

XII Quark Confinement and the Hadron Spectrum

Physics of FAIR

Klaus Peters GSI / U Frankfurt

Thessaloniki, Sept 3, 2016

Complexity Frontier

LEONARDO DA VINCI (1452 - 1519)

Intensity Frontier

Energy Frontier

Precision Frontier

Complexity

Discovery of the X(3872)

2003

hep-ex/0312021

hep-ex/0405004

X(3872)

^{2.9} ³ ^{3.1} ^{3.2} ^{3.3} M_{µ⁺µ} (GeV/c²)

10 MeV

Candidates /

ο 0.7 0.8 0.9 1 M_{μ*μ'π*π} - M_{μ*μ}. (GeV/c²)

$Z_{c}(402x)$ – another new charged object

2013++

And even more Z's

FAIR @ Darmstadt

FAIR @ Darmstadt

FAIR Experiments

NUSTAR @ FAIR: physics of the nuclei

- How Are Elements Made ?
- Structure of exotic nuclei far off stability ?
- Nuclear synthesis in stars and star explosions
- Fundamental interactions and symmetries

NUSTAR @ FAIR: Day-1

NUSTAR @ FAIR: Installations

APPA @ FAIR

FACILITY CAPABILITY

Highest Charge States Relativistic Energies High Intensities High Charge at Low Velocity Low-Energy Anti-Protons

SCIENTIFIC CAPABILITY

Extreme Static Fields Extreme Dynamical Fields and Ultrashort Pulses Very High Energy Densities and Pressures Large Energy Deposition Antimatter Research

Atomic Physics		Plasma	Materials	Bio
	e ⁻ He ⁺⁺ p			
SPARC	FLAIR	PP@FAIR	MAT/BIOMAT	BIO/BIOMAT
strong field	antimatter	extreme states of	radiation effects	space travel & therapy
research probing of fundamental	matter / anti- matter symmetry	matter states of matter common	degradation and nanostructuring of materials	cosmic radiation risk and theranostics

APPA @ FAIR: Installations

Plasmas

APPA – Day 1 (some examples)

BIOMAT (Biophysics and Materials Research)

- Materials under extreme conditions (pressure, heat, irradiation)
- Radiation shielding of cosmic radiation

Day-1 experiments

- Sample irradiation at APPA cave using high pressure cells
- Irradiation of biological samples at APPA cave

HEDgeHOB/WDM (Plasma Physics)

- Phase transitions shocked/compressed matter
- Opacity measurements of Warm Dense Matter
 - **Day-1 experiments**
 - Proton microscopy of shocked/compressed materials at APPA cave
 - Opacity changes from Cold- to Warm Dense-Matter at APPA cave

SPARC (Atomic Physics)

- Precision test of QED in the strong field domain ($\alpha Z \approx 1$)
- Model independent determination of nuclear parameter Day-1 experiments
 - Ion channeling at APPA cave
 - Laser spectroscopy at HESR (fine-structure) and at CRYRING (hyperfine)

CBM: Exploring the phases of nuclear matter

Nuclear Equation-of-state at high density Search for phase transitions Search for the QCD critical endpoint Study chiral symmetry restoration and the origin of the hadron mass

þ. Ξ. Ω

Observables

tharm

thermal Y

- HADES: p+p, p+A, A+A small collision systems
- CBM: p+A, A+A all collision systems

Observables:

Excitation function of yields and phase-space distributions of multi-strange hyperons and lepton pairs in Au+Au collisions from 2-11 A GeV (no data available in this energy range).

PANDA @ FAIR: Detector

Antiproton annihilations: gluon rich environment

Production: all states with exotic and non-exotic quantum numbers accessible with a recoil

- high discovery potential

Associated, access to all quantum numbers (exotic)

Formation: all states with non-exotic quantum numbers accessible

- not only limited to 1⁻⁻ as e⁺e⁻ colliders
- precision physics of known states

Resonant, high statistics, extremely good precision in mass and width

antiproton probe is unique

PANDA unique: comparison with other techniques

- **e**⁺**e**⁻ (BaBar, BES-III, CLEO-C, Belle II)
 - Direct formation limited to $J^{PC}=1^{-1}$
 - Sub-MeV for masses and widths close to impossible
 - High L not accessible
- High-energy (several TeV) hadroproduction (LHC)
 - High combinatorial background: discovery very difficult
 - Width measurements limited by detector resolution
- **B-decays** (both for e⁺e⁻ and hadroproduction)
 - Limited J^{PC}
 - C cannot be determined (not conserved in weak decay)
 - High L not accessible

