Light-front field theory in the description of hadrons

Chueng-Ryong Ji North Carolina State University

Thessaloniki, August 29, 2016

Dirac's Proposition

1949

Traditional approach evolved from NR dynamics

Close contact with Euclidean space

T-dept QFT, LQCD, etc.

Progressive approach for relativistic dynamics

Strictly in Minkowski space

DIS, PDFs, DVCS, GPDs, etc.

Dirac's Proposition

Traditional approach evolved from NR dynamics

Close contact with Euclidean space

T-dept QFT, LQCD,etc.

Innovative approach for relativistic dynamics

Strictly in Minkowski space

DIS, PDFs, DVCS, GPDs, etc.

Outline

- Interpolation between IFD and LFD
 - Whole landscape between the two
 - Clarification on IMF and LFD
 - LF Zero-mode (LFZM)
- Application to flavor asymmetry of proton sea
 - LNA as "GPS" in Phenomenology
 - Resolution of LNA Factor Difference with LFZM
 - SeaQuest preliminary result
- Conclusion and Outlook

Energy-Momentum Dispersion Relations

Stability Group

6

7 (maximum)

Feynman Diagram: Invariant under all Poincaré generators

Individual Time-Ordered Diagrams: Invariant under stability group Kinematic vs. Dynamic Generators

S.Weinberg, PR158,1638(1967) "Dynamics at Infinite Momentum"

Note however this is still in the instant form.

Interpolation between Instant and Front Forms

K. Hornbostel, PRD45, 3781 (1992) – RQFT C.Ji and S.Rey, PRD53,5815(1996) – Chiral Anomaly C.Ji and C. Mitchell, PRD64,085013 (2001) – Poincare Algebra C.Ji and A. Suzuki, PRD87,065015 (2013) – Scattering Amps C.Ji, Z. Li and A. Suzuki, PRD91, 065020 (2015) – EM Gauges Z.Li, M. An and C.Ji, PRD92, 105014 (2015) – Spinors C.Ji, Z.Li, B.Ma and A.Suzuki, in prepartion – Fermion Prop.

$$\delta = 0$$

$$p_0 = p^0 \longleftarrow$$

$$-p_3 = p^3$$

$$0 < \delta < \pi/4$$

$$p_{\hat{+}} = p^0 \cos \delta - p^3 \sin \delta$$
$$p_{\hat{-}} = p^0 \sin \delta + p^3 \cos \delta$$

$$\delta = \pi/4$$

$$\rightarrow p_+ = p^-$$

$$p_{\scriptscriptstyle{-}} = p^{\scriptscriptstyle{+}}$$

$$\frac{1}{2q^0} \left(\frac{1}{p_1^0 + p_2^0 - q^0} - \frac{1}{p_1^0 + p_2^0 + q^0} \right) \longleftarrow$$

$$\frac{1}{2\omega_q} \left(\frac{1}{P_{\hat{+}} + \frac{\$q_{\hat{-}} - \omega_q}{\mathbf{C}}} - \frac{1}{P_{\hat{+}} + \frac{\$q_{\hat{-}} + \omega_q}{\mathbf{C}}} \right)$$

$$\omega_q = \sqrt{q_{\hat{\perp}}^2 + \mathbb{C}\left(ec{\mathbf{q}}_{\hat{\perp}}^2 + m^2
ight)}$$

$$\mathbb{C} = \cos 2\delta$$

$$S = \sin 2\delta$$

$$\frac{1}{P^{+}} \frac{1}{\left\{P^{-} - \frac{(\vec{\mathbf{P}}_{\perp}^{2} + m^{2})}{2P^{+}}\right\}}$$

$$\frac{\mathbb{S}q_{\hat{-}} + \omega_q}{\mathbb{C}} \to \frac{2}{\mathbb{C}} - \frac{\vec{\mathbf{q}}_{\hat{\perp}}^2 + m^2}{2q_{\hat{-}}} + \mathcal{O}(\mathbb{C})$$
$$\to \infty \quad \text{as } \mathbb{C} \to 0$$

 $\Sigma(a)+\Sigma(b)=1/(s-m^2)$; s=2 GeV², m=1GeV

J-shape peak & valley: $P_z = -\sqrt{\frac{s(1-C)}{2C}}$; $C = \cos(2\delta)$

As C \rightarrow 0, P⁺ = P⁰+P_z \rightarrow 0 leads to LF Zero-modes.

