Meson Form Factors and Deep Exclusive Meson Production Experiments

Tanja Horn

Overview

Form factors are essential for our understanding of internal hadron structure and the dynamics that bind the most basic elements of nuclear physics

- ☐ Pion and kaon form factors are of special interest in hadron structure studies
 - The pion is the lightest QCD quark system and also has a central role in our understanding of the dynamic generation of mass.
 - The kaon is of interest as it replaces one light quark with a heavier strange quark.
- ☐ Recent advances in experiments: last 5-10 years
 - \triangleright Dramatically improved precision in F_{π} measurements
 - Improved experimental understanding of the meson production/reaction mechanism
- ☐ Future approved measurements JLab 12 GeV next 5-10 years

Meson Form Factor Data Evolution

Theory

- Accessing the form factor through electroproduction
- Extraction of meson form factor from data
- Electroproduction formalism

Theory

Major progress on large Q² behavior of meson form factor

Experimental Determination of the π^+ Form Factor

Through π -e elastic scattering

- At low Q^2 , F_{π^+} can be measured directly via high energy elastic π^+ scattering from atomic electrons
 - CERN SPS used 300 GeV pions to measure form factor up to $Q^2 = 0.25 \text{ GeV}^2$ [Amendolia et al, NPB277,168 (1986)]
 - These data used to constrain the pion charge radius: $r_{\pi} = 0.657 \pm 0.012$ fm

- □ The maximum accessible Q² is roughly proportional to the pion beam energy
 - Q² = 1 GeV² requires 1000 GeV
 pion beam

Experimental Determination of the π^+ Form Factor

Through pion electroproduction

- At larger Q^2 , F_{π^+} must be measured indirectly using the "pion cloud" of the proton via the $p(e,e'\pi^+)n$ process
 - At small -t, the pion pole process dominates the longitudinal cross section, σ_l
 - In the Born term model, F_{π}^2 appears as

$$\frac{d\sigma_L}{dt} \propto \frac{-t}{(t-m_\pi^2)} g_{\pi NN}^2(t) Q^2 F_\pi^2(Q^2, t)$$

[In practice one uses a more sophisticated model]

□ Requirements:

- Full L/T separation of the cross section isolation of σ_L
- Selection of the pion pole process
- Extraction of the form factor using a model
- Validation of the technique model dependent checks

L/T Separation Example

- \Box σ_L is isolated using the Rosenbluth separation technique
 - Measure the cross section at two beam energies and fixed W, Q², -t
 - > Simultaneous fit using the measured azimuthal angle (ϕ_{π}) allows for extracting L, T, LT, and TT
- □ Careful evaluation of the systematic uncertainties is important due to the 1/ε amplification in the σ_L extraction
 - Spectrometer acceptance, kinematics, and efficiencies

$$2\pi \frac{d^2\sigma}{dtd\phi} = \varepsilon \frac{d\sigma_L}{dt} + \frac{d\sigma_T}{dt} + \sqrt{2\varepsilon(\varepsilon+1)} \frac{d\sigma_{LT}}{dt} \cos\phi + \varepsilon \frac{d\sigma_{TT}}{dt} \cos 2\phi$$

Magnetic spectrometers a must for such precision cross section measurements

This is only possible in Hall C at JLab

 σ_{L} will give us F_{π}

Pion pole process in pion electroproduction data at $low\ t$

L/T separated data from JLab 6 GeV (Hall C)

$$\frac{d\sigma^{pole}}{dt} \left(\gamma_L^* \to \pi^+ \right) = \frac{1}{\kappa} \frac{-t}{(t - m_\pi^2)^2} Q^2 \rho_{\pi\pi}^2$$

$$\rho_{\pi\pi} = \sqrt{2} e_0 F_\pi(Q^2) g_{\pi NN} F_{\pi NN}(t)$$

$$F_{\pi NN} = \frac{\Lambda_N^2 - m_\pi^2}{\Lambda_N^2 - t} \qquad F_\pi = \frac{1}{1 + Q^2 / \Lambda_\pi^2} \qquad [\Lambda_\pi^2 = 0.53 \,\text{GeV}^2]$$

Band indicates calculated range of values for: Λ_N =0.4-0.6 GeV $g_{\pi NN}$ =13.1-13.5

- Longitudinal cross section at W=2.2
 GeV in good agreement with the pion pole calculation
- At W=1.95 GeV the pole calculation seems to predict a different Q² dependence than the data

