
T. Blake for the LHCb collaboration

XIIth Quark Confinement and Hadron Spectrum conference
Thessaloniki, September 2016

Outline

- Aim to discuss some of the tensions we have in flavour physics:
- Inclusive and exclusive determinations of $V_{u b}$.
- Decay rate of $B \rightarrow D^{(*)} \ell \nu$
- Branching fraction and angular distribution of rare $b \rightarrow s \ell^{+} \ell^{-}$ decays.
- Are SM calculations correct?
- Are we seeing evidence for BSM particles?

Flavour in the SM

- Particle physics can be described to excellent precision by a very simple theory:

$$
\mathcal{L}_{\mathrm{SM}}=\mathcal{L}_{\text {Gauge }}\left(A_{a}, \psi_{i}\right)+\mathcal{L}_{\mathrm{Higgs}}\left(\phi, A_{a}, \psi_{i}\right)
$$

- $\mathcal{L}_{\text {Higgs }}$ is responsible for flavour in the SM. Without the Higgs, the three fermion families would be identical replicas.
- Yukawa matrices are the only source of flavour violation,

- Quark flavour-violating interactions governed by the CKM.
- No tree level FCNCs in the SM (GIM mechanism).

"The" Unitarity triangle

- CKM matrix is a 3×3 matrix, parameterised by 3 Euler angles and a single complex phase (the only source of $C P$ violation in SM).
- Unitarity conditions imply e.g. $V_{u d} V_{u b}^{*}+V_{c d} V_{c b}^{*}+V_{t d} V_{t b}^{*}=0$

Data are consistent with a triangle in the complex plane.
Precision test of the flavour structure of the SM!

"The" Unitarity triangle

- Huge progress in flavour physics in the past 20 years from both experiment and theory.
- Final datasets from the B-factory/TeVatron experiments + data from LHC and theoretical progress from Lattice QCD, effective theories, QCD sum rules etc.

Sides of the triangle

Determined using $B-\bar{B}$ oscillation frequencies Δm_{d} and Δm_{s} with input from lattice ($f_{B_{q}}$ and $\hat{B}_{B_{q}}$).

$$
R_{t}=\left|\frac{V_{t d} V_{t b}^{*}}{V_{c d} V_{c b}^{*}}\right|
$$

Exclusive $V_{u b}$

- Can determine $V_{u b}$ by fitting the differential decay rate seen by the BaBar and Belle experiments, e.g. for $B \rightarrow \pi \ell \nu$

$$
\frac{\mathrm{d} \Gamma}{\mathrm{~d} q^{2}}=\left|V_{u b}\right|^{2} \frac{G_{F}^{2}}{192 \pi^{3} m_{B}^{3}} \lambda\left(m_{B}, m_{\pi}, q^{2}\right)^{3 / 2}\left|f_{+}\left(q^{2}\right)\right|^{2}
$$

- Hadronic form-factors needed as an external input.
- Taken from Lattice QCD/LCSR calculations.

$$
\langle\pi(p)| \bar{u} \gamma_{\mu} b|B(k)\rangle=(k+p)_{\mu} f_{+}\left(q^{2}\right)+(k-p)_{\mu} f_{-}\left(q^{2}\right)
$$

$V_{u b}$ from Λ_{b} decays

- Can also determine $\left|V_{u b} / V_{c b}\right|$ using \wedge_{b} baryon decays at LHCb by measuring

$$
\frac{\mathcal{B}\left(\Lambda_{b} \rightarrow p \mu^{-} \bar{\nu}_{\mu}\right)}{\mathcal{B}\left(\Lambda_{b} \rightarrow \Lambda_{c}^{+} \mu^{-} \bar{\nu}_{\mu}\right)}
$$

- Use secondary vertex to define corrected mass

$$
\sqrt{m_{p \mu}^{2}+p_{\perp}^{2}}+p_{\perp}
$$

where p_{\perp} is the missing transverse momentum.

- Use form-factors from Lattice QCD at high q^{2} to determine $\left|V_{u b} / V_{c b}\right|$

[Detmold et al, PRD 92 (2015) 034503]

Inclusive vs exclusive $V_{u b}$

- Can also determine $V_{u b}$ using inclusive $B \rightarrow X_{u} \ell \nu$ decays and Heavy Quark Effective Theory.
- See large tension between the inclusive and exclusive rates ($>3 \sigma$).

From talk by Ruth Van der Water at FPCP 16.

Vub interpretation

- Can attempt to explain the $V_{u b}$ tension by introducing a RH current

$$
\begin{aligned}
& \mathcal{L}_{\mathrm{eff}} \propto V_{u b}^{\mathrm{L}}\left(\bar{u} \gamma_{\mu} P_{\mathrm{L}} b+\right. \\
& \left.\quad \varepsilon_{\mathrm{R}} \bar{u} \gamma_{\mu} P_{\mathrm{R}} b\right)\left(\bar{\nu} \gamma^{\mu} P_{\mathrm{L}} \ell\right)+\text { h.c }
\end{aligned}
$$

- Unfortunately it's difficult to reconcile with the new measurement of $V_{u b}$ from \wedge_{b} decays.
- Alternatively, is there an experimental issue or failure with the theoretical framework (Lattice, LCSR or HQET)?
[Phys. Rev. D 90, 094003 (2014)]

Semitauonic decays

- Ratio

$$
R\left(D^{(*)}\right)=\frac{\Gamma\left[B \rightarrow D^{(*)} \tau \nu\right]}{\Gamma\left[B \rightarrow D^{(*)} \ell \nu\right]}
$$

is theoretically clean

- Hadronic uncertainties \& $\left|V_{c b}\right|$ cancel in ratio.
and can be enhanced in extensions of the SM (e.g. with charged Higgs).
- Experimental challenge is to separate signal from backgrounds.
- Use missing mass, lepton energy, q^{2} and multivariate discriminants.
- B-factory experiments can also exploit leptonic/hadronic tag of the other B in the event.
[LHCb, PRL 115 (2015) 111803]