Fermion Propagator

$$\begin{split} \Sigma_{a}^{\mathsf{IFD}} + \Sigma_{b}^{\mathsf{IFD}} &= \frac{1}{2q_{on}^{0}} \left(\frac{\not q + m}{q^{0} - q_{on}^{0}} - \frac{\not q + m}{q^{0} + q_{on}^{0}} \right) \\ &= \frac{1}{2q_{on}^{0}} \frac{2q_{on}^{0} (\not q + m)}{(q^{0})^{2} - (q_{on}^{0})^{2}} \\ &= \frac{\not q + m}{q^{2} - m^{2}} \end{split}$$

$$\Sigma_{a,\delta \to \frac{\pi}{4}} = \frac{\not p_{on} + m}{q^2 - m^2}$$

$$\Sigma_{b,\delta \to \frac{\pi}{4}} = \frac{\gamma^+}{2q^+}$$

S.-J.Chang and T.-M.Yan, PRD7,1147(1973)

$$\frac{1}{q - m} = \frac{\sum_{s} u(q, s) \overline{u}(q, s)}{q^2 - m^2} + \frac{\gamma^+}{2q^+}$$

LNA of $\bar{D} - \bar{U} \equiv \int_0^1 dx (\bar{d} - \bar{u})$

$$(\bar{D} - \bar{U})_{LNA} = \frac{3g_A^2 + 1}{2(4\pi f_\pi)^2} m_\pi^2 \log m_\pi^2$$

$$= \frac{4g_A^2 + (1 - g_A^2)}{2(4\pi f_\pi)^2} m_\pi^2 \log m_\pi^2$$

"on-shell" contribution

δ-function contribution

"Wally Melnitchouk's plenary talk this morning"

PDFs using ChPT

- *Motivation*: can one understand flavor asymmetries in the nucleon $(e.g.\bar{d} \bar{u})$ from QCD?
- ightharpoonup origin of 5-quark Fock components $|qqq\,ar{q}q
 angle$ of nucleon

 $\int_{0}^{1} dx \; (\bar{d}(x) - \bar{u}(x)) = 0.118 \pm 0.012 \;\;\; \textit{E866 (Fermilab), PRD 64, 052002 (2001)}$

$$\bar{d} > \bar{u} \longleftrightarrow \pi^+ n > \pi^- \Delta^{++}$$

Sullivan, PRD 5, 1732 (1972) Thomas, PLB 126, 97 (1983)

$$\int_0^1 \frac{dx}{x} (F_2^p - F_2^n) = \frac{1}{3} - \frac{2}{3} \int_0^1 dx \, (\bar{d} - \bar{u}) = 0.235(26)$$

New Muon Collaboration, PRD 50, 1 (1994)

Connection with QCD

$$\blacksquare (\bar{d} - \bar{u})(x) = \frac{2}{3} \int_{x}^{1} \frac{dy}{y} f_{\pi}(y) \ \bar{q}^{\pi}(x/y) \ f_{\pi}(y) = \frac{3g_{\pi NN}^{2}}{16\pi^{2}} y \int dt \frac{-t \mathcal{F}_{\pi NN}^{2}(t)}{(t - m_{\pi}^{2})^{2}}$$

→ model-independent leading nonanalytic (LNA) behavior consistent with Chiral Symmetry of QCD.

$$\langle x^0 \rangle_{\bar{d}-\bar{u}} \equiv \int_0^1 dx (\bar{d}-\bar{u})$$
 $m_\pi^2 f_\pi^2 = -2m_q < \overline{q} q >$ $= \frac{2}{3} \int_0^1 dy f_\pi(y) = \frac{2g_A^2}{(4\pi f_\pi)^2} m_\pi^2 \log(m_\pi^2/\mu^2) + \text{ analytic terms}$

Nonanalytic behavior vital for chiral extrapolation

of lattice data

Thomas, Melnitchouk, Steffens PRL 85, 2892 (2000)

0.30
0.25
0.20
0.15 $m_{\pi}^2 \, (\mathrm{GeV^2})$

 Direct calculation of matrix elements of local twist-2 operators in ChPT disagrees with "Sullivan" result

$$\langle x^n \rangle_{u-d} = a_n \left(1 - \frac{(3g_A^2 + 1)}{(4\pi f_\pi)^2} m_\pi^2 \log(m_\pi^2/\mu^2) \right) + \mathcal{O}(m_\pi^2)$$

$$cf. \ 4g_A^2 \text{ in "Sullivan", via moments of } f_\pi(y)$$

Puzzle lingered more than a decade... Thomas, Melnitchouk, Steffens, PRL 85, 2892 (2000)

