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Imaging the nucleon. How?
Extracting GPDs is not enough..Need to extrapolate!

1. Experimental data fits 2. GPD extraction

03 Hie:502.04)

Ao [pb.GeV ™) "

[ 30 80 120 180 240 300 360

deg]

3. Nucleon imaging

| Images from Guidal et al.,

Rept. Prog. Phys. 76 (2013) 066202 | The 2015 Long Range Plan for Nuclear Science

Sidebar 2.2: The First 3D Pictures of the Nucleon

A computed tomography (CT) scan can help physicians
pinpoint minute cancer tumors, diagnose tiny broken

bones, and spot the early signs of osteoporosis. .
Now physicists are using the principles behind the &
procedure to peer at the inner workings of the proton. 5
This breakthrough is made possible by a relatively new
concept in nuclear physics called generalized parton
distributions.

An intense beam of high-energy electrons can be used by [fm] by [fm]
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Imaging the nucleon. How?

Cea Extracting GPDs is not enough..Need to extrapolate!

GPD models:

Concurrent

approaches B Extract H(x, ¢, t, i¢f) from experimental data.
Introduction Extrapolate to vanishing skewness H(x, 0, t, p2t).
Theoretical

fi k . -

e Extrapolate H(x, 0, t, i) up to infinite t.

Polynomiality

Positivity . .

Sehwinger Compute 2D Fourier transform in transverse plane:
Dyson GPD

Diagrams +oo dA

e 2
e, H(X7 bl) = / 2 A J()(bLAL) H(X, 0, _AL)
Extension 0

Radon transform

Covarant extension Propagate uncertainties.

PARTONS

e e [@ Control extrapolations with an accuracy matching that of
Conclusions experimental data with sound GPD models.
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Overview.

Cea GPDs as a scalpel-like probe of (nonperturbative) hadron structure.

GPD models m Important topic for several past, existing and future
approaches experiments: H1, ZEUS, HERMES, CLAS, CLAS12,

JLab Hall A, COMPASS, EIC, ..
_ m GPD modeling / parameterizing is an essential ingredient
o for the interpretation of experimental data.
e m Recent applications of the (symmetry-preserving)
P Dyson-Schwinger framework to hadron structure studies.
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GPD models: m Important topic for several past, existing and future
approaches experiments: H1, ZEUS, HERMES, CLAS, CLAS12,

JLab Hall A, COMPASS, EIC, ..
Introduction m GPD modeling / parameterizing is an essential ingredient

Theoretical

framework for the interpretation of experimental data.

e = Recent applications of the (symmetry-preserving)

Positiity Dyson-Schwinger framework to hadron structure studies.
SDC_Y::’V'I‘H?';D m Here develop pion GPD model for simplicity.

:ymgmmg m No planned experiment on pion GPDs but existing

Extension proposal of DVCS on a virtual pion.

foden trolom Amrath et al., Eur. Phys. J. C58, 179 (2008)
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Spin-0 Generalized Parton Distribution.

Definition and simple properties.

Hi(x, &, t) =

1 [dzm jpt+,- Al_r z z A

L J e (e 3fa( el

2/ ax € mEtSa\Tg) 7 9g) " 2/ o
z| =0

with t = A% and ¢ = —A1/(2PF).

References

Miller et al., Fortschr. Phys. 42, 101 (1994)
Ji, Phys. Rev. Lett. 78, 610 (1997)
Radyushkin, Phys. Lett. B380, 417 (1996)

m PDF forward limit
H(x,0,0) = q(x)
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Spin-0 Generalized Parton Distribution.

Definition and simple properties.

Hi(x,&t) =

1 [dzm jpt+,- Al_r z z A

L J e (e 3fa( el

2/ ax € mEtSa\Tg) 7 9g) " 2/ o
z| =0

with t = A% and ¢ = —A1/(2PF).

References

Miller et al., Fortschr. Phys. 42, 101 (1994)
Ji, Phys. Rev. Lett. 78, 610 (1997)
Radyushkin, Phys. Lett. B380, 417 (1996)

m PDF forward limit
m Form factor sum rule

+1
[ a0 = Fil
J—1
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Spin-0 Generalized Parton Distribution.

Cea Definition and simple properties.

