimensional and the lattice regularizations. Our lattice formulation involves a variety of
discretizations for the gluino and quark fields, including Wilson, clover and overlap fermions. For gluons we employ the Wilson action, as well as Symanzik improved variants. For scalar fields (squarks) we use naive discretization. The gauge group that we consider is SU(Nc) while the number of colors, Nc
and the number of flavors, Nf , are kept as generic parameters. We have also searched for relations among the propagators which are computed from our one-loop results. We have obtained analytic expressions for the renormalization functions of the quark field (Zψ), gluon field (Zu), gluino field (Zλ) and
squark field (ZA±). In this study we also describe the perturbative calculation of the renormalization of quark bilinear operators which, unlike the non-supersymmetric case, exhibit a rich pattern of operator mixing at the quantum level.

Continuum Action of SQCD

The construction of the Lagrangian of SQCD involves chiral superfields and vector superfields.
The physical components of a chiral superfield Φ, are the matter fields: A which represents a
scalar boson (squark), ψ which is a two-component spinor (quark - spin 1

2) and F which is an
auxiliary complex scalar field. In superspace notation (x: spacetime coordinates, θ/θ̄:
anticommuting coordinates) the chiral superfield Φ in terms of the above component fields is:

Φ(x, θ, θ̄) = A(x) +
√

2 θψ(x) + θθ F(x) + iθ σµ θ̄ ∂µA(x) (1)

+
i
√

2
θθ θ̄ σ̄µ ∂µψ(x) +

1
4
θθ θ̄θ̄ ∂µ∂

µA(x)

The general form of a vector superfield V(x, θ, θ̄) is:

V(x, θ, θ̄) = C(x) + iθχ(x)− iθ̄χ̄(x) +
i
2
θθ
[
M(x) + iN(x)

]
−

i
2
θ̄θ̄
[
M(x) − iN(x)

]
(2)

− θ σµ θ̄ uµ(x) + iθθ θ̄
[
λ̄(x) +

i
2
σ̄µ∂µχ(x)

]
− iθ̄θ̄ θ

[
λ(x) +

i
2
σµ∂µχ̄(x)

]
+

1
2
θθ θ̄θ̄

[
D(x) +

1
2
∂µ∂

µC(x)

]
.

We can choose a special gauge where the components C, χ,M,N are zero. This defines the
Wess − Zumino (WZ) gauge. A vector superfield in Wess Zumino gauge reduces to the form:

V(x, θ, θ̄) = −θ σµ θ̄ uµ(x) + iθθ θ̄λ̄(x)− iθ̄θ̄ θλ(x) +
1
2
θθ θ̄θ̄ D(x) . (3)

where uαµ is the gluon field, λα is the gluino field which transform in the adjoint representation
of the gauge group and Dα is an auxiliary real scalar field.

In order to obtain a renormalizable theory, we need to construct a Lagrangian with products of
superfields having dimensionality ≤ 4; in addition, we require Lorentz invariance as well as
invariance under supersymmetric gauge transformations:

Φ′+ = e−iΛΦ+ (4)
Φ′− = Φ−eiΛ

eV′ = e−iΛ†eVeiΛ

L =
1

16kg
Tr
(
Wα Wα|θθ+W̄α̇ W̄α̇|θ̄θ̄

)
+
(
Φ†+ eV Φ++Φ− e−V Φ†−

)
|θθθ̄θ̄+m

(
Φ−Φ+|θθ+Φ†+Φ†−|θ̄θ̄

)
(5)

where Tr(TαTβ) = k δαβ, Wα = −1
4D̄D̄ e−VDα eV is the supersymmetric field strength and

the supersymmetric covariant derivative is defined:
Dα = ∂

∂θα + iσµαα̇ θ̄
α̇ ∂µ , D̄α̇ = − ∂

∂θ̄α̇ − iθα (σµ)αα̇ ∂µ. Combining the components of Φ+

with Φ− we can construct a 4 component Dirac Spinor (ψD).
Upon functionally integrating over the auxiliary fields; restoring the coupling g by rescaling
V → 2 g V and after a Wick rotation, the form of the Euclidean action in 4 dimensions in Dirac
notation SE

SQCD is:

SE
SQCD =

∫
d4x
[1

4
u(α)
µν u(α)

µν +
1
2
λ̄

(α)
M γE

µDµλ
(α)
M

+ DµA†+DµA+ +DµA−DµA†− + ψ̄Dγ
E
µDµψD

+ i
√

2g
(
A†+λ̄

(α)
M T(α)PE

+ψD − ψ̄DPE
−λ

(α)
M T(α)A+ + A−λ̄

(α)
M T(α)PE

−ψD − ψ̄DPE
+λ

(α)
M T(α)A†−

)
+

1
2

g2(A†+T(α)A+ − A−T(α)A†−)2 − m(ψ̄DψD − mA†+A+ − mA−A†−)
]
. (6)

where λM =

(
λa
λ̄ȧ

)
and ψT

D =

(
ψ+a
ψ̄ȧ
−

)
, PE
± =

1± γE
5

2 , γE
5 = γE

0 γ
E
1 γ

E
2 γ

E
3 . SE

SQCD is invariant

under supersymmetric transformations (ξM: Majorana spinor parameter):

δξA+ = −
√

2ξ̄MPE
+ψD ,

δξA− = −
√

2ψ̄DPE
+ξM ,

δξ(PE
+ψD) =

√
2(DµA+)PE

+γ
E
µξM −

√
2mPE

+ξMA†− ,

δξ(PE
−ψD) =

√
2(DµA−)†PE

−γ
E
µξM −

√
2mA+PE

−ξM ,

δξu(α)
µ = −ξ̄Mγ

E
µλ

(α)
M ,

δξλ
(α)
M =

1
4

u(α)
µν [γE

µ, γ
E
ν ]ξM − 2igγE

5 ξM(A†+T(α)A+ − A−T(α)A†−) . (7)

Vertices arising from this action are shown in Fig. 1.

Figure 1: Interaction Vertices of SE
SQCD . A wavy (solid) line represents gluons (quarks). A dotted (dashed) line

corresponds to squarks (gluinos). Note also that there exist similara vertices which involve A+ and A−. In the next
diagrams we write ± in order to distinguish them.

The Calculation

We calculate perturbatively the relevant 2-pt Green’s functions up to one-loop, both in the
continuum and on the lattice. The quantities that we study are the self energies of the quark
(ψ), gluon (uµ), squark (A) and gluino (λ) fields, as well as the 2-pt Green’s functions of the
quantities Oi(x) = ψ̄(x)Γiψ(x), using both dimensional regularization (DR) and lattice
regularization (L). The index "i” refers to the possibilities of the gamma matrices:

(scalar) ΓS = 1,
(pseudoscalar) ΓP = γ5,

(vector) ΓV = γµ,
(axial) ΓA = γ5γµ,

(tensor) ΓT = γµγν.
The first step in our perturbative procedure is to calculate the 2-pt Green’s functions in the
continuum where we regularize the theory in D-dimensions (D = 4− 2 ε). The continuum
calculations are necessary in order to compute the MS-renormalized Green’s functions; these
enter the calculation of the corresponding Green’s functions using lattice regularization and MS
renormalization. The continuum results also provide the renormalization functions of the quark
field (Zψ), squark field (ZA±), gluon field (Zu) and gluino field (Zλ) and for a complete set of
quark bilinear operators Oi (Zi). For the extraction of the renormalization functions, we applied
the MS scheme at a scale µ̄. Once we have computed the renormalization functions in the MS
scheme we can construct their RI′ counterparts using conversion factors which are
immediately extracted from our computation to the required perturbative order.Being
regularization independent, these same conversion factors can then be also used for lattice
renormalization functions.
The aforementioned renormalization functions are defined as follows:

ψR =
√

Zψ ψB, (8)

AR
± =

√
ZA± AB

±, (9)

uR
µ =

√
Zu uB

µ, (10)

λR =
√

Zλ λB, (11)
OR

i = ZiOB
i . (12)

One loop continuum Feynman Diagrams

The one-loop Feynman diagrams (one-particle irreducible (1PI)) contributing to 〈ψ(x)ψ̄(y)〉 are
shown in Fig. 2, those contributing to 〈A(x)A†(y)〉 in Fig. 3. One-loop Feynman diagrams
contributing to the Green’s function 〈u(α)

µ (x)u(β)
ν (y)〉 and 〈λ(α)(x)λ̄(β)(y)〉 are shown in Fig. 4

and Fig. 5, respectively. The Feynman diagrams that enter the calculation of the Green’s
functions 〈ψ(x)Oi(z)ψ̄(y)〉 up to one-loop are shown in Fig. 6.

