Search for heavy resonances in vector boson scattering

Guangyi Zhang

University of Science and Technology of China & Institute of Physics, Academia Sinica, Taiwan

On behalf of the ATLAS Collaboration

XII Quark Confinement and the Hadron Spectrum Thessaloniki, Greece from August 29 to September 3, 2016

Vector boson scattering

W+W- scattering/fusion without a SM Higgs

W+W- scattering/fusion with a SM Higgs

$$M \propto M_H^2 \left(\frac{s}{s - M_H^2} + \frac{t}{t - M_H^2} \right)$$

Lee, Quigg, Thacker, PRD 16, 1519 (1977)

The unitarity can be restored by adding a Higgs scalar with exactly the SM HWW coupling

Motivation

- ➤ If the Higgs discovered at the LHC is not exactly the one predicted by SM, vector boson scattering/fusion will violate unitarity in TeV range.
- ➤ New resonances may be needed to restore unitarity in the scattering amplitude of longitudinal gauge bosons
- ➤ Vector boson fusion (VBF) processes could provide the best sensitivity to these resonances if they have weak or no coupling to fermions

Signal Feynman diagram

- $qq \rightarrow Rqq \rightarrow \ell^+ \nu \ell^- \bar{\nu} qq \ (\ell = e, \mu)$
- two charged leptons, E_T^{miss} , two forward jets
- large Δη_{jj} & m_{jj}

New resonances

Resonance properties

- ➤ Benchmark Model: resonance with K-matrix unitarization using EWChL
- ➤ New resonance only couples to the longitudinal component of the vector boson, not to fermions, and thus can only be produced by VBF processes

$$\Gamma_0 = g^2 m^3 / 64 \pi v^2$$

Type	Spin J	Isospin I	Electric Charge	Γ/Γ_0
σ	0	0	0	6
ϕ	0	2	, -, 0, +, ++	1
ho	1	1	-, 0, +	$\frac{4}{3} \left(\frac{v^2}{m^2} \right)$
f	2	0	0	$\frac{1}{5}$
t	2	2	, -, 0, +, ++	$\frac{1}{30}$

σ: scalar isoscalar

φ: scalar isotensor

ρ: vector isovector

f: tensor isoscalar

t: tensor isotensor

Analysis status

- For Run1, no official results from both ATLAS and CMS
- For Run2, a search is performed for the first time for neutral resonances above the Higgs boson mass in VBF (CONF note: ATLAS-CONF-2016-053)

Signal sample

> Signal definition:

- Signal (New resonance + interference)Using Whizard+Pythia8 to generate both samples
- ➤ EW samples are generated with g=2.5

 (g, coupling of new resonance to gauge bosons, the choice of g=2.5 is based on private discussions with theorists)
- 5 different resonance types (σ, φ, ρ, f and t) are generated with mass points from 200 to 500 GeV at 13 TeV

Signal Xsec vs. resonance mass

Data/MC samples

➤ Data samples:

• 25 ns data in 2015, Luminosity = 3.2 fb^{-1}

➤ MC samples:

- $t\bar{t}$: Powheg
- Wt: Powheg
- Z+jets: MadGraph (QCD) and Sherpa (EW)
- diboson: Sherpa (QCD) and Whizard (EW)
- Zγ: Sherpa
- ttV: MadGraph
- SM Higgs: Powheg (ggH and VBF)

➤ MC corrections:

- Lepton energy/momentum scale/resolution
- Lepton Reco/ID/Iso/Trig effSF
- Jet energy scale/resolution, b-tag effSF
- Pile-up reweighting

Object definitions

Electron:

- Kinematic cuts: $p_T > 25$ GeV, $|\eta| < 2.47$ (veto on $1.37 < |\eta| < 1.52$)
- Quality: track and parton shower shape requirements
- Isolated electron

➤ Muon:

- Kinematic cuts: $p_T > 25$ GeV, $|\eta| < 2.5$
- Quality: track and parton shower shape requirements
- Isolated muon

> Jet:

- Reconstructed using anti- k_t algorithm with a radius parameter of R = 0.4
- Kinematic cuts: $p_T > 30 \text{ GeV}$ (> 50 GeV if 2.5< $|\eta| < 4.5$), $|\eta| < 4.5$
- Pile-up removal
- b-jets: BDT tagger with 85% efficiency working point

$\succ E_T^{miss}$:

- Calculated using calibrated objects, track soft terms
- $E_T^{miss} > 30 \text{ GeV}$

