Quark Confinement and the Hadron Spectrum Joint D+G session, 30 August 2016

Multiplicities from black-hole formation in heavy-ion collisions

Elias Kiritsis

CCTP/ITP/QCN University of Crete APC, Paris

Introduction

- \bullet Holography uses string-theory/gravity as an alternative description of strong-coupling physics at large N.
- In this language a heavy-ion collisions leads to the formation of a localized unstable black hole.
- This black holes expands adiabatically and finally decays through a process that is similar but may be different from Hawking evaporation.

KIritsis+Taliotis

- Although QCD is not exactly a near-semiclassical theory, it is close: therefore heavy ion collisions may help understand some aspects of black hole physics that so far were considered far from experiments.
- So far, numerical gravitational calculations are not fully in line to describe the details of such a collision but we are getting there.

- We may use however techniques first due to Penrose (trapped surfaces) to get quantitative information on heavy-ion collision multiplicities.
- The idea is that a minimal trapped surface is always hidden behind a horizon.
- Therefore its area is always smaller that the horizon area
- Such trapped surfaces can be calculated rather straightforwardly, by solving a classical boundary value problem.
- From Bekenstein's formula the area of the horizon determines the entropy of the black hole and this can be converted to the total multiplicity in a heavy ion collision.
- \bullet Although this gives a lower bound on the total multiplicity as a function of the cm energy per nucleon, s we can use properties of AdS space and numerical data to argue that the leading s-dependence is the same.
- One can therefore produce a multiplicity function for high-energies that is known up to a multiplicative constant that can be fit to experiment.

Black Hole Formation,

The IHQCD multiplicities

There is no UV cutoff involved here.

$$N_{ch} = 78.05 \left(\frac{A}{A_{au}} \frac{\sqrt{s}}{1 \text{ GeV}} \right)^{0.451} \left[\log \left(535 \frac{A}{A_{au}} \frac{\sqrt{s}}{1 \text{ GeV}} \right) \right]^{0.718}$$

Predictions for PbPb (A=207) at LHC:

Nch = 19100, 27000, 30500 for 2.76, 5.5 and 7 TeV respectively.

Bibliography

Based on work with Tassos Taliotis

Multiplicities from black-hole formation in heavy-ion collisions. arXiv:1111.1931 [hep-ph]

Mini-Black-Hole production at RHIC and LHC. arXiv:1110.5642 [hep-ph]

Black Hole Formation,

Elias Kiritsis

The string/gravity description of strong-coupling QCD

- As there are no generic techniques to control strong coupling physics, any related tool is important.
- The correspondence between strongly-coupled gauge theories and string theories have provided tools, in order to calculate at strong coupling.
- This correspondence works in a large- N_c , and strong ('t Hooft) coupling regime. It is complementary to pQCD.
- The simplest and most controlable example involves a highly symmetric, and scale invariant theory, $\mathcal{N}=4$ sYM. Its dual description involves string theory (and gravity) in AdS₅ space.

Black Hole Formation, Elias Kiritsis

The gauge-theory/gravity correspondence

- There is one-to-one correspondence between on-shell string states $\Phi(r, x^{\mu})$ and gauge-invariant (single-trace) operators $O(x^{\mu})$ in the sYM theory
- In the string theory we can compute the "S-matrix", $S(\phi(x^{\mu}))$ by studying the response of the system to boundary conditions $\Phi(r=0,x^{\mu})=\phi(x^{\mu})$
- The correspondence states that this is equivalent to the generating function of correlators of O $\langle e^{\int d^4x \ \phi(x) \ O(x)} \rangle = e^{-S(\phi(x))}$

- One of the most remarkable facts of the correspondence is that thermalization in the QFT corresponds to the formation of a BH in the bulk.
- \bullet The thermal gauge theory ensemble maps to a large BH filling the AdS $_5$ space.
- The laws of BH thermodynamics now find their explanation: they correspond to the thermodynamics of the dual gauge theory.
- Therefore a heavy-ion collision with a thermalized final state must correspond to the formation (and decay) of a black hole in the dual language.
- I should also stress that in the gravitational language, we have seen an extra dimension that is "infinite". Its KK states, are known since 30-50 years: they are the radial excitations of glueballs, mesons and baryons. It is a "fuzy" extra dimension: all but the few ligher KK states have large widths and are unobservable.
- The context however is different in many respects from the "popular" bhs of "large extra dimensions" (that are not visible at LHC).
- What is the dual gravity/string theory that describes YM?

