Collectivity in small systems

- The deconfined quark-gluon plasma formed in nucleus-nucleus collisions at RHIC and the LHC is best described as a fluid.
- But the phenomena leading to this conclusion have then been observed, to some extent, in proton-nucleus, and even high-multiplicity proton-proton collisions.
- Are the underlying mechanisms identical in all systems?
- Can we describe small systems as fluids?

Collectivity in small systems

- Roberta Arnaldi (Torino, Italy), ALICE experiment
- Wei Li (Rice University, USA), CMS experiment
- Piotr Bożek (Cracow, Poland), hydrodynamics
- Dénes Molnár (Purdue University, USA), kinetic theory
- Wilke van der Schee (MIT, USA), strong coupling&holography
- Sören Schlichting (Brookhaven, USA), Yang-Mills dynamics
- Jean-Yves Ollitrault (Saclay, France).

Round table: Collectivity in Small Systems

Experimental Overview

Wei Li (Rice University)

XII Quark Confinement and the Hadron Spectrum Aug. 29 – Sep. 3, 2016

Why colliding ultra-relativistic heavy ions?

"In high-energy physics we have concentrated on experiments in which we distribute a higher and higher amount of energy into a region with smaller and smaller dimensions.

In order to study the question of 'vacuum', we must turn to a different direction; we should investigate some 'bulk' phenomena by distributing high energy over a relatively large volume."

Prof. T.D. Lee, Rev. Mod. Phys. 47, 267(1975).

Why colliding ultra-relativistic heavy ions?

"In high-energy physics we have concentrated on experiments in which we distribute a higher and higher amount of energy into a region with smaller and smaller dimensions.

(e.g. pp, ep, e⁺e⁻)

In order to study the question of 'vacuum', we must turn to a different direction; we should investigate some 'bulk' phenomena by distributing high energy over a relatively large volume."

Prof. T.D. Lee, Rev. Mod. Phys. 47, 267(1975).

Why colliding ultra-relativistic heavy ions?

"In high-energy physics we have concentrated on experiments in which we distribute a higher and higher amount of energy into a region with smaller and smaller dimensions.

(e.g. pp, ep, e⁺e⁻)

In order to study the question of 'vacuum', we must turn to a different direction; we should investigate some 'bulk' phenomena by distributing high energy over a relatively large volume."

(AA)

Prof. T.D. Lee, Rev. Mod. Phys. 47, 267(1975).

Standard paradigm of a heavy-ion collision

Discovery of a high temperature, thermalized medium with quark and gluon degree of freedom

Initial-state asymmetry:

Initial-state asymmetry:

Final-state anisotropy:

Final-state anisotropy:

CMS event displays

Flow, two-particle correlations, ridge ...

 $\eta = -\ln(\tan(\theta/2))$

Flow, two-particle correlations, ridge ...

Flow, two-particle correlations, ridge ...

Breaking news in 2010! р р **High-multiplicity pp events** pp 7 TeV, <u>N_{trk}>110</u> **R**(Δη,Δφ) Not a pileup! 10⁻⁶ – 10⁻⁵ prob. $1 < p_T^{a}, p_T^{b} < 3 \text{ GeV/c}$ CMS, JHEP 09 (2010) 091

Near-side ridge

"Ridge" tsunami in pPb at the LHC

Collective phenomena and QGP fluid in small systems (L ~ 1fm)?!

"Ridge" tsunami in pPb at the LHC

Collective phenomena and QGP fluid in small systems (L ~ 1fm)?!

How small a QGP fluid can be?

Hydrodynamic applies when:

Too small and dilute?

How small a QGP fluid can be?

Hydrodynamic applies when:

What if making it denser by increasing N_{trk}?

Summary of current status

Almost all signatures of "flow" phenomena now commonly observed in all hadronic systems (pp, pA, AA), at sufficiently high multiplicities.

Some questions:

- ♦ Is QGP fluid created in small systems like pp?
- $\diamond\,$ Is there a smallest scale of QCD fluid-like system?
- What's still needed (experimentally) to reach a definitive conclusion?
- ♦ If everything flows, do we learn anything new about QGP from small systems?

Elliptic and triangular flow in p-Pb

Hydro consistent with data

PB, W.Broniowski, G. Torrieri arXiv:1306.5442; G.Y. Qin, B. Müller 1306.3439; I. Kozlov et al. 1405.3976; A. Bzdak et al. 1304.34003, . . .

 v₂, v₃ consistent with hydro (Glauber MC, EPOS3)

$v_{2,3}$ - hydro response to initial deformation !