GPD models: Hg_ (X’ 57 t) E

Concurrent

approaches 1 dz— Pt A B V4 V4 A

ioduc 2./27re mrtgaTy) g 2/ =
ntroduction z| =

Th tical .

framencork with t = A? and £ = —AT/(2P").
Definition
Polynomiality
Positivity

References

Schwinger
Dyson GPD
i

Miiller et al., Fortschr. Phys. 42, 101 (1994)
Ji, Phys. Rev. Lett. 78, 610 (1997)

sy

Extension Radyushkin, Phys. Lett. B380, 417 (1996)
,:CARTONS m PDF forward limit

Cometing i m Form factor sum rule
ample
m HY is an even function of £ from time-reversal invariance.
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Spin-0 Generalized Parton Distribution.

Cea Definition and simple properties.

GPD models: Hg_ (X’ 57 t) E

Concurrent

approaches 1 dz— Pt A B V4 V4 A

ioduc 2./27re mrtgaTy) g 2/ =
ntroduction z| =

famework. with t= A2 and £ = —AT/(2PT).

Definition

References

Schwinger
Dyson GPD
i

Miiller et al., Fortschr. Phys. 42, 101 (1994)
Ji, Phys. Rev. Lett. 78, 610 (1997)

Extension Radyushkin, Phys. Lett. B380, 417 (1996)
Radon transform

Covariant extension

PARTONS m PDF forward limit

Computns e m Form factor sum rule

ample

Conclusions m HY is an even function of £ from time-reversal invariance.
Appendix m HY is real from hermiticity and time-reversal invariance.
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Spin-0 Generalized Parton Distribution.

Not so simple properties.
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Spin-0 Generalized Parton Distribution.

Not so simple properties.

m Polynomiality

m Positivity

Lorentz covariance

Positivity of Hilbert space norm
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Spin-0 Generalized Parton Distribution.

Not so simple properties.

m Polynomiality
Lorentz covariance

Positivity
Positivity of Hilbert space norm

H? has support x € [—1,+1].
Relativistic quantum mechanics
m Soft pion theorem (pion target)

HIi(x,6 =1,t=0) = %qﬂ (Hx)
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Relativistic quantum mechanics
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Dynamical chiral symmetry breaking

H. Moutarde | Confinement 12 | 7/ 35



GPD models:
Concurrent
approaches

Introduction

Theoretical

framework
Definition
Polynomiality

Positivity
Schwinger
Dyson GPD

Diagrams

Preserving
symmetries

Extension
Radon transform

Covariant extension

PARTONS
Computing chain

Example
Conclusions

Appendix

Spin-0 Generalized Parton Distribution.

Not so simple properties.

m Polynomiality
Lorentz covariance
m Positivity
Positivity of Hilbert space norm

m H9 has support x € [—1,+1].
Relativistic quantum mechanics
m Soft pion theorem (pion target)

Dynamical chiral symmetry breaking

How can we implement a priori these theoretical constraints?

m There is no known GPD parameterization relying only on
first principles.

m In the following, focus on polynomiality and positivity.

H. Moutarde | Confinement 12 | 7/ 35



GPD models:
Concurrent
approaches

Introduction

Theoretical

framework
Definition
Polynomiality

Positivity
Schwinger
Dyson GPD

Diagrams

Preserving
symmetries

Extension
Radon transform

Covariant extension

PARTONS
Computing chain

Example
Conclusions

Appendix

Polynomiality.

Mixed constraint from Lorentz invariance and discrete symmetries.

Express Mellin moments of GPDs as matrix elements:

J—1
L
2(PH)mt

A
(P+3

+1
/ dxx"HI(x, &, t)

01+ (B0 P 3)

Identify the Lorentz structure of the matrix element:
linear combination of (PT)™1=K(AT)k for 0 < k < m+1

Remember definition of skewness AT = —2£P+.
Select even powers to implement time reversal.
Obtain polynomiality condition:

1
/ dxx"H(x, &,
~1

m

H=>_

i=0

even

(28)'Cli()+(26)™! Crm1(1) -
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Double Distributions.

Cea A convenient tool to encode GPD properties.

GPD models: m Define Double Distributions F? and G9 as matrix elements
approaches of twist-2 quark operators:

A © o A " /m
Introduction == {u; DML 'D/l’m} p_= _
Theoretical <l3+ 2 ’ q(O)’Y I I q(0> ' 2 Z k
framework k=0
i AN (AN
ety et - oo (-2) ()
Schwinger
D\j/son GPD o Wlth
- Fl = [ dddaa*s™*F(s,a)
Radon transform QDD
PARTONS G?nk = / dfda ()ckﬁmkaq(ﬁ,Oc)
Computing chain . QDD
e Miller et al., Fortschr. Phys. 42, 101 (1994)
f\'d Radyushkin, Phys. Rev. D59, 014030 (1999)
ppendix

Radyushkin, Phys-Lett: B449, 81 (1999)
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Double Distributions.

