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T. Lučivjanský1,2, N.V. Antonov3, M.M. Kostenko3, and
N.M. Gulitskiy3
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Introduction
Description of the Model

Field Theoretic Formulation
Passive Scalar Advection

Key objects

We will consider the passive advection of a scalar (impurity) field
by the turbulent flow.

In fact, we will apply quantum field theory techniques to the
problem of statistical physics.

Key points of the work:

◮ Turbulence – we work in the inertial range;
◮ Stochastic differntial equations – we model a turbulence via

random force, which brings energy to the system;
◮ Renormalization group – we use the quantum field theory

techniques;
◮ Objects of interest – we study inertial range asymptotic

behaviour of the correlation functions of composite operators.
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Stochastic differential equations and quantum field theory

Standart problem of stochastic dynamics:

∂tφ(x) = U(x , φ) + f (x),
〈
f (x)f (x ′)

〉
= D(x , x ′),

where φ(x) = φ(t, x) is a random field, U(x , φ) is a given t-local
functional, f (x) is a random force – with Gaussian distribution, zero
mean, and given pair correlator D.

Statement:

such stochastic differential equations are equivalent to the field theoretic
models with double number of fields φ̃ = {φ, φ′} and with actions
functional

S(φ̃) =
1

2

∫ ∫
dxdx ′φ′(x)D(x , x ′)φ′(x ′)

+

∫
dxφ′(x) [−∂tφ(x) + U(φ(x))] .
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Quantum field theory: What does it mean?

The formulation of original stochastic problem via quantum field
theory means:

◮ Statistical averages of random quantities in the stochastic
problem → functional averages with weight expS(φ̃);

◮ Correlation functions, response (on the external force)
functions → Green’s functions of the quantum field theory;

◮ We may use all techniques of quantum field theory: Feynman
diagrams, renormalization group, operator product expansion.
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Introduction
Description of the Model

Field Theoretic Formulation
Passive Scalar Advection

Stochastic differential equations
Fully developed turbulence

Quantum field theory: What does it mean?

The formulation of original stochastic problem via quantum field
theory means:

◮ Statistical averages of random quantities in the stochastic
problem → functional averages with weight expS(φ̃);

◮ Correlation functions, response (on the external force)
functions → Green’s functions of the quantum field theory;

◮ We may use all techniques of quantum field theory: Feynman
diagrams, renormalization group, operator product expansion.

N.M. Gulitskiy et al. Turbulent compressible fluid: Renormalization group analysis 4 / 27



Introduction
Description of the Model

Field Theoretic Formulation
Passive Scalar Advection

Stochastic differential equations
Fully developed turbulence

Quantum field theory: What does it mean?

The formulation of original stochastic problem via quantum field
theory means:

◮ Statistical averages of random quantities in the stochastic
problem → functional averages with weight expS(φ̃);

◮ Correlation functions, response (on the external force)
functions → Green’s functions of the quantum field theory;

◮ We may use all techniques of quantum field theory: Feynman
diagrams, renormalization group, operator product expansion.

N.M. Gulitskiy et al. Turbulent compressible fluid: Renormalization group analysis 4 / 27



Introduction
Description of the Model

Field Theoretic Formulation
Passive Scalar Advection

Stochastic differential equations
Fully developed turbulence

Fully developed turbulence

The turbulence is characterized by

◮ Cascades of energy;

◮ Scaling behaviour with universal “anomalous exponents”

◮ Intermittency.

The key parameters:

◮ W and L – power of the external source of energy and integral
(external) scale;

◮ ν and l – viscosity coefficient and dissipation (internal) scale.

Fully developed turbulence: Re ≫ 1 ⇒ L ≫ l ⇒
Inertial range l ≪ r ≪ L
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Kolmogorov–Obukhov theory

The equal-time structure functions

Sn(r) =
〈[
vr (t, x)− vr (t, x

′)
]n〉

,

where vr is the component of the velocity field along the direction
r = x− x′.