$B \rightarrow D^{*} \tau \mathbf{v}, B \rightarrow D^{*} H_{c}\left(\rightarrow \mu \mathrm{~V} X^{\prime}\right) X, B \rightarrow D^{* *} \mu v$,
$B \rightarrow D^{*} \mu \boldsymbol{v}$, combinatorial, misidentified

- Combination is $\mathbf{4 . 0} \sigma$ from the SM expectation:

$$
R(D)=0.297 \pm 0.017 \quad, \quad R\left(D^{*}\right)=0.252 \pm 0.003
$$

[Kamenik et al. Phys. Rev. D78 014003 (2008)], [S. Jajfer et al. Phys. Rev. D85 094025 (2012)]
NB A new preliminary result, including a τ-polarisation measurement, was shown by Belle at ICHEP 2016.

$R(D)$ and $R\left(D^{*}\right)$ interpretation

- Can explain enhancement of $R(D)$ and $R\left(D^{*}\right)$ in models with charged scalars (e.g. 2HDM). However generically expect larger enhancement of $R(D)$ than $R\left(D^{*}\right)$.
See e.g.
[Fajfer et al. PRL 109 (2012) 161801]
- Can also get enhancements in models with leptoquarks.

See e.g.

[Bauer et al. PRL 116 (2016) 141802]

[BaBar PRL 109 (2012) 101802]

Rare FCNC decays

- Flavour changing neutral current transitions only occur at loop order (and beyond) in the SM.

SM diagrams involve the charged current interaction.

- New particles can contribute at loop or tree level:

- Enhancing/suppressing decay rates, introducing new sources of $C P$ violation or modifying the angular distribution of the final-state particles.

Exclusive $b \rightarrow s \mu^{+} \mu^{-}$decay rates

- Large samples of exclusive decays available at the LHC:
e.g. Select 2400 (1400) $B \rightarrow K^{*} \mu^{+} \mu^{-}$candidates in the LHCb (CMS) dataset.
- SM predictions have large theoretical uncertainties from hadronic form factors (3 for $B \rightarrow K$ and 7 for $B \rightarrow K^{*}$ decays). For details see [Bobeth et al JHEP 01 (2012) 107] [Bouchard et al. PRL111 (2013) 162002] [Altmannshofer \& Straub, EPJC (2015) 75 382]

Dilepton mass spectrum

Photon pole enhancement (no pole for $B \rightarrow P \ell \ell$ decays)

Form-factors from LCSR calculations

Spectrum dominated by
narrow charmonium resonances.
(vetoed in data)

$B_{\mathrm{s}} \rightarrow \phi \mu^{+} \mu^{-}$decay rate

- Equivalent process for the B_{s} system is $B_{\mathrm{s}} \rightarrow \phi \mu^{+} \mu^{-}$.
- Branching fraction below SM predictions at low q^{2} (similar trend seen in other $b \rightarrow s \mu^{+} \mu^{-}$processes).
[LHCb, JHEP 09 (2015) 179]

In a wide bin from $1<q^{2}<6 \mathrm{GeV}^{2} / c^{4}$, the data is $>3 \sigma$ from the SM prediction

- SM predictions based on
[Altmannshofer \& Straub, EPJC (2015) 75 382]
[LCSR form-factors from Bharucha et al. arXiv:1503.05534]
[Lattice prediction from Horgan et al. PRD 89 (2014) 094501]

$B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}$angular distribution

- Four-body final state.
- Angular distribution provides many observables that are sensitive to BSM physics.
e.g. at low q^{2} the angle between the decay planes, ϕ, is sensitive to the photon polarisation.

(b) ϕ definition for the B^{0} decay
- System described by three angles and the dimuon invariant mass squared, q^{2}.

(c) ϕ definition for the \bar{B}^{0} decay

$B^{0} \rightarrow K^{*} 0 \mu^{+} \mu^{-}$angular distribution

- Complex angular distribution:

$$
\begin{aligned}
& \frac{1}{\mathrm{~d}(\Gamma+\bar{\Gamma}) / \mathrm{d} q^{2}} \frac{\mathrm{~d}^{3}(\Gamma+\bar{\Gamma})}{\mathrm{d} \vec{\Omega}}=\frac{9}{32 \pi}\left[\frac { 3 } { 4 } \left(1-F_{\mathrm{L}} \sin ^{2} \theta_{K}+F_{\mathrm{L}} \cos ^{2} \theta_{K}+\right.\right. \\
& \begin{array}{c}
\text { fraction of Iongitudinal } \\
\text { polarisation of the } \mathrm{K}^{*}
\end{array} \\
& \begin{array}{l}
+\frac{1}{4}\left(1-F_{\mathrm{L}} \sin ^{2} \theta_{K} \cos 2 \theta_{l}\right. \\
-F_{\mathrm{L}} \cos ^{2} \theta_{K} \cos 2 \theta_{l}+S_{3} \sin ^{2} \theta_{K} \sin ^{2} \theta_{l} \cos 2 \phi
\end{array} \\
& \begin{array}{l}
+S_{4} \sin 2 \theta_{K} \sin 2 \theta_{l} \cos \phi+S_{5} \sin 2 \theta_{K} \sin \theta_{l} \cos \phi \\
\begin{array}{c}
\text { forward-backward } \\
\text { asymetry of the } \\
\text { dilepton system }
\end{array}
\end{array} \begin{array}{l}
+\frac{4}{3} A_{\mathrm{FB}} \sin ^{2} \theta_{K} \cos \theta_{l}+S_{7} \sin 2 \theta_{K} \sin \theta_{l} \sin \phi \\
\left.+S_{8} \sin 2 \theta_{K} \sin 2 \theta_{l} \sin \phi+S_{9} \sin ^{2} \theta_{K} \sin ^{2} \theta_{l} \sin 2 \phi\right]
\end{array}
\end{aligned}
$$

The observables depend on form-factors for the $B \rightarrow K^{\star}$ transition plus the underlying short distance physics (Wilson coefficients).