A model for Holographic YM

- ullet We know that for $N_c o \infty$ QCD should be described by a (soft) string theory in the UV.
- But there should be some gravity description in the IR, as the coupling there is strong.
- The most important bulk fields are expected to be the metric $g_{\mu\nu}$ dual to $T_{\mu\nu}$, and a scalar ϕ (the "dilaton") dual to $tr[F^2]$.
- A good guess is an action of the form

$$S_g = M^3 N_c^2 \int d^5 x \sqrt{g} \left[R - \frac{4}{3} (\partial \phi)^2 + V_g(\phi) \right]$$

Gursoy+Kiritsis+Nitti, 2007, Gubser+Nelore, 2008

- ullet The potential $V_g \leftrightarrow \mathsf{QCD}\ \beta$ -function
- The scale factor of the bulk metric corresponds to the YM energy scale.
- $e^{\phi} \rightarrow \lambda$ 't Hooft coupling

YM Entropy

Figure 4: (Color online) Same as in fig. 1, but for the s/T^3 ratio, normalized to the SE Nimit. State Black Hole Formation,

Equation of state

Figure 2: (Color online) Same as in fig. 1, but for the Δ/T^4 ratio, normalized to the SB limit of p/T^4 .

Black Hole Formation,

The sound speed

Holographic YM Black holes

- There are small uniform black-holes that are thermodynamically unstable
- There are Large uniform black holes that thermodynamically stable.

- The large black holes have $E \sim T^4$, $S \sim T^3$ as $T \to \infty$. The horizon position is $r_h^{\text{large}} \sim \frac{1}{T} \to 0$ at large temperatures, where r=0 is the position of the AdS boundary. The specific heat is positive.
- The small black holes are unstable, with negative specific heat. They are however nowhere near Schwartzschild black holes.
- As $T \to \infty$ their horizon shrinks to zero size as $r_h^{\rm small} \sim \frac{T}{\Lambda_{QCD}^2}$.

$$S\simeq V_3 \exp\left[-3rac{T^2}{\Lambda_{QCD}^2}
ight] \quad , \quad E\simeq V_3 M_P^3 \ T \ \exp\left[-3rac{T^2}{\Lambda_{QCD}^2}
ight] \quad , \quad T o\infty$$

ullet At large T, the small and large black holes satisfy the duality relation

$$(egin{aligned} (egin{aligned} (egin{align$$

ullet We also have for any T_i, T_j

$$E_{\text{large}}(T_i) > E_{\text{small}}(T_j)$$
 , $S_{\text{large}}(T_i) > S_{\text{small}}(T_j)$

- These suggest that during a collision it is an unstable analogue of the large black holes that will be created.
- Studying however, time dependent unstable black holes is very difficult analytically.

Black Hole Formation,

Collisions of shock waves

- We would like to model the heavy ion collision in the dual gravitational 5d language.
- In the dual gravitational theory to QCD, heavy ions can be modeled as localised energy distributions collided at high relative velocities.
- Energy sources in gravitational theories generate gravitational fields described by generalizations of the Schwartzschild solution.
- Two such energy sources colliding at high energy pose a formidable problem even for the classical theory as their gravitational fields start interacting long before the sources collide.
- However at high energies, things simplify a bit: at ultrarelativistric speeds, the gravitational fields squeeze into a cone, that becomes narrower with energy. In the limit $E \to \infty, v \to c$, the field is squeezed on the light cone $x^+ = 0$, or $x^- = 0$.

The metric around flat space is

$$ds^2 = \eta_{\mu\nu} dx^{\mu} dx^{\nu} + \phi(x_{\perp}) \delta(x^+) (dx^+)^2$$

- \bullet $\phi(x_{\perp})$ describes the transverse profile of the wave.
- It can be obtained:
- (a) By solving the Einstein equations with an appropriate ansatz
- (b) By infinitely boosting the Schwartzschild solution.