Hydro generates the ridge

Werner, Karpenko, Pierog, 1011.0375

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Elliptic and triangular flow in p-AU, d-Au, ³He-Au

(small) deformed projectile

deuteron projectile(PB 1112.091

intrinsic deformation dominates over fluctuations

• hierarchy of v_2 and v_3 consistent with fireball geometry

large eccentricity - large flow component collective response to geometry

- 1. Elliptic and triangular flow
- 2. Hierarchy of v_2 and v_3 in p-A, d-A, He-A collective response to geometry (final state effect)
- 3. Flow from higher cumulants
- 4. Interferometry radii

right magnitude and k_{\perp} dependence of HBT radii indication of space-momentum correlations

- 5. Factorization at intermediate p_{\perp} and large $\Delta \eta$ particles at intermediate p_{\perp} , large η , correlated to geometry
- 6. Mass splitting of v₂
- 7. Mass hierarchy of spectra $(< p_{\perp} >)$

イロト イポト イヨト イヨト

Validy of hydrodynamics? K < 1

H. Niemi, G. Denicol 1404.7327

large gradients in the evolution

pressure asymmetry

1. Hydrodynamics works with $P_L \ll P_\perp$

Heller, Janik, Witaszczyk 1103.3452, solution converges to hydro

2. Pressure asymmetry $P_L \ll P_{\perp}$ irrelevant

PB, I. Wyskiel-Piekarska 1011.6210; J. Vredevoogt, S. Pratt 0810.4325, pressure asymmetry irrelevant for flow

イロト イヨト イヨト イヨト

æ

Collective expansion observed in pA

Is it hydrodynamics ?

Requires dominance of hydrodynamic modes

- estimate for a system size R (Spalinski 1607.06381)

 $RT>2\pi\sqrt{2T au_{\pi}\ \eta/s}\simeq 1-3$

in numerical AdS/CFT: RT > 1, (Chesler 1601.01583)

Hydrodynamics works down to $N_{ch} = 10 - 30$ (ATLAS, CMS)

Success of hydrodynamics not accidental!

Break down of hydrodynamics difficult to observe (non-flow, jets ...)

Initial state effects

Soeren Schlichting (BNL)

Di-jet Glasma

Multi-particle production in QCD naturally leads to momentum space correlations

-> multi-parton correlations in hadronic wave functions

Effects are sizable in small systems (p+p/A)

Calculations based on initial state correlations can describe two-particle correlations in wide range of semi-hard p_T and N_{trk}

-> $d^2N/d\Delta\Phi$, <p_T> & v_2(p_T) mass ordering, ...

(c.f. talk by Schlichting on Tuesday)

Challenges: Extend calculations to lower p_T (di-jet,hadronization, ...)

Compute multi-particle correlations (n>2)

Schenke,SS,Tribedy,Venugopalan arXiv:1607.02496

Initial state vs. final state effects

Sizable correlations exist between particles produced in the initial state of hadronic collisions (p+p/A; p/d/He3+A)

How much they contribute to final state observables depends to what extent they are modified by final state effects

Qualitative picture:

Challenges:

Develop theoretical framework including initial state & final state effects Identify observables to distinguish different regimes? (mini-) jet-quenching?

HYDRO IN SMALL SYSTEMS?

When is hydro applicable?

- Not far-from-equilibrium (shock)
- Not when pressure is negative (unstable)
 - But viscous/anisotropic hydro can apply if pressure ~ 0 (!!)
- Not in small system: $L \gg 1/T$ (perhaps $L \gg 1/\pi T$?): $VT^3 \gg 1$
- Shocks: hydro applies within 0.3/T

TWO COMPUTATIONS FOR SMALL SYSTEMS

A fluctuation in a thermal bath:

• Hydro works within 0.2 fm/c, for system of size 0.5 fm.

A full-blown off-center `p-p collision':

WS, Holographic thermalization with radial flow (2012) Paul Chesler, How big are the smallest drops of quark-gluon plasma? (2016)

AN ESTIMATE

For p-Pb and p-p collisions only few particles produced

- Naïve estimate: $s \approx 16T^3$ gives $N_{ch} \approx Vs/7.5 \approx 2.1VT^3$
- When R > 1/T (or $1/\pi T$??) then $dN_{ch}/dy > 2.1$ (0.7??)
- Note that *R* increases faster than $1/T(\tau \text{ versus } \tau^{1/3})$
 - Hydro works better at later times
 - Flow requires time to develop, i.e. 2.1 is `optimistic' estimate

a different perspective...

Can we learn something on the medium produced in p-A collisions looking at a different (and hard) probe?

suppression of loosely bound $\psi(2S)$ is stronger than the J/ ψ one, both at RHIC and LHC in dA, pA

- → unexpected since time spent by cc in the nucleus is shorter than charmonium formation time
- → CNM as shadowing and energy loss, almost identical for J/ ψ and ψ (2S), do not account for the different suppression

only models including already in pA QGP + hadron resonance gas or comovers describe the stronger $\psi(2S)$ suppression

Re: hydro/kinetic theory applied to systems of $\mathcal{O}(1 \text{ fm})$ size with sub-fermi structures...

one intriguing question: how/when quantum mechanics (wave physics) enters - e.g., cannot localize both in x and p

⇒ inherent momentum anisotropies e.g. DM, Wang & Greene 1404.4119

Also, if these systems are opaque enough for hydro, there should be energy loss (jet quenching) signatures. E.g., p+Pb @ 5.02 TeV (top 3.4% cent): DM & Sun at QM2015