$B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}$angular analysis

- Typically integrate over all but one angle or perform angular folding to reduce the number of observables.
- LHCb has performed the first full angular analysis of the decay.

- Access the full set of angular observables and their correlations.
- Experiments need good control of detector efficiencies and to understand background from decays where the $K \pi$ is in an S-wave configuration.
- Use $B^{0} \rightarrow J / \psi K^{* 0}$ as a control channel to understand the acceptance of the detector.

$B^{0} \rightarrow K^{\star 0} \mu^{+} \mu^{-}$angular observables

- New results for FL and $A_{\text {fB }}$ last year from LHCb [JHEP 02 (2016) 104], CMS [PLB 753 (2016) 424] and BaBar [PRD 93 (2016) 052015] + measurements from CDF [PRL 108 (2012) 081807] and Belle [PRL 103 (2009) 171801].
- SM predictions based on
[Altmannshofer \& Straub, EPJC 75 (2015) 382]
[LCSR form-factors from Bharucha, Straub \& Zwicky, arXiv:1503.05534]
[Lattice form-factors from Horgan, Liu, Meinel \& Wingate arXiv:1501.00367] performed

Results

- LHCb has performed the first full angular analysis of the decay:
- Extract the full set of $C P$-averaged angular terms and their correlations and determine a full set of $C P$-asymmetries.

[LHCb, JHEP 02 (2016) 104]

NB: These observables cancel when integrating over the ϕ-angle
Statistical coverage of the observables corrected using Feldman-Cousins (treating the nuisance parameters with the plug-in method).

Form-factor "free" observables

- In QCD factorisation/SCET there are only two form-factors
- One is associated with A_{0} and the other $A_{\|}$and A_{\perp}.
- Can then construct ratios of observables which are independent of form-factors at leading order, e.g.

$$
P_{5}^{\prime}=S_{5} / \sqrt{F_{\mathrm{L}}\left(1-F_{\mathrm{L}}\right)}
$$

Local tension with SM predictions.
[LHCb, JHEP 02 (2016) 104] [Belle, arXiv:1604.04042]

- $P^{\prime} 5$ is one of a set of so-called form-factor free observables that can be measured [Descotes-Genon et al. JHEP 1204 (2012) 104].

Effective theory

- Can write a Hamiltonian for an effective theory of $b \rightarrow s$ processes:

Operators

- Different processes are sensitive to different 4-fermion operators.
- Can exploit this to over-constrain the system.

$$
\begin{aligned}
& \left.\mathcal{O}_{7}=\left(m_{b} / e\right)\left(\bar{s} \sigma^{\mu \nu} P_{R} b F_{\mu \nu}\right)\right\}\left\{\begin{array}{l}
\text { photon (constrained by radiative decays and } \\
\left.b \rightarrow s \ell^{+} \ell^{-} \text {processes at small } q^{2}\right)
\end{array}\right. \\
& \mathcal{O}_{9}=\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{\ell} \gamma^{\mu} \ell\right) \\
& \left.\mathcal{O}_{10}=\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{\ell} \gamma^{\mu} \gamma_{5} \ell\right)\right\} \text { (constrained by } b \rightarrow s \ell+\ell \text { - processes) } \\
& \mathcal{O}_{S}=\left(\bar{s} P_{R} b\right)(\bar{\ell} \ell) \quad\{\text { axial vector current (constrained by } \\
& \mathcal{O}_{P}=\left(\bar{s} P_{R} b\right)\left(\bar{\ell} \gamma_{5} \ell\right) \quad \text { leptonic decays and } b \rightarrow s \ell^{+} \ell^{-} \text {processes) } \\
& \text { scalar and pseudoscalar operators } \\
& \text { (constrained primarily by leptonic decays) } \\
& \text { e.g. } \quad B_{s}^{0} \rightarrow \mu^{+} \mu^{-} \text {constrains } C_{10}-C_{10}^{\prime}, C_{S}-C_{S}^{\prime}, C_{P}-C_{P}^{\prime} \\
& B^{+} \rightarrow K^{+} \mu^{+} \mu^{-} \text {constrains } C_{9}+C_{9}^{\prime}, C_{10}+C_{10}^{\prime} \\
& B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-} \text {constrains } C_{7} \pm C_{7}^{\prime}, C_{9} \pm C_{9}^{\prime}, C_{10} \pm C_{10}^{\prime}
\end{aligned}
$$

The primes denote right-handed counterparts of the operators whose contribution is small in the SM.

Global fits

- Several attempts to interpret our results by performing global fits to $b \rightarrow s$ data (e.g. [JHEP 06 (2016) 092], [Nucl. Phys. B 909 (2016) 737]).

branching fractions, angular observables and combination
- Consistent picture, data favours modified vector coupling $\left(C 9^{\mathrm{NP}} \neq 0\right)$ at about $3-4 \sigma$.

Interpretation of global fits

Optimist's view point

Vector-like contribution could come from e.g. new tree level contribution from a Z' with a mass of a few TeV.

Pessimist's view point

Vector-like contribution could point to a problem with our understanding of QCD, e.g. are we correctly estimating the contribution for charm loops that produce dimuon pairs via a virtual photon?