From the two Kolmogorov hypotesis (independence of L for L ≫ r

and independence of l for l ≪ r) it follows, that in the inertial range
l ≪ r ≪ L

Sn(r) = Cn (Wr)n/3

with exact exponents and universal amplitudes Cn.
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Anomalous scaling

Due to the imtermittency statistical properties of the velocity are
dominated by rare spatiotemporal configurations – the main contributions
are given by infrequent, but strong events.

This phenomenon is connected with the strong fluctuations of the
energy flux and leads to the violation of the classical K41 theory:

Sn(r) = (Wr)n/3 (r/L)γn

with [may be] singular dependence of L and an infinite set of “anomalous
exponents” γn.

The goal is to calculate γn within a regular expansion.

N.M. Gulitskiy et al. Turbulent compressible fluid: Renormalization group analysis 7 / 27
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Outline

We will consider the stochastic Navier-Stokes equation for a compressible
fluid. The task is divided into several steps:

◮ Definition of the model — stochastic differential equations;

◮ Field theoretic formulation, diagrammatic technique;

◮ Renormalization and fixed point, which defining the critical
dimensions of the fields and parameters.

◮ Passive scalar field advection, critical dimensions of composite
operators.
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Stochastic equation for a compressible fluid

The Navier-Stokes equation for a compressible fluid can be written
in the following form:

ρ[∂tv + (v ·∇)v] = ν0[∇
2v −∇(∇ · v)] + µ0∇(∇ · v) −∇p + f,

where ρ is the fluid density, v is the velocity field, ∂t is a time
derivative ∂/∂t,∇2 is the Laplace operator, ν0 and µ0 are molecular
viscosity coefficients, p is pressure field, and f is an external field per
unit mass.

Taking into account continuity equation and an equation of state
between deviations δp and δρ from the equilibrium values and introducing
scalar field φ = c20 ln(ρ/ρ) we obtain

N.M. Gulitskiy et al. Turbulent compressible fluid: Renormalization group analysis 9 / 27
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Stochastic equation for a compressible fluid

Set of equations:

(∂t + v ·∇)v = ν0[∇
2v −∇(∇ · v)] + µ0∇(∇ · v)−∇φ+ f;

(∂t + v ·∇)φ = −c20∂ivi .

Condition to the random force:

〈fi (t, x)fj (t ′, x′) =
δ(t − t ′)

(2π)d

∫

k>m

d
dk Dij(k)e

ik·(x−x′), where

Dij(k) = g10ν
3
0k

4−d−y

{
Pij(k) + αQij(k)

}
.

Here Pij(k) and Qij(k) are transverse and longitudinal projectors.

N.M. Gulitskiy et al. Turbulent compressible fluid: Renormalization group analysis 10 / 27
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Action Functional

Our stochastic problem is equivalent to the field theoretic model
of the extended set of four fields Φ = {φ, φ′, v, v′} with action
functional

S(ϕ) = v ′iD
f
ikv

′

k

2
+ v ′i

{
−∂tvi − vj∂jvi + ν0[δik∂

2 − ∂i∂k ]vk + u0ν0∂i∂kvk

+ φ′[−∂tφ+ vj∂jφ+ v0ν0∂
2φ− c2o (∂ivi)].

At d = 4 there appears an additional divergence, in the Green’s
function v ′v ′ ⇒ the kernel function has to be generalized:

Dij(k) → g10ν
3
0k

4−d−y

{
Pij(k) + αQij (k)

}
+g20ν

3
0δij ,

where the new term absorbs divergent contributions from v ′v ′.
N.M. Gulitskiy et al. Turbulent compressible fluid: Renormalization group analysis 11 / 27
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Feynmam diagrammatic technique

v v
′ v v

φ v
′ v φ′

φ φ′ φ φ

v φ
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Renormalization constants

Γv ′v = iω − (δijp
2 − pipj)Z1ν − pipjZ2uν + ,

Γφφ′ = iω − p2Z3vν + ,

Γv ′φ = −iZ4pi + ,

Γφ′v = −iZ5pic
2 + + +

+ .