- → is there a problem with application of ChPT or "Sullivan process" to DIS?
- → is light-front treatment of pion loops problematic?
- → investigate relation between covariant, instant-form, and light-front formulations

C. Ji, W. Melnitchouk & A. Thomas, PRD80, 054018 (2009); PRL110, 179101 (2013); PRD88, 076005 (2013)

M. Burkardt, K. Hendricks, C. Ji, W. Melnitchouk & A. Thomas, PRD87, 056009 (2013)

Relation between PV and PS Theories Self-Energy

$$\Sigma^{PV} = \frac{1}{2} \sum_{s} \overline{u}(p,s) \hat{\Sigma}^{PV} u(p,s) \qquad \hat{\Sigma}^{PV} = -i \left(\frac{2g_A}{f_\pi}\right)^2 \vec{\tau} \cdot \vec{\tau} \int \frac{d^4k}{(2\pi)^4} \frac{k\gamma_5(p-k+M)\gamma_5 k}{D_\pi D_N}$$

$$D_\pi = k^2 - m_\pi^2 + i\varepsilon \qquad D_N = (p-k)^2 - M^2 + i\varepsilon$$

$$\overline{u}(p)k\gamma^{5} \frac{1}{p-k-M} \gamma^{5}k u(p) = \overline{u}(p)[k-p+M] \gamma^{5} \frac{1}{p-k-M} \gamma^{5}[k-p+M] u(p)$$

$$= 4M^{2} \overline{u}(p) \gamma^{5} \frac{1}{p-k-M} \gamma^{5}u(p) + 2M \overline{u}(p)u(p) + \overline{u}(p)k u(p)$$

$$\frac{1}{p - M} = \frac{\sum_{s} u(p, s) \bar{u}(p, s)}{p^2 - M^2} + \frac{\gamma^+}{2p^+}$$

C.Ji, W.Melnitchouk, A.W.Thomas, PRL 110, 179191 (2013)

Vertex corrections

- Pion cloud corrections to electromagnetic N coupling
 - \rightarrow N rainbow (c), π rainbow (d), Kroll-Ruderman (e), π tadpole (f), N tadpole (g)

Vertex renormalization

$$(Z_1^{-1} - 1) \bar{u}(p) \gamma^{\mu} u(p) = \bar{u}(p) \Lambda^{\mu} u(p)$$

Taking "+" components:
$$Z_1^{-1} - 1 \approx 1 - Z_1 = \frac{M}{p^+} \bar{u}(p) \Lambda^+ u(p)$$

Ward-Takahashi identity $\Lambda^{\mu} = -\frac{\partial \hat{\Sigma}}{\partial p_{\mu}} \longrightarrow Z_1 = Z_2$

$$\frac{1}{p - M - \hat{\Sigma}} = \frac{Z_2}{p - (M + \delta M)} \quad ; \quad \hat{\Sigma} = -(Z_2^{-1} - 1)(p - M - \delta M) + \delta M$$

Flavor asymmetry

- Pion cloud corrections to electromagnetic N coupling
 - \rightarrow N rainbow (c), π rainbow (d), Kroll-Ruderman (e), π bubble (f), π tadpole (g)

$$(Z_1^{-1} - 1) \bar{u}(p) \gamma^{\mu} u(p) = \bar{u}(p) \Lambda^{\mu} u(p)$$

- \rightarrow taking "+" components: $Z_1^{-1} 1 \approx 1 Z_1 \neq \frac{M}{p^+} \bar{u}(p) \Lambda^+ u(p)$
- \rightarrow e.g. for N rainbow contribution,

$$\Lambda^N_{\mu} = -\frac{\partial \hat{\Sigma}}{\partial p^{\mu}}$$

Nonanalytic behavior of vertex renormalization factors

	$1/D_{\pi}D_{N}^{2}$	$1/D_{\pi}^2 D_N$	$1/D_{\pi}D_{N}$	$1/D_{\pi}$ or $1/D_{\pi}^2$	sum (PV)	sum (PS)
$1 - Z_1^N$	g _A ² *	0	$-\frac{1}{2}g_A^2$	$\frac{1}{4}g_A^2$	$\frac{3}{4}g_A^2$	g_A^2
$1-Z_1^{\pi}$	0	$g_A^2 *$	0	$-\frac{1}{4}g_{A}^{2}$	$\frac{3}{4}g_A^2$	g_A^2
$1-Z_1^{\rm KR}$	0	0	$-rac{1}{2}g_A^2$	$rac{1}{2}g_A^2$	0	0
$1-Z_1^{N{ m tad}}$	0	0	0	-1/2	-1/2	0
$1-Z_1^{\pi{ m tad}}$	0	0	0	1/2	1/2	0