Relation to Generalized Parton Distributions.

m Representation of GPD:

HI(x, &, t) = / dfdad(x—p— oz{)(F"(B7 a, t)+ €GB, t))

JQpp

m Support property: x € [—1,+1].
m Discrete symmetries: F9 is a-even and GY9 is a-odd.

m Gauge: any representation (F9, G9) can be recast in one
representation with a single DD f7:

H(x, &, t) = x/ dfda f%l\,[KS(ﬁ, a, t)d(x— B — af)

7/ Qpp

Belitsky et al., Phys. Rev. D64, 116002 (2001)

H. Moutarde | Confinement 12 | 10 / 35



Positivity.

Cea A consequence of the positivity of the nom in a Hilbert space.

GPD models:
Concurrent

approaches m |dentify the matrix element defining a GPD as an inner
product of two different states.

Introduction

m Apply Cauchy-Schwartz inequality, and identify PDFs at

Theoretical

framework specific kinematic points, e.g.:

= 1 Xt € x—¢

Schwinger Hq X t <

D.ysonéPD ‘ (’5’ )|— 17£2q 1+§ q 175

Eyr::so m This procedures yields infinitely many inequalities stable
Radon tansforn under LO evolution.

PARTONS Pobylitsa, Phys. Rev. D66, 094002 (2002)
S m The overlap representation guarantees a priori the
Conclusions fulfillment of positivity constraints.

Appendix
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Overlap representation.

Cea A first-principle connection with Light Front Wave Functions.

GPD models:

Concurrent m Decompose an hadronic state |H; P, \) in a Fock basis:
approaches

e [P =3 / [dxdk Jwvp Y (k1 xR 1By ke - ki)
Theoretical N5

f:fmework m Derive an expression for the pion GPD in the DGLAP

oty region £ < x< 1:

Schwinger

P S (6 1) o Y / [dxdk | g (x—%7) (5 )* (K, &)Y (%, K L)
B.j

sy

Extension

Radon srsratorn with X, k| (resp. %Rl) generically denoting incoming
PCARTONS (resp. outgoing) parton kinematics.

Comouig chon Diehl et al., Nucl. Phys. B596, 33 (2001)
Concplusions m Similar expression in the ERBL region —¢ < x < &, but
Appendix with overlap of N- and (N + 2)-body LFWFs.
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Overlap representation.

Cea Advantages and drawbacks.

GPD models:

Concurrent m Physical picture.

approaches m Positivity relations are fulfilled by construction.

roduction m Implementation of symmetries of N-body problems.
heoretical What is not obvious anymore

e What is not obvious to see from the wave function

oty representation is however the continuity of GPDs at x = £¢£
SDCyTg;néel;D and the polynomiality condition. In these cases both the
o DGLAP and the ERBL regions must cooperate to lead to the
E’:t:nsm required properties, and this implies nontrivial relations

Radon transtor between the wave functions for the different Fock states
PCARTONS relevant in the two regions. An ad hoc Ansatz for the wave
Computing chain functions would almost certainly lead to GPDs that violate
::;':ms the above requirements.

Appendix Diehl, Phys. Rept. 388, 41 (2003)1

H. Moutarde | Confinement 12 | 13/ 35



GPDs in the Dyson-Schwinger
and Bethe-Salpeter Approach
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GPDs in the rainbow ladder approximation.

Evaluation of triangle diagrams.

m Compute Mellin moments
of the pion GPD H.
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GPDs in the rainbow ladder approximation.

Evaluation of triangle diagrams.

)7 = sty (7 P+ 5 a0 (B0 m P~ 3)

m Compute Mellin moments
of the pion GPD H.

m Triangle diagram approx.

H. Moutarde | Confinement 12 | 15/ 35



GPD models:

Concurrent
approaches

Introduction

Theoretical

framework
Definition
Polynomiality

Positivity

Schwinger

Dyson GPD
Diagrams
Preserving
symmetries
Extension

Radon transform

Covariant extension

PARTONS
Computing chain

Example
Conclusions

Appendix

GPDs in the rainbow ladder approximation.

Evaluation of triangle diagrams.

