

Event Reconstruction on Many-Core Computer Architectures (CBM Experiment at FAIR)

XIIth Quark Confinement and the Hadron Spectrum

Ivan Kisel

Goethe-University Frankfurt am Main FIAS Frankfurt Institute for Advanced Studies GSI Helmholtz Center for Heavy Ion Research

Ivan Kisel, Uni-Frankfurt, FIAS, GSI

Reconstruction Challenge in CBM at FAIR/GSI

- Future fixed-target heavy-ion experiment
- 10⁷ Au+Au collisions/sec
- ~ 1000 charged particles/collision
- Non-homogeneous magnetic field
- Double-sided strip detectors (85% fake space-points)

Full event reconstruction will be done on-line at the First-Level Event Selection (FLES) and off-line using the same FLES reconstruction package.

Cellular Automaton (CA) Track Finder Kalman Filter (KF) Track Fitter KF short-lived Particle Finder

All reconstruction algorithms are vectorized and parallelized.

Many-Core CPU/GPU Architectures

Stages of Event Reconstruction

- Cellular Automaton
- Track Following

Kalman Filter

- Hough Transformation
- Elastic Neural Net

Kalman Filter (KF) Track Fit Library

Kalman Filter Methods

Kalman Filter Tools:

- KF Track Fitter
- KF Track Smoother
- Deterministic Annealing Filter

Kalman Filter Approaches:

- Conventional DP KF
- Conventional SP KF
- Square-Root SP KF
- UD-Filter SP
- Gaussian Sum Filter

Track Propagation:

- Runge-Kutta
- Analytic Formula

Implementations

Vectorization (SIMD):

- Header Files
- Vc Vector Classes
- ArBB Array Building Blocks
- OpenCL

Parallelization (many-cores):

- Open MP
- ITBB
- ArBB
- OpenCL

Precision:

- single precision SP
- double precision DP

Strong many-core scalability of the Kalman filter library

with I. Kulakov, H. Pabst* and M. Zyzak (*Intel)

Ivan Kisel, Uni-Frankfurt, FIAS, GSI

Conf12, Thessaloniki, Greece, 01.09.2016 5/20

Kalman Filter (KF) Track Fit Library

- Scalability with respect to the number of logical cores in a CPU is one of the most important parameters of the algorithm.
- The scalability on the Intel Xeon Phi coprocessor is similar to the CPU, but running four threads per core instead of two.
- In case of the graphic cards the set of tasks is divided into working groups of size *local item size* and distributed among compute units (or streaming multiprocessors) and the load of each compute unit is of the particular importance.

Full portability of the Kalman filter library

Cellular Automaton (CA) Track Finder

Useful for complicated event topologies with large combinatorics and for parallel hardware

CA Track Finder: Efficiency

Efficient and clean event reconstruction

CA Track Finder at High Track Multiplicity

A number of minimum bias events is gathered into a group (super-event), which is then treated by the CA track finder as a single event

Stable reconstruction efficiency and time as a second order polynomial w.r.t. to track multiplicity

Time-based (4D) Track Reconstruction with CA Track Finder

•	The beam in	the	CBM will	have no l	bunch	structure, l	out continuous.
					_ /		

- Measurements in this case will be 4D (x, y, z, t). Significant overlapping of events in the detector system.
- Reconstruction of time slices rather than events is needed.

Efficiency, %	3D	$3+1 \mathrm{D}$	4D
All tracks	83.8	80.4	83.0
Primary high- p	96.1	94.3	92.8
Primary low- p	79.8	76.2	83.1
Secondary high- p	76.6	65.1	73.2
Secondary low- p	40.9	34.9	36.8
Clone level	0.4	2.5	1.7
Ghost level	0.1	8.2	0.3
Time/event/core, ms	8.2	31.5	8.5

4D event building is scalable with the speed-up factor of 10.1; 3D reconstruction time 8.2 ms/event is recovered in 4D case

Total CA time = 84 ms

4D Event Building at 10 MHz

Hits at high input rates

From hits to tracks to events

Reconstructed tracks clearly represent groups, which correspond to the original events 83% of single events, no splitted events, further analysis with TOF information at the vertexing stage