N.M. Gulitskiy et al. Turbulent compressible fluid: Renormalization group analysis 13 / 27
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Renormalization constants

Γv ′v ′ = g1ν
3p4−d−yZ6

{
Pij(p) + αQij (p)

}
+g2ν

3δijZ7+

+
1

2
.

From the relations between renormalized parameters it follows that

Zν = Z1, Zg1 = Z−3
1 , Zu = Z2Z

−1
1 , Zφ = Z4,

Zφ′ = Z−1
4 , Zv = Z3Z

−1
1 , Zc = (Z4Z5)

1/2, Zg2 = Z6Z
−3
1 .

(3)

N.M. Gulitskiy et al. Turbulent compressible fluid: Renormalization group analysis 14 / 27
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Fixed points and asymptotic

From remormalization group (RG) it follows, that in the case of one
charge the asymptotic behaviour of the invariant charge ḡ is

ḡ (s) ∼= g∗ + const · sω,
where s = 1/µr , µ is the renormalization mass, g∗ is fixed point:

βg (g
∗) = 0.

IR asymptotic behaviour (s → 0 ⇔ r → ∞): ω = β′(g∗) > 0.

In the case of many charges βi (g
∗

j ) = 0 and Ωik = ∂βi/∂gk at the
point gj = g∗

j has to be positive.

N.M. Gulitskiy et al. Turbulent compressible fluid: Renormalization group analysis 15 / 27
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ḡ (s) ∼= g∗ + const · sω,
where s = 1/µr , µ is the renormalization mass, g∗ is fixed point:

βg (g
∗) = 0.

IR asymptotic behaviour (s → 0 ⇔ r → ∞): ω = β′(g∗) > 0.

In the case of many charges βi (g
∗

j ) = 0 and Ωik = ∂βi/∂gk at the
point gj = g∗

j has to be positive.

N.M. Gulitskiy et al. Turbulent compressible fluid: Renormalization group analysis 15 / 27



Introduction
Description of the Model

Field Theoretic Formulation
Passive Scalar Advection

Diagrammatic Technique
Renormalization of the model

Fixed points and asymptotic

Depending of the exponents y and ε = 4− d the model possesses 3
different fixed points:

◮ Gaussian,

g∗

1 = 0, g∗

2 = 0, u∗ and v∗ are undetermined.

The corresponding eigenvalues of the matrix Ω are

λ1 = 0, λ2 = 0, λ3 = −ε, λ4 = −y .

◮ Local regime,

g∗

1 = 0, g∗

2 =
8ε

3
, u∗ = 1, v∗ = 1.

The eigenvalues of the matrix Ω are

λ1 =
7ε

18
, λ2 =

5ε

6
, λ3 = ε, λ4 =

3ε− 2y

2
.

N.M. Gulitskiy et al. Turbulent compressible fluid: Renormalization group analysis 16 / 27
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Fixed points and asymptotic

◮ Non-local regime,

g∗

1 =
16y(2y − 3ε)

9(y(2 + α)− 3ε)
, g∗

2 =
16αy2

9(y(2 + α)− 3ε)
, u∗ = v∗ = 1;

the required eigenvalues are

λ1 =
y [2y(10α + 11) − 3ε(3α + 11)]

54[y(2 + α)− 3ε]
,

λ2 =
y [2y(2α+ 3)− ε(α + 9)]

6[y(α + 2)− 3ε]
, λ3,4 =

A±
√
B

C
,

where A,B ,C – some functions of ε, y and α.