Aichelburg+SexI, 1971

• As the gravitational field of shock waves is squeezed, one can superpose two such solutions that describe two particles in a head-on collision

$$ds^{2} = \eta_{\mu\nu}dx^{\mu}dx^{\nu} + \left[\phi_{1}(x_{\perp})\delta(x^{+})(dx^{+})^{2} + \phi_{2}(x_{\perp})\delta(x^{-})(dx^{-})^{2}\right]$$

- The metric is valid in the three quadrants due to causality: $x^+ < 0$ or $x^- < 0$.
- The metric changes in $x^+ > 0$ and $x^- > 0$ and it is a non-trivial task to determine it.

Black Hole Formation, Elias Kiritsis

Horizons and trapped surfaces

- A defining property of a black-hole formation during the collisions of energy packets is the appearance of an event horizon.
- This is a difficult property to verify, as it is global, and the full metric in the whole of spacetime is needed.
- There are however hints of the formation of a horizon that may appear earlier during the dynamical process.
- Such hints are the trapped surfaces: Surfaces whose null normals are inward.
- In plain words: they are surfaces that due to the attractiveness of gravity and the focusing of geodesics they will evolve inside an event horizon (that may form later).
- Such (codimension 2) surfaces are much easier to find, and sometimes (as with Penrose-type surfaces) the shock-wave geometry before the collision is enough to determine them.

- A limit form of a trapped surface is a "marginal trapped surface": in plain words it is a surface that is only barely trapped.
- Mathematically it has vanishing "expansion": $\nabla \cdot \ell = 0$. It is also known as the apparent horizon.
- In the gravitational theory the area of a horizon is interpreted as entropy according to the Bekenstein postulate.
- It can be shown, using the singularity thms, that the area of a marginally trapped surface, is always smaller or equal to that of an event horizon that will eventually form.

Penrose

• As the marginally trapped surface has the largest area, we obtain a lower bound on the entropy:

$$S \ge S_{\text{marginally trapped}}$$

• This is a central ingredient in our subsequent calculations.

Entropy and multiplicity

- ullet Entropy can be translated into the total multiplicity N_{ch} measured in heavy ion collisions.
- 1 Charged particle is accompanied by approximately $\frac{1}{2}$ Neutral particle (isospin symmetry). Therefore:

$$N_{tot} = N_{ch} + N_{neutral} \simeq \frac{3}{2} N_{ch}$$

• Estimate of total entropy:

Heinz

$$S \simeq 5 \quad imes \quad rac{3}{2} \quad imes \quad N_{ch} \simeq 7.5 \ N_{ch}$$

ullet We will use N_{ch} , N_{tot} , and S interchangeably as they are proportional.

Shock waves in Einstein-Dilaton gravity

$$S_5 = -M^3 \int d^5 x \sqrt{g} \left[R - \frac{4}{3} (\partial \Phi_s)^2 + V(\Phi_s) \right]$$

We first find shock wave solutions in this theory of the form

$$ds^{2} = b(r)^{2} \left[dr^{2} + dx^{i} dx^{i} - 2dx^{+} dx^{-} + \phi(r, x^{1}, x^{2}) \delta(x^{+}) (dx^{+})^{2} \right]$$

and $\Phi_s = \Phi_s(r, x^+)$ with the asymptotically AdS boundary at r = 0.

 \bullet The shock wave profile ϕ must satisfy

$$\left(\nabla_{\perp}^{2} + 3\frac{b'}{b}\partial_{r} + \partial_{r}^{2}\right)\phi = -M^{3}J_{++}, \quad , \quad \partial_{-}J_{++} = 0$$

• This theory for $\Phi_s = V = \text{constant}$ provides the AdS solution $b(r) = \frac{\ell}{r}$. For a constant transverse profile the solution is

$$\phi_{AdS_5} = E r^4$$

Non-trivial transverse profiles

• The simplest profile, is the uniform one in transverse space

$$\phi \sim \int \frac{dr}{b(r)^3}$$

• For non-trivial profiles we separate variables $\phi_k \sim f_k(x_\perp)g_k(r)$

$$\left(\partial_{x_{\perp}}^2 + \frac{1}{x_{\perp}}\partial_{x_{\perp}} - \mathbf{k}^2\right)f_{\mathbf{k}}(x_{\perp}) = 0 \quad \left(\partial_r^2 + 3\frac{b'(r)}{b(r)}\partial_r + \mathbf{k}^2\right)g_{\mathbf{k}}(r) = 0.$$