Figure 2: One-loop Feynman diagrams contributing to the 2-pt Green’s function of the quark propagator,
〈ψ(x)ψ̄(y)〉.

One loop continuum Feynman Diagrams

Figure 3: One-loop Feynman diagrams contributing to the 2-pt Green’s function of the squark propagator,
〈A+(x)A†+(y)〉. Similar diagrams apply to the propagator of the A− field.

Figure 4: One-loop Feynman diagrams contributing to the 2-pt Green’s function of the gluon propagator,
〈u(α)
µ (x)u(β)

ν (y)〉. The last Feynman diagram is the one with a closed ghost loop coming from the ghost part of the
action.

Figure 5: One-loop Feynman diagrams contributing to the 2-pt Green’s function of the gluino propagator,
〈λα(x)λ̄β(y)〉.

Figure 6: One-loop Feynman diagram contributing to the 2-pt Green’s function of 〈ψ(x)Oi(z)ψ̄(y)〉, where Oi are all
local quark bilinear operators. The circle cross denotes the quark bilinear operator insertion.

Continuum Results

Here we can collect all our results for the 2-pt Green’s functions:

〈ψ(x)ψ̄(y)〉DR
amp

∣∣∣
m=0

= i6 q
[

1−
g2 CF

16π2

(
2 + α

ε
+ 4 + α+ (2 + α) log

(
µ̄2

q2

))]
(13)

where Nc (Nf ) is the number of colors (flavors), CF = (N2
c − 1)/(2 Nc) is the quadratic Casimir

operator in the fundamental representation, α is the gauge parameter (α = 1(0) corresponds to
the Feynman (Landau) gauge). A Kronecker delta for color indices is understood in Eqs. (13)
and (14).

〈A±(x)A†±(y)〉DR
amp

∣∣∣
m=0

= q2

[
1−

g2 CF

16π2

(
1 + α

ε
+

16
3

+ (1 + α) log

(
µ̄2

q2

))]
(14)

〈u(α)
µ (x)u(β)

ν (y)〉DR
amp

∣∣∣
m=0

=
1
α
δ(α) (β)qµqν + δ(α) (β)

(
q2δµν − qµqν

)
× (15)[

1−
g2 Nf

16π2

(
1
ε

+ 2 + log

(
µ̄2

q2

))

−
g2 Nc

16π2

1
2

(
1 + α

ε
+

7
2
− α−

α2

2
+ (1 + α) log

(
µ̄2

q2

)) ]

〈λ(α)(x)λ̄(β)(y)〉DR
amp

∣∣∣
m=0

=
i
2
δ(α) (β) 6 q

[
1−

g2 Nf

16π2

(
2 +

1
ε

+ log

(
µ̄2

q2

))
(16)

−
g2 Nc

16π2

(
4 +

4α
ε

+ 4α log

(
µ̄2

q2

)) ]

〈ψ(x)OS(z)ψ̄(y)〉DR
amp

∣∣∣
m=0

= 11

[
1 +

g2 CF

16π2

(
3 + α

ε
+ 4 + 2α+ (3 + α) log

(
µ̄2

q2

))]
(17)

〈ψ(x)OP(z)ψ̄(y)〉DR
amp

∣∣∣
m=0

= γ5

[
1 +

g2 CF

16π2

(
3 + α

ε
+ 12 + 2α+ (3 + α) log

(
µ̄2

q2

))]
(18)

〈ψ(x)OV(z)ψ̄(y)〉DR
amp

∣∣∣
m=0

= γµ

[
1 +

g2 CF

16π2
α

(
1
ε

+ 1 + log

(
µ̄2

q2

))]
− 2α

qµ 6 q
q2

g2 CF

16π2
(19)