This point is stable for y > 0 and y > 3ε/2.
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Fixed points and asymptotic

Picture of the IR–attractive fixed points (scaling regimes)
on the y — ε plane.
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Stochastic equation for a density field

Passive advection of a density field θ(x) = θ(t, x) is described by
the stochastic equation

∂tθ + ∂i (viθ) = κ0∂
2θ + f ,

where for Gaussian noise f we suppose

〈
f (x)f (x ′)

〉
= δ(t − t ′)C (r/L), r = x− x′.

N.M. Gulitskiy et al. Turbulent compressible fluid: Renormalization group analysis 19 / 27
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Action Functional

This stochastic problem is equivalent to the field theoretic model of
the full set of fields Φ = {θ, θ′, φ, φ′, v, v′} with action functional

SΦ(Φ) = Sθ(θ
′, θ, v) + S(φ, φ′, v, v′),

where

Sθ(θ
′, θ, v) =

θ′Df θ
′

2
+ θ′

{
−∂tθ − ∂i (viθ) + κ0∂

2θ

}
.

N.M. Gulitskiy et al. Turbulent compressible fluid: Renormalization group analysis 20 / 27
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Extended feynman diagrammatic technique

This action functional corresponds to an extended fyenman diagrammatic
technique, which includes two new propagators 〈θθ〉 and 〈θθ′〉, and
also a new triple vertex

To renormalize our model we should calculate

Γθ′θ = iω − Zκκ0p
2 + .
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Critical dimensions of the fields and parameters

For both local and non-local regimes the analysis of new parameter
κ provides IR attractive fixed point w∗ = 1, where w is defined by
the relation κ = νw .

The critical dimensions of the fields and parameters are defined by
the relation

∆F = dk
F +∆ωd

ω
F + γ∗F , ∆ω = 2− γ∗ν .
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Critical dimensions of the fields and parameters

For the non-local regime they are the same as for arbitrary d case,
namely

∆v = 1− y/3, ∆v ′ = d −∆v , ∆ω = 2− y/3, ∆m = 1;

∆φ = d −∆φ′ = 2− 5y/6, ∆c = 1− 5y/12;

∆θ = −1 + y/6, ∆θ′ = d + 1− y/6.

For the local regime they are

∆v = 1− ε/2, ∆v ′ = d −∆v , ∆ω = 2− ε/2, ∆m = 1;

∆φ = d −∆φ′ = 2− 5ε/4, ∆c = 1− 5ε/8;

∆θ = −1 + ε/4, ∆θ′ = d + 1− ε/4.
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Feynman diagrams for composite operators

For density field the most important scalar composite operators are

F (x) = θn(x).

Let Γ(x , θ) be the generating functional of the 1-irreducible Green
functions with one composite operator F (x) and any number of
fields θ, Γn(x , θ) – nth term of its expansion in θ(x).

To obtain critical dimensions of the operators F (x) we should
calculate

Γn(x , θ) = F (x) +
1

2
.
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Critical dimensions of composite operators

The anomalous dimension for the operator F = θn(x) is

γ∗F = − n(n − 1)

4uw(u + w)
(αg1 + g2);

the critical dimensions is

∆[θn] = −n +
nε

4
− n(n− 1)

3
ε for local regime,

and

∆[θn] = −n+
ny

6
−2n(n − 1)

3

αy(y − ε)

y(2 + α)− 3ε
for non-local regime.
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Conclusion

◮ We applied the field theoretic renormalization group to the
analysis of the stochastic Navier-Stokes equation of a
compressble fluid;

◮ The one additional divergent function appears at special space
dimension d = 4;

◮ Simple analysis near d = 3 shows us only two scaling
regimes – Gaussian and non-local, whereas analysis near d = 4
providing three stable fixed points in the IR region – Gaussian,
local and non-local.

◮ This means, that the simple analysis around d = 3 is
incomplete in this case.

◮ The passive advection of a scalar density field is considered;
critical dimensions of composite operators are calculated.
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Thank you for your attention!
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