SM contributions

- Interested in new short distance contributions.
- We also get long-distance hadronic contributions.
- Need estimate of non-local hadronic matrix elements [Khodjamirian et al. JHEP 09 (2010) 089]

\square

Short distance part integrates out (as a Wilson coefficient)

What can we learn from the data?

- If we are underestimating $c \bar{c}$ contributions then naively expect to see the shift in C_{9} get larger closer to the narrow charmonium resonances.

\Rightarrow No clear evidence for a rise in the data (but more data is needed).

Lepton universality

- In the SM, ratios

$$
R_{\mathrm{K}}=\frac{\int \mathrm{d} \Gamma\left[B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}\right] / \mathrm{d} q^{2} \cdot \mathrm{~d} q^{2}}{\int \mathrm{~d} \Gamma\left[B^{+} \rightarrow K^{+} e^{+} e^{-}\right] / \mathrm{d} q^{2} \cdot \mathrm{~d} q^{2}}
$$

only differ from unity by phase space - the dominant SM processes couple equally to the different lepton flavours (with the exception of the Higgs).

- Theoretically clean since hadronic uncertainties cancel in the ratio (same hadronic matrix element + QED couples only to lepton charge).
- Experimentally challenging due to differences in muon/electron reconstruction (in particular Bremsstrahlung from the electrons).

R_{k} result

- In the Run 1 dataset, LHCb determines:

$$
R_{\mathrm{K}}=0.745_{-0.074}^{+0.090}{ }_{-0.036}^{+0.036}
$$

in the range $1<q^{2}<6 \mathrm{GeV}^{2}$, which is consistent with the SM at 2.6σ.

- Take double ratio with $B^{+} \rightarrow J / \psi K^{+}$to cancel possible sources of systematic uncertainty.
- Correct for migration of events in q^{2} due to Bremsstrahlung using MC (with PHOTOS).

NB $R_{K} \simeq 0.8$ is a prediction of one class of model explaining the $B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}$ angular observables, see $L \mu-L \tau$ models W. Altmannshofer et al. [PRD 89 (2014) 095033]

R_{k} result

- QED corrections to $R_{k}=1$ are known to be small and are well modelled by PHOTOS. They enter as

$$
\frac{\alpha_{\mathrm{EM}}}{\pi} \log \left(\frac{m_{\mu}^{2}}{m_{e}^{2}}\right)
$$

see [lsidori et al. EPJC 76 (2016)]

- Can also consider decays to other hadronic systems as the prediction is (almost) independent of mass/spin of hadronic final state.
- Await results from LHCb run II dataset/first data from Belle II.

Summary

Flavour anomalies

New Physics or QCD effects?

12th Quark Confinement and the Hadron Spectrum Conference Thessaloniki, 30 August 2016

Panel members

- Tom Blake (University of Warwick)
- LHCb experiment
- Lars Hofer (University of Barcelona)
- Global fits to flavour data
- Sebastian Jäger (Sussex University)
- Flavour and BSM
- Zhaofeng Liu (IHEP, Chinese Academy of Sciences)
- Lattice QCD
- Roman Zwicky (Edinburgh University)
- Flavour and Light-cone sum rules

C9 physics and hadronic effects

- What is the current knowledge of hadronic effects?
- Which theoretical approaches promise the potential of constraining these effects?
- Are there experimental constraints that could be exploited?

Heavy quark expansion (QCD factorisation)

In the limit $\mathrm{m}_{\mathrm{b}} \gg \wedge_{\mathrm{QCD}}$, at small dilepton mass $\mathrm{q}^{2} /$ large K^{*} energy, $B->K^{*} \mu \mu$ (and similar) decay amplitudes factorise into:

- partonic, perturbative decay amplitudes multiplied by/convoluted with
- form factors and meson light-cone distribution amplitudes (LCDA)

QCDF = merger of collinear factorisation and heavy-quark spin symmetry (HQET).
Effective field theory formulation: SCET (not independent!)
In B->K $K^{*} \mu \mu$, at low q^{2}, to all orders in α_{s}, and up to Λ / m_{b} corrections

- reduces 7 independent form factors to 2 independent ones
- allows to unambiguously express virtual charm (and all other hadronic effects) in terms of form factors and LCDA's
- a number of angular observables get uncertainties reduced to $\alpha_{\mathrm{s}}, \Lambda / \mathrm{m}_{\mathrm{b}}$

Important ingredient in phenomenology of rare B decays, Wilson coefficient fits
Partly complementary with light-cone sum rules (form factors, LCDA moments)
Currently no first-principles method able to calculate residual form factors or power corrections. (LCDA moments for K calculable on the lattice. Prospects for K^{*} ?)

Fitting B->KII-spectrum with BW-like ansatz for broad charmonium resonances

Lyon and RZ

- interference of SD (form factor) LD (charmonium)
- LHCb working on fitting phase for narrow resonances important low q^{2-} predictions (anomalies)

Use of equation of motion to constrain form factors ratios from LCSR

- idea: eom help to correlate parameters contributing to systematic uncertainties
- eom: exact relations:

Wilson
C_{7}
$C_{9,10}$
redundant

$$
\langle V| i \partial^{\nu}\left(\bar{s} i \sigma_{\mu \nu} b\right)|B\rangle=-\left(m_{s}+m_{b}\right)\langle V| \bar{s} \gamma_{\mu} b|B\rangle+i\langle V| \partial_{\mu}(\bar{s} b)|B\rangle-2\langle V| \bar{s} i \overleftarrow{D}_{\mu} b|B\rangle
$$

$\mathrm{pol}=\perp: \quad T_{1}\left(q^{2}\right)$
$V\left(q^{2}\right)$
$0 \quad \mathcal{D}\left(q^{2}\right)$

- useful since $T_{1}, V \gg \mathcal{D}$ means that eom constrains FF-ratio T_{1} / V

- more precisely: sum rules continuum thresholds so correlated since $\mathrm{S}_{0}{ }^{\mathrm{D}}$ close to $\mathrm{So}^{\mathrm{T} 1}, \mathrm{~S}_{0}{ }^{\mathrm{V}}$ then implies $\mathrm{S}_{0}{ }^{\top 1}$ very close to $\mathrm{S}_{0}{ }^{\vee}$ thereby eliminating major source of uncertainty
- closeness of ratios to 1 measures smallness of $D\left(q^{2}\right)$

Finite width effects of vector mesons in light-cone dynamics?