HESR – Storage Ring for Antiprotons

Precision spectroscopy with \overline{p} beams

Parameters of HESR

- Injection of p at 3.7 GeV
- Slow synchrotron (1.5-14.5 GeV/c)
- Storage ring for internal target operation
 Luminosity up to L~ 2x10³² cm⁻²s⁻¹
- Beam cooling (stochastic & electron)

Resonance scan

- Energy resolution $\sim 50 \text{ keV}$
- Tune E_{CM} to probe resonance
- Get precise mass and width

Accessible Charmed Hadrons at PANDA

Light Mesons in Antiproton Annihilations at PANDA

- Light meson production in $\overline{p}p$ is huge 100 nb 10 μb
- Neutral states with m>2.25 GeV/c² accessible in pp formation, charged states in pn (or in production)
- Unfortunately many overlapping broad states amplitude analysis needed

Example Y(2175)

- $\bar{p}p \to Y(2175)\pi\pi, Y(2175)\pi^0$ at E_{CMS} = 3 GeV
 - Y(2175) reconstructed in $\Phi\pi^{+}\pi^{-}$ and $\Phi\pi^{0}\pi^{0}$
 - assumed signal cross section: 100 nb
 - background cross section: 70 mb

Beam-time to record 1000 reconstructed events in the $\Phi\pi^+\pi^-\pi^0$ decay mode

	$f_{BR} = 5 \%$	$f_{BR} = 10 \%$	$f_{BR} = 30 \%$
$L = 2 \cdot 10^{30}$	99.5 d	24.9 d	2.8 d
$L = 2 \cdot 10^{31}$	9.95 d	2.49 d	0.28 h
$L = 2 \cdot 10^{32}$	0.995 d	(0.249 d)	0.028 h

Glueball studies in PANDA

- Study of glueball production in K⁺K⁻ π^{0} , K⁺K⁻ $\pi^{0}\pi^{0}$, and $\Phi\Phi\pi^{0}$
 - assuming cross section of 10 nb (including decay to final state)
 - background cross sections 50 to 80 mb
- "Light" glueball m = 2400 MeV/c² (could be 2⁺⁺ or 0⁻⁺)
 - E_{CMS} = 2.57 GeV and 5.47 GeV
 - could be broad, study final states w/o intermediate resonances
- "Heavy" glueball m = 3900 MeV/c²
 - E_{CMS} = 5.47 GeV
 - could be narrow, assume Γ=10 MeV
 - search for narrow signal in production followed by detailed studies in formation [unique at PANDA]

Morningstar und Peardon, PRD60 (1999) 034509 Morningstar und Peardon, PRD56 (1997) 4043

Benchmark pp→ \$

(Virtual) photon in intermediate state

Crossing symmetry: different kinematical regions, observables are counterparts

PANDA: Excellent tool for nucleon structure studies complementary to electron or photon experiments

Feasibility study for the measurement of many electromagnetic processes at PANDA are done

Signal	Physics	s [Gev²]	S/B	Status	
$\overline{p}p \rightarrow e^+e^-$	FFs	5.4, 8.2, 13.9	>100	Feasibile	
$\overline{p}p \to \mu^+ \mu^-$	FFs	5.4	1⁄4	Feasibile	
$\overline{p}p \to \gamma^* \pi^0$	TDAs	5.0 10.0	5 . 10 ⁷ (1 . 10 ⁷) 1 . 10 ⁸ (6 . 10 ⁶)	Feasibile	
$\overline{p}p \to J /\psi\pi^0$	TDAs	P=5.513 P=8.0 P=12.0	>8 >70 >600	Feasibile	
$\frac{\overline{p}p \to \gamma\gamma}{\overline{p}p \to \pi^{0}\gamma}$	GDAs	2.5, 3.5, 4.0, 5.5	1 2	Feasibile	
$\overline{p}p \to \mu^+ \mu^- X$	TMD PDFs	30	in progress	Feasibile	

Example: e.m. Form factors of the Nucleon

Time-like proton form factors from PANDA

PANDA can fill the gap in the s-baryon sector

Excited strange Hyperon spectrum

- SU(6) x O(3) classification (spin, flavour and L)
- Very scarce data bank on double and triple strangeness
- Octet ± partners of N*?
 - Only a few found
- Decuplet Ξ* and Ω* partners of Δ*?
 - Nothing found