Note: the values of W and Q2 listed are the overall *central* values. Each t-bin has actually its own bin-centered W and Q2 values

[L. Favart, M. Guidal, T. Horn, P. Kroll, Eur. Phys. J A **52** (2016) no.6, 158]

Overall, σ_L data demonstrate the important contribution from the pion pole at small t

Pion pole process in pion electroproduction data at <u>larger</u> t

Unseparated data from JLab 6 GeV (CLAS) [K. Park et al., EPJA 49 (2013)]

Band indicates calculated range of values for: Λ_N =0.4-0.6 GeV $g_{\pi NN}$ =13.1-13.5

 At larger t the pole contribution does not give a good description of the data

[L. Favart, M. Guidal, T. Horn, P. Kroll, Eur. Phys. J A **52** (2016) no.6, 158]

- ☐ In the unseparated cross section one cannot quantify the contribution of longitudinal and transverse photons
 - For F_{π} extraction must fully separate cross section into longitudinal and transverse contributions
- Need to experimentally determine that F_{π} extraction does not depend on the t-value of the data

Extraction of F_{π} from σ_{L} Jlab data

JLab 6 GeV F_{π} experiments used the VGL/Regge model as it has proven to give a reliable description of σ_L across a wide kinematic domain

[Vanderhaeghen, Guidal, Laget, PRC 57, (1998) 1454]

- o Feynman propagator replaced by π and ρ trajectories
- Model parameters fixed by pion photoproduction data
- ο Free parameters: $\Lambda_{\pi}^2, \Lambda_{\rho}^2$

$$F_{\pi}(Q^{2}) = \frac{1}{1 + Q^{2} / \Lambda_{\pi}^{2}}$$

Fit of σ_L to model gives F_{π} at each Q^2

[Horn et al., PRL 97, (2006) 192001]

$$\Lambda_{\pi}^2 = 0.513, \ 0.491 \ GeV^2$$

$$\Lambda_{\rho}^2 = 1.7 \; GeV^2$$

Validation: Check of non-pole backgrounds in σ_l with charged pion ratios in deuterium

[Huber et al, PRL112 (2014)182501]

- \square π^+ *t*-channel diagram is pure isovector (G-parity conservation)
- Measure (separated) π^-/π^+ ratio to test pole dominance

$$R_{L} = \frac{\sigma_{L}(\pi^{-})}{\sigma_{L}(\pi^{+})} = \frac{|A_{V} - A_{S}|^{2}}{|A_{V} + A_{S}|^{2}}$$

- Isoscalar backgrounds like b₁(1235) contributions to t-channel will dilute the ratio from unity
- With increasing t, R_T is expected to approach the ratio of quark charges

[O. Nachtman, NP B115 (1976) 61]

R_L approaches unity at large Q² - consistent with pion-pole dominance

- Goloskokov/Kroll, EPJA 47, 112 (2011)
- Kaskulov and Mosel, PRC 81, 045202 (2010)
- Vrancx and Ryckebusch, PRC 89, 025203 (2014)
 - ••• Vanderhaeghem, Guidal, Laget, PRC 57, (1998) 1454

Validation: experimental considerations

Experimental studies over the last decade have given <u>confidence</u> in the electroproduction method yielding the physical pion form factor

- Experimental studies include:
 - Check consistency of model with data
 - \circ F_{π} values do not depend on the tacceptance confidence in applicability of model to the kinematic regime of the data
 - Verify that the pion pole diagram is the dominant contribution in the reaction mechanism
 - R_L approaches the pion charge ratio, consistent with pion pole dominance
 [Huber et al, PRL112 (2014)182501]
 - Extract F_π at several values of t_{min} for fixed Q² (next slide)

[T. Horn, C.D. Roberts, J. Phys. G43 (2016) no.7, 073001]

$F_{\pi^+}(Q^2)$ in 2016

- ☐ Factor ~3 from hard QCD calculation evaluated with asymptotic wave function
 - Trend consistent with time like meson form factor data up to Q²=18 GeV²

[Seth et al, PRL 110 (2013) 022002]

- Recent efforts:
 - Compare data with the QCD prediction calculated using the broad pion PDA predicted by modern analyses of continuum QCD

[L. Chang, et al., PRL **111** (2013) 141802; PRL **110** (2013) 1322001]

- ☐ Several effective models do a good job describing the data, e.g.,
 - > BSE+DSE: Maris and Tandy, Phys. Rev. C62, 055204 (2000)]
 - QCD SR: Nesterenko and Radyushkin, Phys. Lett. B115, 410(1982)
 - LFQM: C.-W.Hwang, PRD 64 (2001) 034011
 - Hard QCD: A.P. Bakulev et al, Phys. Rev. D70 (2004)]

Insight from data: Pion Transverse Charge Density and the edge of hadrons

Provides an interpretation of EM form factors in terms of physical charge and magnetization densities

2D Fourier Transform

- ho_{π} and ho_{p} coalesce for 0.3 fm<b<0.6 fm
- Meson cloud only dominating at large impact parameter?