P 5 [a0r (B m. P 5 )

m Compute Mellin moments
of the pion GPD H.

m Triangle diagram approx.

m Resum infinitely many
contributions.

(—o—) ' (—)
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GPDs in the rainbow ladder approximation.

Evaluation of triangle diagrams.

40 (B0 7P 5 )

m Compute Mellin moments
of the pion GPD H.

m Triangle diagram approx.

m Resum infinitely many
contributions.

= Nonperturbative modeling.

m Most GPD properties satisfied by construction.
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GPDs in the rainbow ladder approximation.

Evaluation of triangle diagrams.

m Compute Mellin moments
of the pion GPD H.

m Triangle diagram approx.

m Resum infinitely many
contributions.

m Nonperturbative modeling.

m Most GPD properties satisfied by construction.
m Also compute crossed triangle diagram.

Mezrag et al., arXiv:1406.7425 [hep-ph]
and Phys. Lett. B741, 190 (2015)
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GPDs in the rainbow ladder approximation.

Cea Physical content.
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GPDs in the rainbow ladder approximation.

Physical content.

- - =

P —

vl

o[>

m Bethe-Salpeter
vertex.

m Dressed quark
propagator.
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GPDs in the rainbow ladder approximation.
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Symmetry-preserving truncation.
Most of the GPD properties are obtained a priori.

m Polynomiality from Poincaré covariance.
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Symmetry-preserving truncation.

Cea Most of the GPD properties are obtained a priori.

GPD models:
Concurrent
approaches

m Polynomiality from Poincaré covariance.
m Soft pion theorem from symmetry-preserving
truncation of Bethe-Salpeter and gap equations.
Mezrag et al., Phys. Lett. B741, 190 (2015)
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Symmetry-preserving truncation.
Most of the GPD properties are obtained a priori.

m Polynomiality from Poincaré covariance.
m Soft pion theorem from symmetry-preserving
truncation of Bethe-Salpeter and gap equations.
Mezrag et al., Phys. Lett. B741, 190 (2015)
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Symmetry-preserving truncation.

Most of the GPD properties are obtained a priori.

m Polynomiality from Poincaré covariance.
m Soft pion theorem from symmetry-preserving
truncation of Bethe-Salpeter and gap equations.

Mezrag et al., Phys. Lett.

“L(k—P)+
(k P)vs

B741, 190 (2015)

Mellin moments.

Soft pion
kinematics.

Axial and axial
vector vertices 1’5,
'Y in chiral limit.
Axial-vector Ward
identity.

Recover pion DA
Mellin moments.
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The Radon transform.

Cea Definition and properties.

GPD models: o For s >0 and (Z) € [0, 271']

Concurrent
approaches

—+00

N Rf(s, ¢) = / dpda (B, )d(s—f cos p—asin @)

Theoretical
framework

and:

Definition
Polynomiality
Positivity

Rf(~s,6) = Rf(s, ¢+ m)
ZANK
Relation to GPDs:

i s
Ext i . —
P X = o5 o and £ = tan ¢

Covarian t extension

PARTONS Relation between GPD and DD in Belistky et al. gauge

Computing chain
Example

_ V1482
Conclusions H(

Appendix X

Schwinger
Dyson GPD

R

x, &) = Rfgmks(s, @)

H. Moutarde | Confinement 12 | 19 / 35



GPD models:

Concurrent
approaches

Introduction

Theoretical

framework
Definition
Polynomiality

Positivity

Schwinger
Dyson GPD
Diagrams
Preserving
symmetries
Extension

Radon transform

Covariant extension

PARTONS
Computing chain

Example
Conclusions

Appendix

The range of the Radon transform.

The polynomiality property a.k.a. the Ludwig-Helgason condition.

m The Mellin moments of a Radon transform are
homogeneous polynomials in w = (sin ¢, cos ¢).
m The converse is also true:

Theorem (Hertle, 1983)

Let g(s,w) an even compactly-supported distribution. Then g
is itself the Radon transform of a compactly-supported
distribution if and only if the Ludwig-Helgason consistency
condition hold:

(i) gis C* inw,

(i) [ dss™g(s,w) is a homogeneous polynomial of degree m for all
integer m > 0.

m Double Distributions and the Radon transform are the
natural solution of the polynomiality condition.
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Implementing Lorentz covariance.
Extend an overlap in the DGLAP region to the whole GPD domain.