Ivan Kisel, Uni-Frankfurt, FIAS, GSI

Conf12, Thessaloniki, Greece, 01.09.2016 11/20

KF Particle: Reconstruction of Decayed Particles

$\overline{\Omega}^{+} \rightarrow \overline{\Lambda} \operatorname{K}^{+} \\ \stackrel{\scriptstyle \downarrow}{\rightarrow} \overline{p} \pi^{+}$

Concept:

- Mother and daughter particles have the same state vector and are treated in the same way
- Reconstruction of decay chains
- Kalman filter based
- · Geometry independent
- Vectorized
- Uncomplicated usage

Functionality:

- Construction of short-lived particles
- Addition and subtraction of particles
- Transport
- Calculation of an angle between particles
- Calculation of distances and deviations
- Constraints on mass, production point and decay length
- KF Particle Finder

KFParticle provides uncomplicated approach to physics analysis (used in CBM, ALICE and STAR)

KF Particle Finder Algorithm

KF Particle Finder for Physics Analysis and Selection

Ivan Kisel, Uni-Frankfurt, FIAS, GSI

Conf12, Thessaloniki, Greece, 01.09.2016 14/20

KF Particle Finder for Physics Analysis and Selection

Ivan Kisel, Uni-Frankfurt, FIAS, GSI

Decays with Neutral Daughter

+ and Σ⁻ reconstruction

- Some particles (Σ^+ and Σ^-) have channels with at least one neutral daughter.
- A lifetime is sufficient to be registered by the tracking system: $c\tau = 2.4$ cm for Σ^+ and $c\tau = 4.4$ cm for Σ^- .
- Can not to be identified by the PID detectors.

2

3

- Identification is possible by the decay topology using the missing mass method:
 - 1. Find tracks of Σ and its charged daughter (kink);
 - 2. Reconstruct a neutral daughter from the mother and the charged daughter;
 - 3. Reconstruct Σ mass spectrum from the charged and obtained neutral daughters.

Clean Probes of Collision Stages

Ivan Kisel, Uni-Frankfurt, FIAS, GSI

Conf12, Thessaloniki, Greece, 01.09.2016 17/20

CBM Standalone First Level Event Selection (FLES) Package

The first version of the FLES package is vectorized, parallelized, portable and scalable up to 3 200 CPU cores

Ivan Kisel, Uni-Frankfurt, FIAS, GSI

Conf12, Thessaloniki, Greece, 01.09.2016 18/20

Parallelization in the CBM Event Reconstruction

CPU - Full reconstruction						
	CPU - Tra	acking				
Algorithm	SIMD	ITBB, OpenMP	CUDA	OpenCL CPU/GPU	Phi	ArBB
Hit Producers					All	- Benchmark
STS KF Track Fit	1	~	~	$\sqrt{1}$	~	~
STS CA Track Finder	1	~				
MuCh Track Finder	 ✓ 	~	1			
TRD Track Finder	1	~	1			
RICH Ring Finder	1	<pre> </pre>		✓/√GPU/Phi -	Selection	
KF Particle Finder	~	√		VIV)
Off-line Physics Analysis	~					
FLES Analysis and Selection	1	~				

Andrzej Nowak (OpenLab, CERN) by Hans von der Schmitt (ATLAS) at GPU Workshop, DESY, 15-16 April 2013							
	SIMD	Instr. Level Parallelism	HW Threads	Cores	Sockets	Factor	Efficiency
МАХ	4	4	1.35	8	4	691.2	100.0%
Typical	2.5	1.43	1.25	8	2	71.5	10.3%
HEP	1	0.80	1	6	2	9.6	1.4%
CBM@FAIR	4	3	1.3	8	4	499.2	72.2%

Parallelization becomes a standard in the CBM experiment

Summary

- The Kalman Filter track fit library is vectorized, parallelized and portable to CPU/Phi/GPU architectures.
- The Cellular Automaton track finder is vectorized and parallelized between CPU cores.
- The KF Particle Finder for reconstruction of short-lived particles is vectorized and portable to CPU/Phi architectures.
- · Online physics analysis approaches are under investigation.

More details:

- V. Akishina, 4D event reconstruction in the CBM experiment, PhD Thesis, Uni-Frankfurt, 2016
 M. Zyzak, Online selection of short-lived particles on many-core computer architectures in the CBM experiment at FAIR, PhD Thesis, Uni-Frankfurt, 2016