The first equation yields

$$f_{\mathbf{k}}(x_{\perp}) = C_1 K_0(\mathbf{k} x_{\perp}) + C_2 I_0(\mathbf{k} x_{\perp})$$

- The solution to g(r) depends on the scale factor b(r). The equation for g is the same as that for 2^{++} glueballs with mass $m^2=k^2$. For discrete spectra, the transverse radii are quantized, $\frac{1}{m_n}$ following the spectrum.
- There are two classes of transverse distributions:
- \spadesuit Exponentially localised ones corresponding to a single k: $K_0 \sim e^{-k|x_\perp|}$.
- \spadesuit Power like ones corresponding to integrals over k: $\frac{1}{(|x_{\perp}|^2 + L^2)^a}$

A host of non-AdS backrounds

- non-AdS scale factors: (not everything is allowed).
- \spadesuit $b \sim r^a$, with $a \leq -1$. This corresponds to quasiconformal geometries, with no confinement, continuous spectrum and no mass gap, with potential asymptotics as $\Phi_s \to \infty$, $V \sim e^{Q\Phi_s}$, $Q < \frac{4}{3}$.
- \spadesuit Confining backgrounds that are scale invariant in the IR, with $b(r) \sim (r_0-r)^a$, $a>\frac{1}{3}$. They have a discrete spectrum of glueballs and a mass gap. The potential asymptotics as $\Phi_s\to\infty$ are $V\sim e^{Q\Phi_s}$, $Q>\frac{4}{3}$.
- \spadesuit Confining backgrounds with $b(r) \sim e^{-(\Lambda r)^a}$, a>0. They have a discrete spectrum and a mass gap. The potential asymptotics as $\Phi_s \to \infty$ are $V \sim e^{\frac{4}{3}\Phi_s} \Phi_s^{\frac{a-1}{a}}$. a=2, corresponds to IHQCD
- \spadesuit Confining backgrounds with $b(r) \sim e^{-\left(\frac{\Lambda}{r-r_0}\right)^a}$, a>0. They have a discrete spectrum and a mass gap. The potential asymptotics as $\Phi_s \to \infty$ are $V \sim e^{\frac{4}{3}\Phi_s} \; \Phi_s^{\frac{a+1}{a}}$.

Black Hole Formation,

The Penrose-type marginal trapped surface

- S_1 is defined by $x^+ = 0$, $x^- + \frac{1}{2}\psi_1(r, x_1, x_2)$. S_2 is defined by $x^- = 0$, $x^+ + \frac{1}{2}\psi_2(r, x_1, x_2)$.
- They are glued along a two-surface C: $\psi_1|_C = \psi_2|_C = 0$, with a continuity condition on the normals on C.

$$S_{\text{trapped}} = \frac{M^3}{4} (Vol(S_1) + Vol(S_2))$$

Black Hole Formation,

Review of the equations

ullet For two shock wave profiles $\phi_{1,2}(r,x_{\perp})$ solving the appropriate equations

$$\nabla^2 \phi_{1,2} = -M^3 J_{++} \quad , \quad \nabla^2 \equiv \left(\nabla_\perp^2 + 3 \frac{b'}{b} \partial_r + \partial_r^2 \right)$$

• The two pieces of the marginal trapped surface, determined by $\psi_{1,2}(r,x_{\perp})$ must satisfy:

$$\nabla^2 \left(\phi_{1,2} - \psi_{1,2} \right) = 0$$

Their boundary surface C is determined as

$$|\psi_1|_C = |\psi_2|_C = 0$$

and the continuity of the normals along C gives the final equation

$$\sum_{i=r,1,2} \partial_i \psi_1 \ \partial_i \psi_2|_C = 8b(r)^2$$

Then the entropy bound is

$$S_{\text{trapped}} = \frac{M^3}{4} (Vol(S_1) + Vol(S_2))$$

- What is the use of a lower bound $S_{trapped}$?
- Assume that at large energy $s \to \infty$, we find that $S_{trapped} = A s^a +$ subleading.
- The ratio $\frac{S}{S_{\text{trapped}}}$, if the trapped surface ends in the UV part of the geometry (that is expected to be close to AdS_5) is to a good accuracy s-independent due to scale invariance.