Bharrucha, Straub, RZ'15

- fast vector meson: use light-cone distribution amplitudes (DAs) e.g. LCSR, QCD-Fac., SCET

$$
\langle\rho| \bar{u}(x) \Gamma d(0)|0\rangle=f_{\rho} \int_{0}^{1} d u e^{i u p x} \phi^{\rho}(u)
$$

- $\boldsymbol{\phi}^{\rho}$ 1) determined by ρ decay constant $f_{\rho}+$ Gegenbauer moments ca 10% correction ?

2) experimental signal $(\rho \rightarrow \pi \pi)_{p-w a v e}$

- Question effectively the same as how well-defined f_{ρ} is!

- Pragmatic resolution: In experimental analysis treat ρ-meson the same way in

1) $\tau \rightarrow(\pi \pi)_{p-w} \operatorname{lv}$ (extraction of f_{ρ})
2) $B \rightarrow p(\rightarrow \pi \pi) / v$

- Note: 1) tensor decay constant from ratio \& Gegenbauer moments second order effect 2) this way one bypasses a first principle definition of ρ-meson including it's width.

Form factors for semi-leptonic \boldsymbol{b} decays from Lattice QCD

- Most precise at large \boldsymbol{q}^{2} (low recoil region)
- Extrapolation to low $\boldsymbol{q}^{\mathbf{2}}$ (zexpansions)
- Statistical error
- Chiral extrapolation
- Continuum extrapolation
- Renormalization and matching
- Heavy quark action

PRD89,094501(2014)

Rare decays (loop-level)

- $\boldsymbol{B} \rightarrow \boldsymbol{K} \boldsymbol{l}^{+} \boldsymbol{l}^{-}$

- HPQCD, PRD88.054509(2013), PRL111.162002(2013), 2+1-flavors
- FNAL/MILC, PRD93.025026(2016), PRD93.034005(2016), 2+1-flavors
- $\boldsymbol{B} \rightarrow \boldsymbol{\pi} \boldsymbol{l}^{+} \boldsymbol{l}^{-}$
- FNAL/MILC, PRD92.014024(2015), PRL115.152002(2015), 2+1-flavors
- $\boldsymbol{B} \rightarrow \boldsymbol{K}^{*} \boldsymbol{l}^{+} \boldsymbol{l}^{-}, \boldsymbol{B}_{\boldsymbol{s}} \rightarrow \boldsymbol{\phi} \boldsymbol{l}^{+} \boldsymbol{l}^{-}, \boldsymbol{B}_{\boldsymbol{s}} \rightarrow \overline{\boldsymbol{K}}^{* \mathbf{0}} \boldsymbol{l}^{+} \boldsymbol{l}^{-}$
- Horgan et al., PRD89,094501(2014), PRL112,212003(2014), PoS(LAT2014)372
- RBC/UKQCD, ongoing work, 1511.06622 (LAT2015), talk at lattice2016
$\cdot \Lambda_{b} \rightarrow \Lambda^{+} l^{-}, \Lambda_{b} \rightarrow \Lambda(\mathbf{1 5 2 0}) l^{+} l^{-}$
- Detmold, Lin, Meinel, Wingate PRD87,074502(2013), 2+1-flavor domain wall fermions, HQET (leading order) for b quark
- Detmold, Meinel PRD93,074501(2016), RHQ, 10 form factors, domain wall
- Meinel's talk at Lattice2016

Tree-level decays (| $\left.\boldsymbol{V}_{\boldsymbol{u b}} \mid\right)$

- $\bar{B} \rightarrow \pi l \bar{v}_{l}$
- FNAL/MILC, PRD79,054507(2009), PRD92,014024(2015) 2+1 flavor
- RBC/UKQCD 2+1 flavor results PRD91,074510(2015)
- HPQCD 2+1+1-flavor results PRD93,034502(2016), physical pion mass, (also $\left.B_{s} \rightarrow K l v\right)$
- ALPHA, 2-flavor calculation PLB757,473(2016), (also $\boldsymbol{B}_{\boldsymbol{s}} \rightarrow \boldsymbol{K} \boldsymbol{l} \boldsymbol{v}$)
- $\boldsymbol{B}_{\boldsymbol{s}} \rightarrow \boldsymbol{K}^{*} \boldsymbol{l} \boldsymbol{v}$
- Horgan et al. PRD89,094501(2014), 2+1-flavors
- $\Lambda_{b} \rightarrow p l v$
- PRD88,014512(2013), Detmold, Lin, Meinel and Wingate, static b quark, 2+1-flavor, domain-wall sea, 2 form factors
- PRD92,034503(2015), Detmold, Lehner and Meinel, relativistic b quark, 2+1flavor, domain-wall sea and light valence, 6 form factors

Tree-level decays (| $\boldsymbol{V}_{\boldsymbol{c b}} \mid, \boldsymbol{R}(\boldsymbol{D})$)