JLab 12 GeV data will allow further studies of transverse charge density and test for common confinement mechanism

Extension to systems containing strangeness: the K^+ Form Factor

- Similar to π^+ , elastic K⁺ scattering from electrons used to measure charged kaon for factor at low Q²
 - CERN SPS used 250 GeV kaons to measure form factor up to $Q^2 = 0.13 \text{ GeV}^2$ [Amendolia et al, PLB 178, 435 (1986)]
 - These data used to constrain the kaon RMS radius: $r_K = 0.58 \pm 0.04$ fm

- Can "kaon cloud" of the proton be used in the same way as the pion to extract kaon form factor via p(e,e'K⁺)Λ?
 - ➤ Need to quantify the role of the kaon pole

Kaon pole process in kaon electroproduction

W=2.2 GeV, Q2=1.6 GeV2

[L. Favart, M. Guidal, T. Horn, P. Kroll, Eur. Phys. J A**52** (2016) no.6, 158]

☐ At large t:

Unseparated data: pion t-dependence is steeper than for kaons

[T. Horn, Phys. Rev. C 85 (2012) 018202]

Due to experimental constraints most of existing kaon data fall into this category

Clearly, separated low-t data are needed in the deep inelastic regime

☐ At small t:

 \blacktriangleright Kaon pole is <u>expected</u> to be strong enough to produce a maximum in σ_L

[Kroll/Goloskokov EPJ A47 (2011), 112]

JLab 12 GeV will provide data to verify role of the kaon pole experimentally

JLab 6 GeV: F_{K+} extractions from *kaon* electroproduction data

- Analyze data with same techniques as used for pion analysis and extract F_{K+}
 - L/T separation
 - Extract form factor using the VGL Regge model

- □ The −t dependence of K⁺ longitudinal cross section near Q²=1 GeV² from experiment E93-018
 - Preliminary data analysis shows maybe some pole-like behavior
 - Data analysis ongoing expect final results in a few months

[Analysis by Marco Carmignotto]

Kaon Transverse Charge Distribution

☐ Kaon space-like data sparse - evaluate transverse density based on a dispersion representation of the form factor

[N. Mecholsky et al., 16+]

Dispersion relation uses time-like data

$$F_K(t) = \frac{1}{\pi} \int_{4m_K^2}^{\infty} dt' \frac{\operatorname{Im} F_K(t')}{t' - t + i \varepsilon}$$

 Low t dominates except for very small values of b – use model for high t including recent data from CLEO

$$\rho(b) = \frac{1}{2\pi} \int_{4m_K^2}^{\infty} dt \, K_0(\sqrt{t} \, b) \, \frac{\operatorname{Im} F_K(t)}{\pi}$$

■ Analytic continuation to spacelike region and studies of uncertainties ongoing

[T. Pedlar et al., PRL **95** (2005), 261803] [K. Seth et al., PRL **110** (2013), 022002]

Pion vs. Kaon Transverse Charge Density

☐ Based on a dispersion representation of the form factors

Perhaps pion and kaon transverse densities conform with expectation as the kaon is a heavier quark system

JLab12: F_{π} measurements

- □ CEBAF 10.9 GeV electron beam and SHMS small angle capability and controlled systematics are essential for extending precision measurements to higher Q²
- \Box The JLab 12 GeV π^+ experiments were optimized to extract F_{π} up to highest possible Q² value
 - E12-06-101: determine $F_π$ up to $Q^2=6$ GeV² in a dedicated experiment
 - Require t_{min}<0.2 GeV² and Δε>0.25 for L/T separation
 E12-06-101 spokespersons: G. Huber, D. Gaskell

- © **E12-07-105**: probe conditions for factorization of deep exclusive measurements in π^+ data to highest possible Q²~9 GeV² with SHMS/HMS
 - Potential to extract F_{π} to the highest Q²~9GeV² achievable at Jlab 12 GeV E12-07-105 spokespersons: T. Horn, G. Huber