Romatschke, 2011

• Therefore $S=\tilde{A}s^a$ +subleading. We can predict the leading high energy dependence.

Known results

- We will only consider head-on collisions
- The entropy production was calculated in AdS_5 from shock waves uniform in transverse space . The result is $S_{\rm trapped} \sim s^{\frac{1}{3}}$.

Gubser+Pufu+Yarom

• The entropy production was calculated in AdS_5 from shock waves with a $(x_{\perp}^2 + L^2)^{-3}$ transverse profile. The result is again $S_{\text{trapped}} \sim s^{\frac{1}{3}}$.

Gubser+Pufu+Yarom

• Some more general distributions were explored in the same context and a maximal size was found for the formation of the trapped surface.

Alvarez-Gaumé+Gomez+Vera+Tavanfar+Vazquez-Mozo

These results seem to overestimate the pre-LHC data

- \bullet We would like to test other backgrounds beyond AdS_5 . In particular test the different 5d backgrounds as a function of their ability to confine, and have discrete spectra.
- We would like to test different transverse profiles, in particular well localized (exponential) ones in transverse space, that look more like the energy distribution of nuclei.
- We would like to somehow accommodate the fact that QCD is weakly coupled in the UV and this suppresses multiplicities at large momentum transfers.

Black Hole Formation, Elias Kiritsis

What are we missing?

- AdS₅ is a VERY crude model for the QCD dynamics.
- Improved Holographic QCD is much better but contains only glue. What we scatter are very energetic 2^{++} glueballs. No quarks, no nuclei.
- The holographic theories are not properly weakly coupled in the UV.
- This description is valid as $N_c \gg 1$.
- The geometry is not always well defined during the collision.
- There may be other marginal trapped surfaces that are NOT of the Penrose type.

Black Hole Formation,

Uniform transverse glueballs

$$b^{3}(r_{H}) = \frac{E}{\sqrt{8}}$$
 , $S_{\text{trapped}} \sim \int_{\infty}^{r_{H}} b^{3}(r)dr$

Non-confining

$$b(r) \sim \left(\frac{r}{\ell}\right)^a , (a \le -1) , \quad S_{\mathsf{trapped}} \sim s^{\frac{1}{2} - \frac{1}{6a}} , \quad \frac{1}{3} \le \frac{1}{2} - \frac{1}{6a} \le \frac{1}{2}$$

Confining (scaling)

$$b(r) \sim \left(\frac{r-r_0}{\ell}\right)^a , \left(a \geq \frac{1}{3}\right) , \quad S_{\text{trapped}} \sim s^{\frac{1}{2} + \frac{1}{6a}} , \quad \frac{1}{2} \leq \frac{1}{2} + \frac{1}{6a} \leq 1$$

• Confining (IR of IHQCD)

$$b(r) \sim e^{-\left(\frac{r}{\ell}\right)^a}$$
 , $(a > 0)$, $S_{\text{trapped}} \sim s^{\frac{1}{2}} (\log s)^{\frac{1+a}{a}}$

Confining II

$$b(r) \sim e^{-\left(\frac{\ell}{r-r_0}\right)^a}$$
 , $(a>0)$, $S_{\text{trapped}} \sim s^{\frac{1}{2}} (\log s)^{\frac{1-a}{a}}$

Non-uniform transverse glueballs

Powerlike distribution

$$\phi = \left(\frac{r - r_0}{L}\right)^{-\frac{1+3a}{2}} \frac{P_{\frac{3a}{2}-1}^{\frac{1}{2}}(1+2q)}{(q(1+q))^{\frac{1}{4}}} , \quad q = \frac{x_{\perp}^2 + (r-r')^2}{4(r-r_0)(r'-r_0)}$$