* also in PS

in units of
$$\frac{1}{(4\pi f_\pi)^2}\,m_\pi^2\log m_\pi^2$$

→ origin of ChPT vs. Sullivan process difference clear!

$$\left(1 - Z_1^{N \, (PV)}\right)_{\text{LNA}} = \frac{3}{4} \left(1 - Z_1^{N \, (PS)}\right)_{\text{LNA}}$$

Pion splitting functions

■ Each diagram can be represented by $N \to N\pi$ "splitting function" $f_i(y)$ (light-cone momentum distribution function)

$$\frac{\pi(k)}{N(p)} \qquad y = \frac{k^{+}}{p^{+}}$$

■ Vertex renormalization is k^+ moment of $f_i(y)$

$$1 - Z_1^i = \int dy \, f_i(y)$$

Pion splitting functions

Summary of splitting functions:

$$1 - Z_1^i = \int dy \, f_i(y)$$

where
$$f_{\pi}(y) = f^{(\text{on})}(y) + f^{(\delta)}(y)$$

 $f_{N}(y) = f^{(\text{on})}(y) + f^{(\text{off})}(y) - f^{(\delta)}(y)$
 $f_{\text{KR}}(y) = f^{(\text{off})}(y) - 2f^{(\delta)}(y)$
 $f_{\text{tad}}(y) = -f_{\text{bub}}(y) = 2f^{(\text{tad})}(y)$

with components

$$f^{(\text{on})}(y) = \frac{g_A^2 M^2}{(4\pi f_\pi)^2} \int dk_\perp^2 \frac{y(k_\perp^2 + y^2 M^2)}{[k_\perp^2 + y^2 M^2 + (1 - y)m_\pi^2]^2}$$

$$f^{(\text{off})}(y) = \frac{g_A^2 M^2}{(4\pi f_\pi)^2} \int dk_\perp^2 \frac{y}{k_\perp^2 + y^2 M^2 + (1 - y)m_\pi^2}$$

$$f^{(\delta)}(y) = \frac{g_A^2}{4(4\pi f_\pi)^2} \int dk_\perp^2 \log\left(\frac{k_\perp^2 + m_\pi^2}{\mu^2}\right) \delta(y)$$

$$f^{(\text{tad})}(y) = -\frac{4}{g_A^2} f^{(\delta)}(y)$$

tadpole & bubble equal & opposite

$$(1 - Z_1^{\text{tad}}) = -(1 - Z_1^{\text{bub}})$$

 $4g_A^2$ in "Sullivan", via moments of $f_\pi(y)$ Chen, X. Ji, PLB 523, 107 (2001) Arndt, Savage, NPA 692, 429 (2002)

$$\langle x^n \rangle_{u-d} = a_n \left(1 - \frac{(3g_A^2 + 1)}{(4\pi f_\pi)^2} m_\pi^2 \log(m_\pi^2/\mu^2) \right) + \mathcal{O}(m_\pi^2)$$

C. Ji, W. Melnitchouk & A. Thomas, PRD88, 076005 (2013)

$$\mathcal{M}_{N}^{(p-n)} \xrightarrow{\text{LNA}} 1 - \frac{\left(4g_{A}^{2} + [1 - g_{A}^{2}]\right)}{(4\pi f_{\pi})^{2}} m_{\pi}^{2} \log m_{\pi}^{2}$$

$$\mathcal{M}_{\pi}^{(p-n)} \xrightarrow{\text{LNA}} \frac{\left(4g_{A}^{2} + [1 - g_{A}^{2}]\right)}{\sqrt{(4\pi f_{\pi})^{2}}} m_{\pi}^{2} \log m_{\pi}^{2}$$

PS ("on-shell") contribution

 δ -function contribution

J. McKenney, N. Sato, W. Melnitchouk, C.Ji, PRD93, 054011 (2016)
 P. Barry, N. Sato, W. Melnitchouk, C.Ji, in progress
 SeaQuest Preliminary Result: APS April 2016 Talk by B.Kerns

Conclusion and Outlook

- LFD is not just formal but consequential in the analysis of physical observables.
- Maximal stability group of LFD saves dynamic efforts.
- LFZM is treacherous, but useful in resolution of theoretical issues such as LNA factor difference in chiral effective theory.
- Quantitative analysis of LFZM contribution in hadron phenomenology is still open for progress.