DGLAP and ERBL regions
(x,§) € DGLAP < |s| > |sing|,
(x,¢§) € ERBL < |s| <|[sing|.

a m Each point

, ) with
emteen ™

contributes

W B=(x—8)/1-¢) to both

DGLAP and
> ERBL regions.
B (x+6/1+) m Expressed in
\ support
B=(x+¢/1+¢ theorem.

Qpp (laf + |8
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lll-posedness in the sense of Hadamard.

Cea A first glimpse at the inverse Radon transform.

GPD models m Numerical evaluation almost unavoidable (polar vs
oncurrent i )

approaches cartesian coordinates).

Introduction m |ll-posedness by lack of continuity.

Th tical . - . . . "
framework m The unlimited Radon inverse problem is mildly ill-posed

pefnten while the limited one is severely ill-posed.

Polynomiality

Positivity

Schwinger m Careful selection of algorithms and numerical methods.
Dyson GPD 2 T T T T T T T 1
|
Diagrams s b = |
Preserving

symmetries

Extension

Radon transform

Mezrag
JEqos PhD dissertation

Covariant extension

PARTONS 05 1
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Example

Conclusions

I I 0

Appendix
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Computing chain design.

Cea Differential studies: physical models and numerical methods.
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Towards the first release.

Currently: tests, benchmarking, documentation, tutorials.

m 3 stages:
Design.
Integration and validation.
Benchmarking and production.

m Flexible software architecture.
B. Berthou et al., PARTONS: a computing platform for
the phenomenology of Generalized Parton Distributions
arXiv:1512.06174
m 1 new physical development = 1 new module.
m Aggregate knowledge and know-how:
m Models
m Measurements
m Numerical techniques
m Validation

m What can be automated will be automated.
H. Moutarde | Confinement 12 | 25/ 35
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CFF computing automated.

Each line of code corresponds to a physical hypothesis.

computeOneCFF.xml

1 <?xml version="1.0" encoding="UTF-8" standalone="yes" 7>

2 <scenario date="2016-08-28"

3 description="Computing a ,convol coeff function from a GPD model" >

4 <task service="ConvolCoeffFunctionService" method="
computeWithGPDModel" >

5 <kinematics type="DVCSConvolCoeffFunctionKinematic">

6 <param name="xi" value="0.5" />

7 <param name="t" value="-0.1346" />

8

9

<param name="Q2" value="1.5557" />
<param name="MuF2" value="4" />

10 <param name="MuR2" value="4" />

11 < /kinematics>

12 <computation__configuration>

13 <module type="GPDModule" >

14 <param name="className" value="GK11Model" />
15 </module>

16 <module type="DVCSConvolCoeffFunctionModule" >

17 <param name="className" value="DVCSCFFModel" />
18 <param name="qcd_order_type" value="L0" />
19 </module>

20 < /computation_configuration>

21 < /task>
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1
2
3
4

© N o a

11
12
13
14
15
16
17
18
19
20
21

CFF computing automated.

Each line of code corresponds to a physical hypothesis.

computeOneCFF.xml
<?xml version="1.0" encoding="UTF-8" standalone="yes" 7>
<scenario date="2016-08-28"
description="Computing a ,convol coeff function from a GPD model" >
<task service="ConvolCoeffFunctionService" method="
computeWithGPDModel" >
<kinematics type="DVCSConvolCoeffFunctionKinematic">
<param name="xi" value="0.5" />
<param name="t" value="-0.1346" />
<param name="Q2" value="1.5557" />
<param name="MuF2" value="4" />
<param name="MuR2" value="4" />
< /kinematics>
<computation__configuration>
<module type="GPDModule" >
<param name="className" value="GK11Model" />

dul
e eooy| M = LAT722 + 1.76698 i

<param name= & = 0.12279 + 0.512312 i
< moduien "] #H = 154911 + 0.953728 i
< /computation_configy £ = 18.8776 + 3.75275 i

< /task>
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Conclusions and prospects.

Cea Positivity and polynomiality constraints consistently implemented.

GPD models: m Nonperturbative computation of GPDs, DDs,
S::r(i;:crﬁgz LFWFs,..from Dyson-Schwinger equations.
Introduction m Explicit check of several theoretical constraints, including
Theoretical polynomiality, support property and soft pion theorem.
framework
e m Systematic procedure to construct GPD models from any
P "reasonable” Ansatz of LFWFs.
Schwinger
Dyson EPD . . . .
Dingrams m Characterization of the existence and uniqueness of the
s extension from the DGLAP to the ERBL region.
Extension
Fodn o, m Development of the platform PARTONS for
PARTONS phenemonology and theory purposes.
Fanele m Numerical tests in progress.
Conclusions
Appendix m First release of PARTONS in Fall 2016!
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Implementing Lorentz covariance.

