Future of heavy-ion program at the LHC

Wei Li (Rice University)

Many thanks to Pasquale Di Nezza, Laure Marie Massacrier
Heavy-ion experiments at the LHC

HI program at the LHC expanded significantly beyond the originally planned scope of four experiments taking data and producing highly competitive results.

Design: PbPb at $\sqrt{s_{NN}} = 5.5$ TeV (4 weeks per year)
Complementarity!
Heavy-ion physics at the LHC

We have discovered a strongly-coupled QGP, which shows striking behavior as a nearly perfect fluid. But we still know little about: why it flows and what is flowing?

Approach: probing the QGP with multitude of probes at the LHC.
Heavy Ions at Run 1 + 2015

Integrated NN luminosity

<table>
<thead>
<tr>
<th>Year</th>
<th>System</th>
<th>$\sqrt{s_{NN}}$ (TeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>PbPb</td>
<td>2.76</td>
</tr>
<tr>
<td>2011</td>
<td>pp</td>
<td>2.76</td>
</tr>
<tr>
<td>2011</td>
<td>PbPb</td>
<td>2.76</td>
</tr>
<tr>
<td>2013</td>
<td>pPb</td>
<td>5.02</td>
</tr>
<tr>
<td>2013</td>
<td>pp</td>
<td>2.76</td>
</tr>
<tr>
<td>2015</td>
<td>PbPb</td>
<td>5.02</td>
</tr>
<tr>
<td>2015</td>
<td>pp</td>
<td>5.02</td>
</tr>
</tbody>
</table>

$\sim 0.7 \text{ nb}^{-1}$ for PbPb
Future

LS2:
- ALICE major upgrades
- LHCb major upgrades
- CMS/ATLAS Phase 1 upgrade

Future:
- Run 2
- Run 3
- Run 4

Ultimate goal:
- PbPb $L_{int} \sim 10 \text{ nb}^{-1}$
- Peak interaction rate: $\sim 50 \text{ kHz}$
ALICE future upgrade strategy

High precision measurements of rare probes from low to high p_T scale, with focus on heavy flavors

Detector capabilities requirements:
• Excellent tracking resolution at low p_T
• High statistics \Rightarrow High readout rate
• Excellent PID capability

Major upgrades planned during LS2 (2019-2020)
Quantifying the QGP – heavy flavor

Open heavy flavor: collective flow to probe early thermalization

Not as easy to trigger on at low and intermediate p_T
ALICE upgrade

- New Inner Tracking System (ITS)
- TPC with GEM based readout
- Improved readout for TOF, ZDC, TRD, MUON ARM
- New Central Trigger Processor
- New DAQ/Offline architecture
- New Muon Forward Tracker (MFT)
ALICE TPC upgrade

Upgrade objective:

Continuous readout of PbPb events at 50kHz

Currently limited at 3.5kHz mainly due to ion back flow (IBF)

New GEM readout
Low-mass dileptons with upgraded TPC

Current rate capability

![Graph showing the current rate capability with PbPb events at \(S_{NN} = 5.5 \text{ TeV} \), 0 - 10%, 2.5E7 events. Legend includes contributions from various processes: Sum, Rapp in-medium SF, Rapp QGP, cocktail w/o \(\rho \) (± 10%), \(c\bar{c} \rightarrow ee \) (± 20%), and 2.5E7 'measured'. Syst. err. bkg. (± 0.25%).]

Upgraded rate capability

![Graph showing the upgraded rate capability with PbPb events at \(S_{NN} = 5.5 \text{ TeV} \), 0 - 10%, 2.5E9 events. Legend includes contributions from various processes: Sum, Rapp in-medium SF, Rapp QGP, cocktail w/o \(\rho \) (± 10%), \(c\bar{c} \rightarrow ee \) (± 20%), and 2.5E9 'measured'. Syst. err. bkg. (± 0.25%).]
ALICE ITS upgrade

<table>
<thead>
<tr>
<th></th>
<th>ITS</th>
<th>ITS UPGRADE</th>
</tr>
</thead>
<tbody>
<tr>
<td># layers</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Rapidity coverage</td>
<td>$</td>
<td>\eta</td>
</tr>
<tr>
<td>r_{min}</td>
<td>3.9 cm</td>
<td>2.3 cm</td>
</tr>
<tr>
<td>Material budget per layer</td>
<td>1.1% X_0</td>
<td>0.3 - 1% X_0</td>
</tr>
</tbody>
</table>
| Spatial resolution | 12 x 100 μm2
 | 35 x 20 μm2
 | 20 x 830 μm2 | 5 x 5 μm2 |
| Max Pb-Pb readout rate | 1 kHz | 100 kHz |

Higher rate and resolution!
ALICE ITS upgrade

Higher rate and resolution!

<table>
<thead>
<tr>
<th></th>
<th>ITS</th>
<th>ITS UPGRADE</th>
</tr>
</thead>
<tbody>
<tr>
<td># layers</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Rapidity coverage</td>
<td>$</td>
<td>\eta</td>
</tr>
<tr>
<td>r_{min}</td>
<td>3.9 cm</td>
<td>2.3 cm</td>
</tr>
<tr>
<td>Material budget per layer</td>
<td>1.1% X_0</td>
<td>0.3 - 1% X_0</td>
</tr>
</tbody>
</table>
| Spatial resolution | $12 \times 100 \, \mu m^2$
| | $35 \times 20 \, \mu m^2$
| | $20 \times 830 \, \mu m^2$ | $\sim 5 \times 5 \, \mu m^2$ |
| Max Pb-Pb readout rate| 1 kHz | 100 kHz |
Heavy flavor physics with upgraded ALICE

Current

Upgraded

Precision studies of c and b down to $p_T \sim 0$ GeV/c
Heavy flavor physics with upgraded ALICE

Data-driven separation of prompt vs non-prompt D^0

Direct reconstruction of B with non-prompt J/ψ
Heavy flavor physics with upgraded ALICE

Higher s abundance in QGP

\Rightarrow D_s enhanced if from in-medium hadronization

First time in PbPb!