〈ψ(x)OA(z)ψ̄(y)〉DR
amp

∣∣∣
m=0

= γ5γµ

[
1 +

g2 CF

16π2

(
α

ε
+ 4 + α+ α log

(
µ̄2

q2

))]
(20)

−2αγ5
qµ 6 q
q2

g2 CF

16π2

〈ψ(x)OT(z)ψ̄(y)〉DR
amp

∣∣∣
m=0

= γµγν

[
1 +

g2 CF

16π2
(α− 1)

(
1
ε

+ log

(
µ̄2

q2

))]
. (21)

One can observe that there is no one-loop longitudinal part for the gluon self-energy. Thus the
renormalization function for the gauge parameter receives no one-loop contribution. From the
above results we can extract the renormalization functions:

ZDR,MS
ψ = 1 +

g2 CF

16π2

1
ε

(2 + α) (22)

ZDR,MS
A± = 1 +

g2 CF

16π2

1
ε

(1 + α) (23)

ZDR,MS
u = 1 +

g2

16π2

1
ε

(
1 + α

2
Nc + Nf

)
(24)

ZDR,MS
λ = 1 +

g2

16π2

1
ε

(4αNc + Nf) (25)

ZDR,MS
S = 1−

g2 CF

16π2

1
ε

(26)

ZDR,MS
P = 1−

g2 CF

16π2

1
ε

(27)

ZDR,MS
V = 1 +

g2 CF

16π2

2
ε

(28)

ZDR,MS
A = 1 +

g2 CF

16π2

2
ε

(29)

ZDR,MS
T = 1 +

g2 CF

16π2

3
ε
. (30)

Lattice calculation

Even though, the lattice breaks supersymmetry explicitly, due to the appearance of lattice
artifacts and the doubling problem, it is the only regulator that describes many aspects of
strong interactions also nonperturbatively. We use a standard discretization where the quarks,
squarks and gluinos live on the lattice sites and the gluons live on the links of the lattice:
Uµ(x) = eigaTaua

µ(x+aµ̂/2). Our procedure is based on Wilson’s formulation of
non-supersymmetric gauge theories. For Wilson-type fermions and gluons, the Euclidean
action SE,L

SQCD on the lattice becomes:

SE,L
SQCD = a4

∑
x

[2Nc

g2

∑
µν

(
1−

1
Nc

Re TrUµν
)

+ Tr
(
λ̄Mγ

E
µDµλM

)
+ DµA†+DµA+ +DµA−DµA†− + ψ̄Dγ

E
µDµψD

+ i
√

2g
(
A†+λ̄

(α)
M T(α)PE

+ψD − ψ̄DPE
−λ

(α)
M T(α)A+ + A−λ̄

(α)
M T(α)PE

−ψD − ψ̄DPE
+λ

(α)
M T(α)A†−

)
+

1
2

g2(A†+T(α)A+ − A−T(α)A†−)2 − m(ψ̄DψD − mA†+A+ − mA−A†−)
]
. (31)

where: Uµν(x) = Uµ(x)Uν(x + aµ̂)U†µ(x + aν̂)U†ν(x),

DµλM =
1

2a

[
Uµ(x)λM(x + aµ̂)U†µ(x)− U†µ(x− aµ̂)λM(x− aµ̂)U†µ(x− aµ̂)

]
−

r
2a

[
Uµ(x)λM(x + aµ̂)U†µ(x)− 2λM(x) + U†µ(x− aµ̂)λM(x− aµ̂)U†µ(x− aµ̂)

]
(32)

DµψD(x) =
1

2a

[
Uµ(x)ψD(x + aµ̂)− U†µ(x− aµ̂)ψD(x− aµ̂)

]
−

r
2a

[
Uµ(x)ψD(x + aµ̂)− 2ψD(x) + U†µ(x− aµ̂)ψD(x− aµ̂)

]
(33)

DµA+ =
1

2a

[
Uµ(x)A+(x + aµ̂)− U†µ(x− aµ̂)A+(x− aµ̂)

]
(34)

DµA†+ =
1

2a

[
A†+(x + aµ̂)U†µ(x)− A†+(x− aµ̂)Uµ(x− aµ̂)

]
(35)

DµA− =
1

2a

[
A−(x + aµ̂)U†µ(x)− A−(x− aµ̂)Uµ(x− aµ̂)