JLab12: F_{π} kinematic reach

Measurement at Q²=8.5 GeV² and t_{min}~0.5 GeV²

- Reliable F_{π} extractions from existing data to the highest possible Q^2
- \triangleright Validation of F_{π} extraction at highest Q^2

[I. Cloet, et al., PRL 111 (2013) 092001]

[L. Chang, et al., PRL **111** (2013) 141802; PRL **110** (2013) 1322001]

Projected precision using R= σ_L/σ_T from VR model and assumes pole dominance – uncertainties are very sensitive to that value

JLab 12 GeV experiments have the potential to access the hard scattering scaling regime quantitatively for the first time – may also provide info on log corrections.

These results would also have implications for nucleon structure interpretation.

JLab12: Kaon electroproduction and form factor measurements

■ **E12-09-011**: primary goal L/T separated kaon cross sections to investigate hard-soft factorization and non-pole contributions

E12-09-011spokespersons: T. Horn, G. Huber, P. Markowitz

scheduled to run in 2017/18

- □ Possible kaon form factor extraction to highest possible Q² value achievable at JLab
 - Extraction like in the pion case by studying the model dependence at small t
 - Comparative extractions of F_π at small and larger t show only modest model dependence, where larger t data lie at a similar distance from pole as kaon data

Transition to Deep Exclusive Meson Electroproduction

- □ In the limit of small −t, meson production can be described by the t-channel meson exchange (pole term)
 - Spatial distribution described by form factor

Shown to factorize from QCD perturbative processes for longitudinal photons [Collins, Frankfurt, Strikman, 1997]

Handbag diagram

- At sufficiently high Q², the process should be understandable in terms of the "handbag" diagram can be verified experimentally
 - The non-perturbative (soft) physics is represented by the GPDs

JLab 12 GeV: Relative L/T contribution to the meson cross section

Important for nucleon structure studies

- Data from JLab 6 GeV demonstrated the technique of measuring the Q² dependence of L/T separated cross sections at fixed x/t [T. Horn et al., Phys. Rev. C 78, 058201 (2008)]
- Separated cross sections over a large range in Q² are essential for:
- testing factorization required for studies of transverse spatial structure
- understanding dynamical effects in both Q² and -t kinematics
- interpretation of non-perturbative contributions in experimentally accessible kinematics

JLab 12 GeV provides separated (Hall C only) data up to Q² ~ 10 GeV² and 5 GeV² for π (E12-07-105) and K (E12-09-011), respectively

 Q^2 dependence of σ_1 relevant towards an interpretation in a GPD-based framework

Transverse Contributions may allow for probing a new set of GPDs

Goloskokov, Kroll, EPJ C65, 137 (2010); EPJ A45, 112 (2011) [Ahmad, Goldstein, Liuti, PRD **79** (2009)]

[Goldstein, Gonzalez Hernandez, Liuti, J. Phys. G 39 (2012) 115001]

- □ Recent data suggest that transversely polarized photons play an important role in charged and neutral pion electroproduction
 - Model predictions based on handbag in good agreement with data
- ☐ For pion and kaon production the relative contribution of longitudinal and transverse photons in JLab 12 GeV kinematics this has to be verified
- □ A large transverse cross section in meson production may allow for accessing helicity flip GPDs

JLab 12 GeV will provide relative σ_L and σ_T contributions to the π^0 cross section up Q²~6 GeV²

- Exclusive π^0 data may also be helpful for constraining non-pole contributions in F_{π} extraction

Summary

- Meson form factor measurements play an important role in our understanding of the structure and interactions of hadrons based on the principles of QCD
- Meson form factor measurements in the space-like region at Q²>~0.3 GeV²
 - In general, require a model to extract the form factor at physical meson mass experimental validation of the extraction is essential
 - \circ K⁺ requires experimental verification of pole dominance in σ_{L}
 - \circ π^+ form factor: reliable measurements up to Q²=2.45 GeV² from JLab 6 GeV
- > JLab 12 GeV will dramatically improve the $\pi^+/K^+/\pi^0$ electroproduction data set
 - Pion and kaon form factor extractions up to high Q² possible (~9 and ~6 GeV²)
 - Kaon experiment scheduled to run in 2017/18
 - L/T separated cross sections important for transverse nucleon structure studies – may allow for accessing new type of GPDs
- ➤ Beyond 12 GeV, EIC provides interesting opportunities to map pion and kaon structure functions over a large (x, Q²) landscape in progress...