Hadronization via thermal vs coalescence?
CMS/ATLAS strategy

Focusing on

✧ high statistics, very high p_T hard probes
✧ Large acceptance \Rightarrow long-range correlations
✧ Flexible trigger capability \Rightarrow rare events

<table>
<thead>
<tr>
<th></th>
<th>Run 1</th>
<th>Run 3+4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2010–2011 2.76 TeV 160 μb$^{-1}$</td>
<td>HL-LHC 5.5 TeV 10 nb$^{-1}$</td>
</tr>
<tr>
<td>Jet p_T reach (GeV/c)</td>
<td>\sim 300</td>
<td>\sim 1000</td>
</tr>
<tr>
<td>Dijet ($p_{T,1} > 120$ GeV/c)</td>
<td>50k</td>
<td>\sim 10M</td>
</tr>
<tr>
<td>b-jet ($p_T > 120$ GeV/c)</td>
<td>\sim 500</td>
<td>\sim 140k</td>
</tr>
<tr>
<td>Isolated γ ($p_T^{\gamma} > 60$ GeV/c)</td>
<td>\sim 1.5k</td>
<td>\sim 300k</td>
</tr>
<tr>
<td>Isolated γ ($p_T^{\gamma} > 120$ GeV/c)</td>
<td>$-$</td>
<td>\sim 10k</td>
</tr>
<tr>
<td>W ($p_T^W > 50$ GeV/c)</td>
<td>\sim 350</td>
<td>\sim 70k</td>
</tr>
<tr>
<td>Z ($p_T^Z > 50$ GeV/c)</td>
<td>\sim 35</td>
<td>\sim 7k</td>
</tr>
</tbody>
</table>

x60 L_{int} and x3 from \sqrt{s}
Quantifying the QGP – high-\(p_T\) hard probes

“Golden probes” of QGP

\(\gamma+\text{jet}\)

\(Z+\text{jet}\)

First look at run 1&2 for proof of principle
Quantifying the QGP – high-p_T hard probes

Statistical reach of 10 nb$^{-1}$
Phase I upgrades for ATLAS/CMS

Pixel detectors: add 1 measurement point
- ATLAS: Insertable Barrel Layer - 2015 (LS1)
- CMS: Full replacement - end 2016

Calorimeters: increase granularity for trigger
- ATLAS: new Front End in Liquid Argon (barrel & endcaps) - LS2 (2018)
- CMS: New photo-detectors for HF/HE/HB (also anomalous signal) - From 2015 to LS2

Muon systems: complete coverage - improve forward resolution for trigger
- ATLAS: coverage - 2015 New forward disks - LS2
- CMS: Complete coverage of CSCs and RPCs
 Increase CSC read-out granularity - 2015

Trigger/DAQ: improve bandwidth & processing
- ATLAS: New Back-End electronics - LS2
 and Fast Track Trigger (FTK) input at High Level Trigger - before LS2
Key Phase II Upgrades

Current at conceptual design and R&D level. Mainly driven by HL-LHC pp program.

- “Megaherz” DAQ
 - 1MHz readout rate for 150PU pp events
 - 100kHz readout rate for PbPb: entire event selection based on full reconstruction in the HLT

- Tracker Upgrade
 - 4 layer Pixel system, coverage: $|\eta|<2.4 \rightarrow |\eta|<4$
 - New SiStriptracker: fast readout necessary for the MHz DAQ

- High Granularity Calorimetry
 - Better handle on jet constituents
Heavy ion program at LHCb

First heavy ion run in 2013: $L_{\text{int}} \sim 1.6 \text{ nb}^{-1}$ for pPb

Collider mode

Fixed target mode

p \rightarrow Pb

$\sqrt{s_{NN}} = 8.2 \text{ TeV}$

p \rightarrow Gas (He, Ne, Ar...)

$\sqrt{s_{NN}} = 110 \text{ GeV}$

Pb \rightarrow Pb

$\sqrt{s_{NN}} = 5.0 \text{ TeV}$

Pb \rightarrow Gas (Ne, Ar)

$\sqrt{s_{NN}} = 69 \text{ GeV}$

LHCb preliminary 2015 pNe data

J/ψ

D0

entries / 16 MeV/c2

entries / 8 MeV/c2

$\mu^+ \mu^-$ invariant mass (MeV/c2)

π K invariant mass (MeV/c2)
Heavy ion program at LHCb

Participated in the PbPb run in 2015

Currently limited to peripheral (50-100%) events due to detector granularity

Plan to upgrade VERTex LOCator (silicon strips) at LS2 to improve granularity and reach full centrality for run 3-4
Summary

Era of precisely quantifying the sQGP at the LHC heavy ion programs

Successful run 1+2 HI program for all 4 experiments

Future upgrades on the way to bring exciting new opportunities of heavy-ion physics in the coming decade
Backup