]
(36)

DµA†− =
1

2a

[
Uµ(x)A†−(x + aµ̂)− U†µ(x− aµ̂)A†−(x− aµ̂)

]
(37)

Calculating the same Green’s functions as before on the lattice, and combining them with our
results from the continuum, we will be able to extract ZL

ψ, ZL
u, ZL

λ, ZL
A± and ZL

Γ in the MS scheme
and on the lattice. On the lattice we have to calculate all the diagrams which were presented
here as well as further tadpole diagrams containing closed gluon loops. For the algebraic
operations involved in evaluating Feynman diagrams, we make use of our symbolic package in
Mathematica.

Mixing of quark bilinear operators with gluino bilinear operators

In general, the renormalization of quark bilinears using other 2-pt Green’s functions, e.g.
〈λ(x)Oi(z)λ̄(y)〉 is nontrivial. A serious complication in this case is that operators of equal and
lower dimensionality, with the same quantum numbers, potentially including also non gauge
invariant quantities, can mix with Oi at the quantum level. We identified all operators which can
possibly mix with Oi and all Green’s functions which must be calculated in order to compute
those elements of the mixing matrix which are relevant for the renormalization of Oi. We list
these operators in Table 1 for the flavor non-singlet case (ψ̄Γiψ ≡ ψ̄fΓiψf ′) and in Table 2 for
the flavor singlet case (ψ̄Γiψ ≡

∑
f ψ̄fΓiψf ).

ψ̄ψ A−A†− A†+A+ A−A+ A†+A†−
ψ̄γ5ψ no mixing

ψ̄γµψ A−∂µA†− A†+∂µA+ A−∂µA+ A†+∂µA†−
A−DµA†− A†+DµA+ A−DµA+ A†+DµA†−

ψ̄γ5γµψ no mixing

ψ̄γµγνψ no mixing

Table 1: Mixing patterns in the flavor non-singlet case. Flavor non-singlet operators in the leftmost column can mix
at the quantum level with the remaining operators in the same row.

ψ̄ψ λ̄λ A−A†− A†+A+ A−A+ A†+A†−
ψ̄γ5ψ λ̄γ5λ

ψ̄γµψ λ̄γµλ A−∂µA†− A†+∂µA+ A−∂µA+ A†+∂µA†−
A−DµA†− A†+DµA+ A−DµA+ A†+DµA†−

ψ̄γ5γµψ λ̄γ5γµλ

ψ̄γµγνψ λ̄γµγνλ

Table 2: Mixing patterns in the flavor singlet case. Flavor singlet operators in the leftmost column can mix at the
quantum level with the remaining operators in the same row.

Additional 3-squark operators may mix with some of the Oi operators for Nf ≥ 3. In order to
calculate the mixing coefficients we must evaluate Feynman diagrams shown in Fig. 7.
Diagrams in the same row of Fig. 7 lead to the values of the corresponding row of the mixing
matrix.

Figure 7: One-loop Feynman diagrams from which the mixing matrix may be calculated. A circled cross
represents {ψ̄ψ ,ψ̄γ5ψ, ψ̄γµψ, ψ̄γ5γµψ, ψ̄γµγνψ}. A diamond refers to {λ̄λ ,λ̄γ5λ, λ̄γµλ, λ̄γ5γµλ, λ̄γµγνλ}. A
cross corresponds to {A−A†−, A†+A+, A−A+, A†+A†−, A−∂µA†−, A†+∂µA+, A−∂µA+, A†+∂µA†−, A−DµA†−, A†+DµA+,
A−DµA+, A†+DµA†− }.

Future Plans - Conclusion

Determination of the Renormalization Functions of all fields and parameters which appear in
SE

SQCD and of a complete set of quark bilinear operators on the lattice, which are necessary
ingredients in the prediction of physical probability amplitudes from lattice matrix elements.
Investigation of relationships between different Green’s functions involved in SUSY Ward
identities.
Study of the mixing among operators.
Innovation of this computation: This will be the first calculation of the renormalization
functions for SQCD on the lattice, providing a thorough set of results for all counterterms,
mixing coefficients and parameter fine-tuning.
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