Event selection

```
#
      Selection criteria
      event preselection requirements, see text
      exactly two leptons with p_{\rm T} > 25~{\rm GeV}
3
      pass single lepton trigger and trigger matching
4
      third lepton veto
      dilepton mass m_{\ell\ell} > 40 \text{ GeV}
5
6
      q_{\ell_1} \times q_{\ell_2} < 0
      |m_{\ell\ell} - m_Z| > 25 GeV in the ee and \mu\mu channels
      at least two selected jets with p_T > 30 (50) GeV and |\eta| < 2.5 (2.5 < |\eta| < 4.5)
8
9
      b-jet veto
      E_{\rm T}^{\rm miss} > 35 {\rm ~GeV}
10
11
      m_{ij} > 500 \text{ GeV}
     |\Delta \eta_{ij}| > 2.4
12
     \eta_{i_1} \times \eta_{i_2} < 0
13
      lepton centrality \zeta > -0.5
14
      f_{\rm recoil} < 2.0
15
```

Lepton centrality and f_{recoil}

\triangleright Lepton centrality ζ :

- $\zeta = min\{\eta_1^{jet} \eta_1^{\ell}, \eta_2^{\ell} \eta_2^{jet}\}$ where $\eta_1^{\ell} \ge \eta_2^{\ell}$ and $\eta_1^{jet} \ge \eta_2^{jet}$
- ζ in VBF topology tends to be positive
- To reduce the background from strong production of double vector boson processes $(\varsigma > -0.5)$

> f_{recoil}:

•
$$f_{\text{recoil}} = \frac{\left|\sum_{\text{soft jets}} \text{JVT}_j \cdot \vec{p}_{\text{T}}^{j}\right|}{p_{\text{T}}^{\ell\ell}}$$

- Measures the strength of the recoil system relative to the dilepton system
- Useful to reject the $\mathbb{Z}/\gamma^* \to \ell \ell$ background
- $f_{recoil} < 2$

Background estimations

Validation regions

➤ Dominant background sources :

• For ee/ $\mu\mu$ channel: Z+jets & $t\bar{t}$

• For e μ channel: $t\bar{t}$

> Definitions of validation regions :

• The selection criteria listed on slide 8 is assumed unless otherwise specified

Region	Purpose	Requirements
Z+jets VR	Validate Z +jets background modelling	no m_{jj} cut,
		$ m_{\ell\ell} - m_Z < 25 \text{ GeV (only } ee \text{ and } \mu\mu \text{ channels)}$
$t\bar{t}$ VR	Validate $t\bar{t}$ background modelling	no m_{jj} cut,
		at least one b -tagged jet
$low-m_{jj} VR$	Validate low-mass background estimation	$m_{jj} < 500 \text{ GeV}$

> Z pT reweighting for the Z+jets prediction:

- Some discrepancy is found between data & MC prediction for the Z pT distribution
- A reweighting function is derived to correct the MC prediction
- This reweighting function used in both VRs and SR

Data vs. predictions in the Z+jets VR

> Z+jets validation region:

• No $m_{ij} > 500$ GeV cut, $|m_{\ell\ell}-m_Z| < 25$ GeV, based on all selections on slide 8

Z+jets VR	ee	$\mu\mu$
Z+jets	$808 \pm 13 \pm 337$	$1686 \pm 20 \pm 721$
$tar{t}$	$17.2 \pm 0.7 \pm 4.5$	$25.5 \pm 0.9 \pm 6.2$
Wt	$1.6 \pm 0.2 \pm 0.5$	$2.5 \pm 0.2 \pm 0.5$
${ m diboson_QCD}$	$14.2 \pm 1.4 \pm 2.6$	$20.9 \pm 1.7 \pm 5.4$
${ m diboson_EW}$	$0.7 \pm 0.0 \pm 0.1$	$0.9 \pm 0.1 \pm 0.1$
$Z\gamma$	$29.0 \pm 0.9 \pm 8.4$	$48.5 \pm 1.2 \pm 15.2$
Higgs	$0.1 \pm 0.0 \pm 0.3$	$0.1 \pm 0.0 \pm 0.0$
ttV	$0.1 \pm 0.0 \pm 0.0$	$0.1 \pm 0.0 \pm 0.0$
fake-lepton	$6.9 \pm 2.9 \pm 1.6$	$0.0 \pm 0.0 \pm 0.0$
Total background	$878 \pm 13 \pm 347$	$1784 \pm 20 \pm 741$
Data	804	1630

Reasonable agreement of data and the SM prediction is observed.