- $\overline{\boldsymbol{B}} \rightarrow \boldsymbol{D}^{*} \boldsymbol{l} \boldsymbol{v}$
- FNAL/MILC, 2+1-flavors, PoS(Lat2010)311; PRD79,014506(2009)
- FNAL/MILC, 2+1-flavors, PRD89,114504(2014), 5 lattice spacings
- $\bar{B} \rightarrow \boldsymbol{D l v}$
- FNAL/MILC 2+1-flavor PRD92,034506(2015)
- HPQCD 2+1-flavor PRD92,054510(2015)
- $B_{s} \rightarrow D_{s} l v$
- M. Atoui et al., Eur.Phys.J.C74(2014)2861, 2-flavors, ETMC configurations
$-\Lambda_{b} \rightarrow \Lambda_{c} l v$
- Quenched calculations of form factors: UKQCD, PRD57,6948(1998). Gottlieb and Tamhankar, Proceedings for Lattice2003
- PRD92,034503(2015), Detmold, Lehner and Meinel, relativistic b quark, 2+1flavor, domain-wall sea and light valence, 6 form factors

Improvements

- More (finer) lattice spacings
- Shorten the extrapolation range to zero $\boldsymbol{q}^{\mathbf{2}}$
- Physical pion mass
- 2+1+1-flavor simulations
- More precise matching factors
- Improvements of the heavy quark action (also the currents)
- Taking into account the width of unstable final states

An emerging picture of New Physics?

- What do $b \rightarrow$ sll fits imply?
- What are the connections to other Wilson coefficients?
- Are there connections to other flavour anomalies or where might one expect signals in the future?

What about other Wilson coefficients?

		$\mathcal{C}_{7}^{\mathrm{NP}}$	$\mathcal{C}_{9}^{\mathrm{NP}}$	$\mathcal{C}_{10}^{\mathrm{NP}}$	$\mathcal{C}_{7^{\prime}}^{\mathrm{NP}}$	$\mathcal{C}_{9^{\prime}}^{\mathrm{NP}}$	$\mathcal{C}_{10}^{\mathrm{NP}}$
$\mathcal{C}_{9}^{\mathrm{NP}}$	4.47	0.07	${ }^{*}$	1.54	0.92	2.00	1.89

New physics models

Models generating C_{9} at tree-level:

Z^{\prime} models
main constraint: B_{s} mixing gauged $L_{\tau}-L_{\mu}: Q_{L}=(0,1,-1)$

Models generating C_{9} at loop-level:

constraints: B_{s} mixing, $b \rightarrow s \gamma$

lepto-quarks
LF(U)V natural can also address $R_{D^{*}}$

solve $g-2$ simultaneously?

Questions \& Comments

Inclusive vs exclusive $V_{u b}$

- Can also determine $V_{u b}$ using inclusive $B \rightarrow X_{u} \ell_{\nu}$ decays and Heavy Quark Effective Theory.
- See large tension between the inclusive and exclusive rates ($>3 \sigma$).

Semitauonic decays

- Ratio

$$
R\left(D^{(*)}\right)=\frac{\Gamma\left[B \rightarrow D^{(*)} \tau \nu\right]}{\Gamma\left[B \rightarrow D^{(*)} \ell \nu\right]}
$$

is theoretically clean

- Hadronic uncertainties \& $\left|V_{c b}\right|$ cancel in ratio.
and can be enhanced in extensions of the SM (e.g. with charged Higgs).
- Experimental challenge is to separate signal from backgrounds.
- Use missing mass, lepton energy, q^{2} and multivariate discriminants.
- B-factory experiments can also exploit leptonic/hadronic tag of the other B in the event.

$R\left(D^{(*)}\right)$ consistency

- Can also calculate inclusive rate using OPE:

$$
\mathcal{B}\left(B \rightarrow X_{c} \tau \nu\right)=(2.42 \pm 0.06) \%
$$

[Ligeti and Tackmann, PRD 90 (2014) 034021]
and cross-check against the inclusive measurement from LEP

$$
\mathcal{B}\left(B \rightarrow X_{c} \tau \nu\right)=(2.41 \pm 0.23) \%
$$

- In inclusive rate there is excellent agreement between experiment and theory.

Neutral meson mixing

- Mass eigenstates are not the same as the weak eigenstates.
- Oscillation frequency controlled by the mass difference between the heavy and light mass eigenstates.
- Ratio of oscillation frequencies can be computed precisely in Lattice CQD (computing $\left\langle\bar{B}^{0} \mid B^{0}\right\rangle$ and $\left.\left\langle\bar{B}_{s}^{0} \mid B_{s}^{0}\right\rangle\right)$

$$
\frac{\Delta m_{d}}{\Delta m_{s}}=\left(\frac{f_{B^{0}} \sqrt{\hat{B}_{B^{0}}}}{f_{B_{s}^{0}} \sqrt{\hat{B}_{B_{s}^{0}}}}\right)^{2} \frac{m_{B^{0}}}{m_{B_{s}^{0}}} \frac{\left|V_{t d}\right|^{2}}{\left|V_{t s}\right|^{2}}
$$

Use experimental inputs for $\Delta m_{d} / \Delta m_{s}$ + masses and decay constants + bagparameters from lattice.

Neutral meson mixing

- See 2σ tension between $V_{t o} / V_{t s}$ determination from $\Delta m_{d} / \Delta m_{s}$ and expectation from CKM unitarity.

[Fermilab-MILC PRD 93 (2016) 113016]

Muon g-2

http://pdg.|bl.gov/2015/reviews/rpp2015-rev-g-2-muon-anom-mag-moment.pdf

- Long-standing tension in muon g-2 at level of 3.6 σ.

$$
\Delta a_{\mu}=(288 \pm 63(\text { Exp. }) \pm 49(\mathrm{SM})) \times 10^{-11}
$$

- New muon g-2 experiment will start soon at Fermilab.
- SM prediction limited by hadronic uncertainties.

- Hadronic contributions determined from $e^{+} e^{-}$data or τ decays.
- Prospect for improvement using lattice in the near future.