• Confining $b(r) \sim \left(\frac{r}{\ell}\right)^a$, $a > \frac{1}{3}$

$$S_{\text{trapped}} \sim s^{\frac{1}{2}\frac{3a+3}{3a+2}}$$

ullet Non-Confining , a<-1

$$S_{\rm trapped} \sim s^{\frac{3a+1}{6a}}$$

Exponential scale factor,

$$\phi = e^{\frac{3r}{2R}} \frac{e^{-\frac{3}{2}\sqrt{u}}}{\sqrt{u}}$$
, $u = \frac{(x_{\perp} - x_{\perp}')^2 + (r - r')^2}{R^2}$

$$b \sim e^{-\frac{r}{R}}$$
 , $S_{\text{trapped}} \sim s^{1.66} (\log s)^{1.17}$

IHQCD-like geometry

• We call this (by abuse of language): "IHQCD model"

$$b(r) = \frac{\ell}{r} e^{-\frac{r^2}{R^2}}$$

ullet The geometry is asymptotically AdS $_5$ in the UV, (r o 0), and confining in the IR.

$$\phi_k = \frac{E}{8\pi (M\ell)^3 k^2} g_n(kr) K_0(kx_\perp) \quad , \quad g_n = \frac{r^4}{R^4} L_n^{(2)} \left(\frac{3r^2}{R^2}\right)$$

- The size is quantized : $k_n^2 = (n+2)\frac{12}{R^2}$ (linear glueball trajectory).
- Trapped surface area can be computed only numerically.

General lessons

- If the UV geometry is asymptotically AdS_5 most of the "trapped entropy" originates in the UV part of the geometry. Multiplicity comes from the high-energy part of phase space.
- For uniform transverse distributions only, the AdS geometry produces the less entropy from the rest.
- A general trend in non-trivial transverse energy distributions is that at equal total energy the most dilute energy distribution produces the most entropy.
- \bullet Sometimes we do not find a trapped surface. In IHQCD there is no trapped surface for the lowest lying 2^{++} gluball.

 An AdS geometry produces more entropy than an asymptotically AdS confining geometry.

	b(r)	$rac{\ell}{r}$	$\frac{\ell}{r}\exp[-\frac{r^2}{R^2}]$
Transverse profile			
Uniform		S_{unif}^{AdS}	S_{unif}^{IHQCD}
GYP		S_{GPY}^{AdS}	Not studied
Exponential		S_{exp}^{AdS}	S_{exp}^{IHQCD}

$$S_{unif}^{AdS} > S_{GPY}^{AdS} > S_{exp}^{AdS} \quad , \quad S_{unif}^{IHQCD} > S_{exp}^{IHQCD}$$

$$S_{unif}^{AdS} > S_{unif}^{IHQCD} \quad , \quad S_{GPY}^{AdS} > S_{exp}^{IHQCD} \quad , \quad S_{exp}^{AdS} > S_{exp}^{IHQCD}$$

The perturbative UV-fix

- How do we encode the weak coupling dynamics in the UV?
- Use a UV cutoff in AdS, and assume that above it the entropy production vanishes. This changes $S \sim s^{\frac{1}{3}}$ to $S \sim s^{\frac{1}{6}}$.
- ullet A more natural place to cutoff the strong coupling regime is the "saturation" scale Q_s .

 McLerran, Venugopalan, Khrazeev......

$$Q_s^2 \simeq (0.2 \ GeV)^2 \times A^{\frac{1}{3}} \times (\sqrt{s_{NN}})^{2\lambda} \quad , \quad \lambda \in [0.1, 0.15]$$

ullet This defines the $AdS-Q_s$ "model"

The IHQCD multiplicities

There is no UV cutoff involved here.

$$N_{ch} = 78.05 \left(\frac{A}{A_{au}} \frac{\sqrt{s}}{1 \text{ GeV}} \right)^{0.451} \left[\log \left(535 \frac{A}{A_{au}} \frac{\sqrt{s}}{1 \text{ GeV}} \right) \right]^{0.718}$$

Predictions for PbPb (A=207) at LHC:

Nch = 19100, 27000, 30500 for 2.76, 5.5 and 7 TeV respectively.