Data vs. predictions in the $t\bar{t}$ VR

$\rightarrow t\bar{t}$ validation region:

• No $m_{ij} > 500$ GeV cut, at least one b-tagged jet, based on all selections on slide 8

$\overline{t\bar{t}} VR$	ee	$\mu\mu$	$e\mu$
Z+jets	$14.1 \pm 1.1 \pm 5.6$	$24.6 \pm 2.0 \pm 8.7$	$2.8 \pm 0.5 \pm 1.4$
$tar{t}$	$247 \pm 3 \pm 24$	$364 \pm 3 \pm 35$	$954 \pm 5 \pm 92$
Wt	$17.8 \pm 0.6 \pm 2.0$	$26.7 \pm 0.8 \pm 2.7$	$64.6 \pm 1.2 \pm 7.4$
${ m diboson_QCD}$	$1.6 \pm 0.2 \pm 0.4$	$2.1 \pm 0.2 \pm 0.5$	$4.6 \pm 0.2 \pm 1.0$
${\it diboson_EW}$	$0.2 \pm 0.0 \pm 0.0$	$0.2 \pm 0.0 \pm 0.1$	$0.7 \pm 0.0 \pm 0.2$
$Z\gamma$	$1.5 \pm 0.2 \pm 0.7$	$1.8 \pm 0.2 \pm 1.0$	$0.0 \pm 0.0 \pm 0.2$
Higgs	$0.1 \pm 0.0 \pm 0.0$	$0.1 \pm 0.0 \pm 0.0$	$0.2 \pm 0.0 \pm 0.1$
ttV	$0.3 \pm 0.0 \pm 0.0$	$0.4 \pm 0.0 \pm 0.1$	$0.9 \pm 0.0 \pm 0.1$
fake-lepton	$4.0 \pm 1.7 \pm 0.5$	$0.0 \pm 0.0 \pm 0.0$	$2.2 \pm 2.0 \pm 0.3$
Total background	$287 \pm 3 \pm 29$	$420 \pm 4 \pm 40$	$1030 \pm 6 \pm 98$
Data	279	444	1042

Reasonable agreement of data and the SM prediction is observed.

Data vs. predictions in the low-m_{ii} VR

- ➤ low-m_{ii} validation region:
 - m_{ii} <500 GeV, based on all selections on slide 8

$\overline{\text{low-}m_{jj} \text{ VR}}$	ee	$\mu\mu$	$e\mu$
Z+jets	$30 \pm 2 \pm 13$	$58 \pm 3 \pm 24$	$7 \pm 1 \pm 2$
$t ar{t}$	$21 \pm 1 \pm 5$	$30 \pm 1 \pm 8$	$73 \pm 1 \pm 19$
Wt	$2.4 \pm 0.2 \pm 0.6$	$2.9 \pm 0.3 \pm 0.7$	$6.8 \pm 0.4 \pm 1.6$
${ m diboson_QCD}$	$3.3 \pm 0.3 \pm 0.4$	$5.2 \pm 0.3 \pm 0.5$	$13.4 \pm 0.4 \pm 1.7$
${ m diboson_EW}$	$0.0 \pm 0.0 \pm 0.1$	$0.3 \pm 0.0 \pm 0.1$	$0.6 \pm 0.0 \pm 0.1$
$Z\gamma$	$4.3 \pm 0.4 \pm 1.4$	$7.1 \pm 0.5 \pm 2.5$	$0.1 \pm 0.1 \pm 0.1$
Higgs	$0.1 \pm 0.0 \pm 0.0$	$0.3 \pm 0.0 \pm 0.1$	$0.5 \pm 0.0 \pm 0.0$
ttV	$0.0 \pm 0.0 \pm 0.0$	$0.0 \pm 0.0 \pm 0.0$	$0.1 \pm 0.0 \pm 0.0$
fake-lepton	$3.2 \pm 1.0 \pm 0.1$	$0.0 \pm 0.0 \pm 0.0$	$1.2 \pm 0.7 \pm 0.1$
Total background	$64 \pm 3 \pm 17$	$103 \pm 3 \pm 29$	$103 \pm 2 \pm 21$
Data	51	95	118

Reasonable agreement of data and the SM prediction is observed.

Signal region

> Signal region:

• Based on all selections on slide 8

	ee	$\mu\mu$	$e\mu$
Z+jets	$17.6 \pm 1.2 \pm 11.6$	$36.6 \pm 2.3 \pm 19.0$	$6.7 \pm 1.2 \pm 1.7$
$tar{t}$	$12.1 \pm 0.6 \pm 3.2$	$18.2 \pm 0.7 \pm 4.6$	$46.9 \pm 1.2 \pm 12.1$
Wt	$1.2 \pm 0.2 \pm 0.3$	$1.5 \pm 0.2 \pm 0.5$	$3.1 \pm 0.3 \pm 0.8$
${ m diboson_QCD}$	$3.1 \pm 0.3 \pm 0.5$	$4.2 \pm 0.3 \pm 0.7$	$10.2 \pm 0.3 \pm 1.6$
${ m diboson_EW}$	$1.2 \pm 0.1 \pm 0.1$	$1.7 \pm 0.1 \pm 0.2$	$3.6 \pm 0.1 \pm 0.4$
$Z\gamma$	$2.1 \pm 0.3 \pm 0.6$	$3.8 \pm 0.3 \pm 0.7$	$0.1 \pm 0.0 \pm 0.1$
Higgs	$0.3 \pm 0.0 \pm 0.1$	$0.4 \pm 0.0 \pm 0.1$	$0.8 \pm 0.0 \pm 0.1$
ttV	$0.0 \pm 0.0 \pm 0.0$	$0.0 \pm 0.0 \pm 0.0$	$0.1 \pm 0.0 \pm 0.0$
fake-lepton	$0.6 \pm 0.6 \pm 0.1$	$0.0 \pm 0.0 \pm 0.0$	$1.3 \pm 0.7 \pm 0.1$
$\sigma \ (m = 300 \text{ GeV})$	$5.1 \pm 0.3 \pm 0.6$	$7.5 \pm 0.3 \pm 0.9$	$14.4 \pm 0.4 \pm 1.9$
$\phi \ (m = 300 \ \text{GeV})$	$0.3 \pm 0.1 \pm 0.2$	$1.0 \pm 0.1 \pm 0.4$	$1.6 \pm 0.2 \pm 0.4$
$\rho \ (m = 300 \text{ GeV})$	$8.0 \pm 0.4 \pm 1.6$	$11.7 \pm 0.4 \pm 1.4$	$24.1 \pm 0.6 \pm 3.1$
$f\ (m = 300\ \text{GeV})$	$15.6 \pm 0.6 \pm 1.9$	$22.6 \pm 0.8 \pm 1.9$	$50.4 \pm 1.2 \pm 3.8$
$t \ (m = 300 \text{ GeV})$	$3.3 \pm 0.2 \pm 0.4$	$4.7 \pm 0.2 \pm 0.6$	$6.9 \pm 0.3 \pm 1.1$
Total background	$38.2 \pm 1.6 \pm 13.9$	$66.4 \pm 2.5 \pm 21.6$	$72.6 \pm 1.9 \pm 14.8$
Data	40	74	86
	<u> </u>		

No significant excess above the SM background expectation is observed.

Data vs. predictions in the signal region

 M_{τ}^{WW} [GeV]

eµ-channel

μμ-channel

-- Due to two neutrinos in the final state, M_T^{WW} is a useful discriminating variable:

$$(M_{\rm T}^{WW})^2 = (P_{\ell_1} + P_{\ell_2} + P^{\rm miss})(P_{\ell_1} + P_{\ell_2} + P^{\rm miss})$$

-- No significant excess beyond the SM background predication is found

Systematic uncertainties

> Experimental uncertainties(%) on the backgrounds in the signal region:

Source	ee	$\mu\mu$	$e\mu$
JES and JER	33%	29%	12%
b-tagging	8%	7%	16%
$E_T^{\mathrm miss}$ modelling	7%	6%	1%
Lepton	3.1%	2.2%	1.5%
Trigger	0.1%	0.5%	0.5%
Matrix method	0.2%	0.0%	0.1%
Z boson p_{T} reweighting	0.5%	0.4%	0.0%
MC statistics	4.1%	3.7%	2.6%
Luminosity	2.1%	2.1%	2.1%
Total experimental uncertainty	35%	31%	20%

- \triangleright Experimental uncertainties on the signal are considered (JES/JER, b-tagging, E_T^{miss} modelling, Lepton, Trigger, Luminosity)
- Theoretical uncertainties on the production Xsec of the backgrounds and additional shape systematic uncertainties for the two dominant background (Z+jets, $t\bar{t}$) are included.

95% CL upper limits I

- ➤ No significant excess above the SM background expectation is observed.
- > 95% CL upper limits are derived on the production cross section times branching ratio for five new resonances (σ , φ , ρ , f and t).
- ➤ The asymptotic approximation is used to compute 95% CL upper limits based on a common statistical framework "Resonance Finder".
- ➤ Number counting (1 bin) as inputs to set limit due to limited signal statistics.

95% CL upper limits II

Summary

- A search for a heavy neutral resonance in vector boson fusion using 3.2 fb⁻¹ of data at $\sqrt{s} = 13$ TeV recorded by the ATLAS detector was presented:
 - Presented Z+jets, $t\bar{t}$ and low-m_{jj} validation regions, and reasonable agreement of data and SM prediction observed.
 - No significant excess above the SM background expectation is observed in signal region.
 - First sets of limits are obtained on the production cross section times branching ratio of five types of new resonances $(\sigma, \varphi, \rho, f, t)$.
 - CONF note: ATLAS-CONF-2016-053