$C P$ violation in the kaon system

- Direct $C P$ violation observed in the kaon system by the NA48 experiment at CERN \& KTeV at Fermilab.
- Experimental result for $\epsilon^{\prime} / \epsilon$:

$$
\operatorname{Re}\left(\epsilon^{\prime} / \epsilon\right)=(16.5 \pm 2.3) \times 10^{-4}
$$

$$
\text { where } \quad \operatorname{Re}\left(\epsilon^{\prime} / \epsilon\right) \approx \frac{1}{6}\left(1-\left|\frac{\eta_{00}}{\eta_{+-}}\right|^{2}\right)
$$

Probes direct $C P$ violation Probes indirect $C P$ violation

$$
\eta_{00}=\frac{\mathcal{A}\left(K_{\mathrm{L}} \rightarrow \pi^{0} \pi^{0}\right)}{\mathcal{A}\left(K_{\mathrm{S}} \rightarrow \pi^{0} \pi^{0}\right)} \quad \eta_{+-}=\frac{\mathcal{A}\left(K_{\mathrm{L}} \rightarrow \pi^{+} \pi^{-}\right)}{\mathcal{A}\left(K_{\mathrm{S}} \rightarrow \pi^{+} \pi^{-}\right)}
$$

- Recent lattice inputs give

$$
\operatorname{Re}\left(\epsilon^{\prime} / \epsilon\right)=(1.9 \pm 4.5) \times 10^{-4} \quad \text { [Buras et al, JHEP } 11 \text { (2015) 202] }
$$

= Compatibility at the level of 2.6σ.

Rare leptonic decays

- $\mathrm{B}_{\mathrm{s}} \rightarrow \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}$is a golden mode to study FCNCs at the LHC.
- CKM suppressed, loop suppressed and helicty suppressed.
- Powerful probe of models with new or enhanced scalar/pseudoscalar interactions, e.g. SUSY at high $\tan \boldsymbol{\beta}$.

Rare leptonic decays

- $\mathrm{B}_{\mathrm{s}} \rightarrow \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}$is a golden mode to study FCNCs at the LHC.
- Predicted precisely in the SM (6\% uncertainty on branching fraction). [Bobeth et al. PRL 112 (2014) 101801]
- Depends on single decay constant: $\langle 0| \bar{s} \gamma^{\mu} \gamma_{5} b|B\rangle=i f_{B} p^{\mu}$ $\operatorname{BR}\left(B_{q} \rightarrow \ell^{+} \ell^{-}\right)_{\mathrm{SM}}=\tau_{B_{q}} \frac{G_{F}^{2} \alpha_{e_{\mathrm{m}}}^{2}}{16 \pi^{2}} f_{B_{q}}^{2} m_{\ell}^{2} m_{B_{q}} \sqrt{1-\frac{4 m_{\ell}^{2}}{m_{B_{q}}^{2}}}\left|V_{t b} V_{t q}^{*}\right|^{2}\left|C_{10}^{\mathrm{SM}}\right|^{2}$

4\% uncertainty
4\% uncertainty

$\mathrm{BR}\left(B_{(s, a)} \rightarrow \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}\right)$

- Combined measurement by LHCb and CMS gives

$$
\begin{aligned}
& \mathcal{B}\left(B_{s}^{0} \rightarrow \mu^{+} \mu^{-}\right)=\left(2.8_{-0.6}^{+0.7}\right) \times 10^{-9} \\
& \mathcal{B}\left(B_{d}^{0} \rightarrow \mu^{+} \mu^{-}\right)=\left(3.9_{-1.4}^{+1.6}\right) \times 10^{-10}
\end{aligned}
$$

- B_{s} decay observed at 6.2σ, evidence for B^{0} decay at 3.0σ.
- Compatible with SM predictions at $1.2 \sigma(B \mathrm{~s})$ and $2.2 \sigma\left(\mathrm{~B}^{0}\right)$.
[CMS \& LHCb, Nature, 522 (2015) 68]
- ATLAS sets an upper limit of: $\mathcal{B}\left(B_{s}^{0} \rightarrow \mu^{+} \mu^{-}\right)<3.0 \times 10^{-9}$ [ATLAS collaboration, arXiv:1604.04263]

SM predictions from
[Bobeth et al. PRL 112 (2014) 101801]

Properties of $\Delta F=1$ processes

Can also look at other properties of the decays:

- In the SM, photons from $b \rightarrow s \gamma$ decays are predominantly left-handed ($C_{7} / C_{7}^{\prime} \sim m_{b} / m_{s}$) due to the chargedcurrent interaction.

- Flavour structure of SM implies that the rate of $b \rightarrow d$ processes is suppressed by $\left|V_{t d} / V_{t s}\right|^{2}$ compared to $b \rightarrow s$ processes.
- In the SM, the rate $\Gamma\left[B \rightarrow M \mu^{+} \mu^{-}\right] \approx \Gamma\left[B \rightarrow M e^{+} e^{-}\right]$ due to the universal coupling of the gauge bosons (except the Higgs) to the different lepton flavours. Any differences in the rate are due to phase-space.
- Lepton flavour violation is unobservable in the SM at any conceivable experiment due to the small size of the neutrino mass.

Resonance structure

- See large resonant contributions from $c \bar{c}$ states at large dimuon masses.
- We can fit this with a Breit-Wigner ansatz (but only after assuming some q^{2} parameterisation for the nonresonant part) to extract magnitudes and relative phases.

i.e. use a shape

$$
\operatorname{phsp} \times\left(\left|\mathcal{A}_{\mathrm{V}}\left(m_{\mu \mu}\right)+\sum_{i} e^{i \phi_{i}} \mathcal{A}_{i}\left(m_{\mu \mu}, \mu_{i}, \Gamma_{i}\right)\right|^{2}+\left|\mathcal{A}_{A}\right|^{2}\right) f_{+}^{2}\left(m_{\mu \mu}\right)
$$

for narrow states this needs to be convoluted by our experimental resolution

Bremsstrahlung recovery

- Two big experimental differences between electrons/muons:
- Bremsstrahlung/FSR from the electrons.
- Typically require higher trigger thresholds for electrons than muons ($E_{T}>3 \mathrm{GeV}$ c.f. $\rho_{\tau}>1.76 \mathrm{GeV} / \mathrm{c}$ in 2012) and have a lower tracking efficiency.