Cea Extend an overlap in the DGLAP region to the whole GPD domain.

GPD models:
Concurrent
approaches

Introduction

Theoretical For any model of LFWF, one has to address the following
framework .

Detintion three questions:
Polynomiality

Positivity

Does the extension exist?

Schwinger

Dyson GPD

e If it exists, is it unique?

symmetries

Extension How can we compute this extension?
Covariant extension Work I-n progress!

PARTONS

Computing chain

Example
Conclusions
Appendix
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Implementing Lorentz covariance.

Cea Uniqueness of the extension.

GPD models: Theorem
Concurrent

approaches Let f be a compactly-supported locally summable function
defined on R? and Rf its Radon transform.
Let (sp,wp) € R x S' and Uy an open neighborhood of wq such
Theoretical
framework that

Introduction

e forall s> sy andw € Uy Rf(s,w) =0.

sChW,:ge, Then f(R) = 0 on the half-plane (X |wy) > sy of R2.

Dyson GPD ~
o Consider a GPD H being zero on the DGLAP region.

E;tension m Take ¢p and sp s.t. cospg # 0 and |sp| > |sin ¢ol.

Faen o m Neighborhood U of ¢g s.t. Vo € Uy |sin ¢| < |sp].
PARTONS m The underlying DD f has a zero Radon transform for all
ot ¢ € Up and s > sy (DGLAP).

Conclusions m Then f(/)),(l/) = 0 for all (8,0{) € QDD with [)) # 0.

Appendix m Extension unique up to adding a D-term: §(5)D(«).
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Computation of the extension.

Numerical evaluation of the inverse Radon transform (1/3).

A discretized problem

Consider N+ 1 Hilbert spaces H, Hi, .., Hy, and a family of
continuous surjective operators R, : H— H, for 1 < n < .
Being given g1 € Hi, .., gn € H,, we search fsolving the
following system of equations:

R.f=g, forl<n<N

Fully discrete case

Assume f piecewise-constant with values f,, for 1 < m < M.
For a collection of lines (L,)1<p<n crossing pp, the Radon
transform writes:

gn=Rf= / Z fm x Measure(L,NCp) for1<n<N

<
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Computation of the extension.

Numerical evaluation of the inverse Radon transform (2/3).

Kaczmarz algorithm

Denote P, the orthogonal projection on the affine subspace
R.f= g,. Starting from £ € H, the sequence defined

iteratively by: P pyPyy .. P

converges to the solution of the system.
The convergence is exponential if the projections are randomly
ordered.

Strohmer and Vershynin, Jour. Four. Analysis and Appl. 15,
437 (2009)

’
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Computation of the extension.

Numerical evaluation of the inverse Radon transform (2/3).
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Computation of the extension.

Numerical evaluation of the inverse Radon transform (3/3).

And if the input data are inconsistent?

m Instead of solving g = Rf, find fsuch that ||g— Rf|2 is
minimum.

m The solution always exists.

m The input data are inconsistent if ||g — Rf]j2 > 0.
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Computation of the extension.

Numerical evaluation of the inverse Radon transform (3/3).

Relaxed Kaczmarz algorithm
Let w €]0,2[ and:
Py =(1-w)ldy+wP, forl1<n<N

erte: RRT = (RI'R_/T')1§I'7J'§N = D—|— L + L]L

where D is diagonal, and L is lower-triangular with zeros on the
diagonal.
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Computation of the extension.

Numerical evaluation of the inverse Radon transform (3/3).

GPD models: Theorem

Concurrent

approaches Let 0 <w < 2. For £ € Ran R (e.g. £ =0), the Kaczmarz
. method with relaxation converges to the unique solution

Introduction fw = Ran RT Of_‘

Theoretical

framevior RI(D+wl) " (g—RF) =0,

o where the matrix D and L appear in the decomposition of RR'.

Schwinger ; L. ; L.

Dyson GPD If g = Rf has a solution, then f is its solution of minimal

S norm. Otherwise:

symmetries fw - fMP + O(U_}) s

Extension

Radon transtor where fpp is the minimizer in H of:

PARTONS (g— Rflg—Rf)p ,

C:r::l:sions the inner product being defined by:

Appendix (h|k)p= (D 'h|k) .
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