	(D,L^P_N)	S		Octet n	nembers		Singlets
+	$(56,0^+_0)$	1/2	N(939)	A(1116)	S (1193)	E(1318)	
+	$(56,0^+_2)$	1/2	N(1440)	A(1600)	S (1660)	E(?)	
-	$(70,1_{1}^{-})$	1/2	N(1535)	A(1670)	$\Sigma(1620)$	Ξ(?)	A(1405)
3/2-	$(70,1_{1}^{-})$	1/2	N(1520)	A(1690)	S (1670)	E(1820)	A(1520)
1/2-	$(70,1_{1}^{-})$	3/2	N(1650)	A(1800)	S (1750)	Ξ(?)	
3/2-	$(70,1_{1}^{-})$	3/2	N(1700)	A(?)	E(?)	E(?)	
5/2-	(70,11)	3/2	N(1675)	A(1830)	E(1775)	三(?)	
1/2+	$(70,0^+_2)$	1/2	N(1710)	A(1810)	S (1880)	E(?)	A(?)
3/2+	$(56,2^+_2)$	1/2	N(1720)	A(1890)	S (?)	Ξ(?)	
5/2+	$(56,2^+_2)$	1/2	N(1680)	A(1820)	S (1915)	E(2030)	
7/2-	$(70, 3^{-}_{3})$	1/2	N(2190)	A(?)	$\Sigma(?)$	E(?)	A(2100)
9/2-	$(70, 3^{-}_{3})$	3/2	N(2250)	A(?)	$\Sigma(?)$	E(?)	10 U
9/2+	$(56, 4^+_4)$	1/2	N(2220)	A(2350)	$\Sigma(?)$	三(?)	
			[Decuplet	members]	
3/2+	$(56,0^+_0)$	3/2	∆(1232)	Σ(1385)	Ξ(1530)	Ω(1672)	
3/2+	$(56,0^+_2)$	3/2	Δ(1600)	 <i>S</i> (?)	5(?)	Ω(?)	
1/2-	$(70,1_{1}^{-})$	1/2	∆(1620)	S (?)	E(?)	 <i>Ω</i> (?)	
3/2-	$(70,1_{1}^{-})$	1/2	A(1700)	£(?)	E(?)	 <i>Ω</i> (?)	
5/2+	$(56,2^+_2)$	3/2	∆(1905)	S (?)	E(?)	Ω(?)	
7/2+	$(56,2^+_2)$	3/2	A(1950)	£(2030)	E(?)	\$\$(?)	
11/2+	(56,4+)	3/2	∆(2420)	E(?)	5(?)	\$ (?)	

the full Ξ and Ω spectra are accessible with PANDA

Spin observables in hyperon decay

- Vector polarisation P the most straight-forward observable for spin $\frac{1}{2}$ hyperons.
- Strong interactions: normal to the production plane (y-direction)

Hypernuclear Physics @ PANDA

minimum 8 months full running

Key-Experiments of the first phase

Concentration on unique and forefront physics topics

- Precise measurement of the line shape of narrow XYZ-states, e.g. X(3872) (only in pp, counting experiment, → nature of the states)
- Resonant formation of the negative and uncharged partners of the Z-States

(only possible in proton–antiproton, \rightarrow nature of the states)

Key-Experiments of the first phase

Concentration on unique and forefront physics topics

- Precise measurement of the line shape of narrow XYZ-states, e.g. X(3872) (only in pp, counting experiment, → nature of the states)
- Resonant formation of the negative and uncharged partners of the Z-States
 (only possible in proton–antiproton, → nature of the states)
- (Parasitic) production of multi-strangeness baryons (unexplored, new territory, "Strangeness-Factory")
- Parasitic production of high spin charmonia (only possible in protonantiproton) light mesons, baryons and production of hybrids und glueballs
- Measurement of the electromagnetic form factors of the proton in the time-like domain with electrons and muons in the final state

XYZ- and hyperon factory

Klaus Peters - Physics of FAIR

Planning Activities

Piling works finished in 2014

- All four FAIR Collaborations have re-assessed their experimental programme and instrumentation in view of
 - Progress in science,

the changed timeline

and availability of funding

- The programme for day-one experiments starting in 2022 has been developed
 - Prioritising for max. scientific merit and concentrating on the initially required equipment

The Modularised Start Version (MSV)

High Level Schedule of the MSV

- Despite of certain delays FAIR is progressing well.
- Rich scientific program and discovery potential already with completion of Modularized Start Version.
- FAIR will allow for unique measurements in many fields and remain competitive for decades.
- Versatile detector configurations for optimal performance are under construction.
- Day-one physics with start version for high interaction rates in preparation.
- Strong and experienced international collaborations are active, more scientists expected to join in the coming years.