- Bremsstrahlung causes migration of events in q^{2} and in reconstructed B mass.
- Recover clusters with $E_{T}>75 \mathrm{MeV} / \mathrm{c}^{2}$ to correct for Bremsstrahlung.

$B^{+} \rightarrow K+\ell+\ell-$ candidates

- Even after Bremsstrahlung recovery there are significant differences between dielectron and dimuon final states:

$B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}$angular analysis

- LHCb has performed the first full angular analysis of the decay.
- Perform an unbinned maximum likelihood fit to the $K \pi \mu^{+} \mu^{-}$mass and the three decay angles in bins of q^{2}.
- Simultaneously fit the $\mathrm{K} \pi$ mass to constrain contributions where the $K \pi$ is in an S-wave configuration.
- Model efficiency in four-dimensions:

Legendre polynomial of degree i.

- Use $B^{0} \rightarrow J / \psi K^{* 0}$ as a control channel to understand the acceptance of the detector.

$B^{0} \rightarrow K^{*} \mu^{+} \mu^{-}$example fit

$B_{(s, d)} \rightarrow \phi \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}$decay rate

- 7 form-factors.
- Enhancement at low q^{2} from virtual photon.
- Large tension between the SM prediction and the data at low $q^{2}(\sim 3 \sigma)$.

SM predictions based on
[Altmannshofer \& Straub, arXiv:1411.3161]
[LCSR form-factors from Bharucha,
Straub \& Zwicky, arXiv:1503.05534]

Reconstructed candidates

Select clean sample of signal events using multivariate classifier.
2398 ± 57 candidates in $0.1<q^{2}<19 \mathrm{GeV}^{2}$ after removing the J / ψ and $\psi(2 S)$.

$B_{S} \rightarrow \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}$combination

- Combining results from CMS and LHCb experiments from LHC run 1.
- Observe B_{s} signal and evidence for B^{0}.

Testing MFV

- Ratio of the rates of the two decays is a test of MFV which predicts:

$$
\mathcal{R}\left(B^{0} / B_{s}^{0}\right) \propto \frac{\left|V_{t d}\right|^{2}}{\left|V_{t s}\right|^{2}} \frac{f_{B^{0}}^{2}}{f_{B_{s}^{0}}^{2}}
$$

Data are consistent with SM/MFV

Effective theories

- In b-hadron decays there is a clear separation of scale.

$$
m_{W} \gg m_{b}>\Lambda_{\mathrm{QCD}}
$$

- We want to study the physics of the mixing/decay at or below a scale \wedge, in a theory in which contributions from particles at a scale below and above \wedge are present. Replace the full theory with an effective theory valid at \wedge,

$$
\left.\mathcal{L}\left(\phi_{\mathrm{L}}, \phi_{\mathrm{H}}\right) \rightarrow \mathcal{L}\left(\phi_{\mathrm{L}}\right)+\mathcal{L}_{\text {eff }}=\mathcal{L}\left(\phi_{\mathrm{L}}\right)+\sum_{i} C_{i} \mathcal{O}_{i}\left(\phi_{\mathrm{L}}\right) \lll \begin{array}{l}
\text { "Wilson" } \\
\text { coefficient }
\end{array}\right)
$$

Example: Fermi theory

- In the Fermi model of the weak interaction, the full electroweak Lagrangian (which was unknown at the time) is replaced by the lowenergy theory (QED) plus a single operator with an effective coupling constant.

At low energies:

$$
\mathcal{L}_{\mathrm{EW}} \rightarrow \mathcal{L}_{\mathrm{QED}}+\frac{G_{\mathrm{F}}}{\sqrt{2}}(\bar{u} d)(e \bar{\nu})
$$

$$
\lim _{q^{2} \rightarrow 0}\left(\frac{g^{2}}{m_{W}^{2}-q^{2}}\right)=\frac{g^{2}}{m_{W}^{2}}
$$

i.e. the full theory can be replaced by a 4fermion operator and a coupling constant, GF.

Angles of the triangle

Angle γ

- From interference between $b \rightarrow c \bar{u} s$ and $b \rightarrow u \bar{c} s$ transitions.
- Need the D^{0} and \bar{D}^{0} to decay to a common final state.

eg Atwood, Dunietz and Soni method using $D^{0} \rightarrow K^{+} \pi^{-}$
and $\bar{D}^{0} \rightarrow K^{+} \pi^{-}$. $D^{0} \rightarrow K^{+} \pi^{-}$
and $\bar{D}^{0} \rightarrow K^{+} \pi^{-}$.
[LHCb collaboration, PLB 760 (2016) 117]

Angle $\boldsymbol{\beta}$

- In B^{0} mixing, phase is

$$
\frac{q}{p}=\frac{V_{t b}^{*} V_{t d} V_{t b}^{*} V_{t d}}{\left|V_{t b}^{*} V_{t d} V_{t b}^{*} V_{t d}\right|}=e^{-2 i \beta}
$$

- Can be determined from the time-dependent $C P$ asymmetry in $b \rightarrow c \bar{c} s$ and $\bar{b} \rightarrow c \bar{c} \bar{s}$ decays to a common final-state (e.g. $J / \psi K_{\mathrm{S}}$).

Difference in time between the signal B decay and the decay