The AdS- Q_s multiplicities

ullet There is a UV cutoff at Q_s .

$$N_{ch} = 1.54 \left(\frac{A}{A_{au}}\right)^{\frac{17}{18}} \left(\frac{\sqrt{s}}{1 \text{ GeV}}\right)^{0.483}$$

- \bullet Predictions for pp (A=1) at LHC: $N_{ch}=70,110,190,260$ for 0.9, 2.36, 7 and 14 TeV respectively.
- Predictions for PbPb (A=207): $N_{ch} = 18750, 261800, 29400$ for 2.76, 5.5 and 7 TeV respectively.

Black Hole Formation,

ALICE multiplicities

ALI-PREL-2332

A. Toia for ALICE, Arxiv:1107.1973

Outlook

- Our approach is of restricted validity, it seems to give good numbers, but cannot distinguish between the two models.
- It can be improved in several ways.
- Obtaining the differential multiplicities is preferable, but this requires full scale PDE evolution of the BH geometry
- In the last year this seems to becoming possible

Black Hole Formation,

Elias Kiritsis

THANK YOU

Phase transition vs crossover

- The pure gauge theory (first-order) critical temperature is $T_c \simeq 240 \pm 15$ MeV.
- ullet It is interesting that the lightest bound state (glueball) in the pure gauge theory has a mass 1700 MeV so that ${T_c\over M_{o++}}\simeq 0.14$
- ullet The crossover with almost physical quarks is at $T_c \simeq 175 \pm 15$ MeV $\simeq 10^{12}$ 0 K. $ightarrow~10^{-6}$ sec

Black Hole Formation,

The mid-rapidity range

- The crossing time for Au nuclei (with radius 8 fm) is $\sim 0.1 \text{fm/c} \simeq 3 \times 10^{-25}$ seconds.
- The particles with small v_L are produced after 1 fm/c $\simeq 3 \times 10^{-24}$ seconds. Those with higher v_L are produced later due to time dilation.
- Use the rapidity variable $y=\frac{1}{2}\log\left[\frac{1+\frac{v_L}{c}}{1-\frac{v_L}{c}}\right]$. Δy is Lorentz invariant.
- ullet The "new matter" (free of fragments) is produced near $y\simeq 0$. This is what we are looking for.
- This can be tested by looking at how much "baryon" number is at mid-rapidity

- Distribution of zero baryon number and net baryon number particles as a function of rapidity (from BRAHMS)
- Each beam nucleon looses 73 ± 6 GeV on the average that goes into creating new particles. Therefore there is 26 TeV worth of energy available for particle production.

Black Hole Formation, Elias Kiritsis

Phases of a collision

The "initial" energy density is given by the Bjorken formula

Is there thermal equilibrium?

PHENIX (triangles), STAR(stars), BRAHMS (circles) PHOBOS (crosses) particle ratios, at Au+Au (s=200 GeV) at mid-rapidity vs thermal ensemble predictions.

- In an off-center collision, an initial elliptic pattern is produced.
- If the subsequent interactions are weak particles are free streaming and this elliptic pattern is wiped-out
- If the interactions are strong, this pattern persists and is visible in the detectors.

Elliptic flow

$$\frac{1}{p_T} \frac{dN}{dp_T d\phi} = \frac{1}{p_T} \frac{dN}{dp_T} (1 + \frac{2}{p_T} v_2(p_T) \cos(2\phi) +)$$

Elliptic flow is large X:Y $\sim 2.0:1$

 Such Elliptic flow has been observed recently in strongly coupled cold gases.

Hydrodynamic elliptic flow

Elliptic flow data from STAR as a function of p_T (right) compared to relativistic hydrodynamics calculations with non-zero shear viscosity, from Luzum+Romanschke (2008).

Black Hole Formation, Elias Kiritsis

Boost-invariant expansion and AdS/CFT

- Bjorken has guessed correctly in 1983 that a heavy-ion collision will be described in its later stages as a boost invariant expansion of a relativistic fluid: densities will depend only on $\tau^2 = (x^0)^2 - (x^3)^2$.
- Moreover, from scale invariance $ho = T_{00} \sim au^{-\frac{4}{3}}$, instead of the freestreaming option $\rho = T_{00} \sim \tau^{-1}$. This implies that $T \sim \tau^{-\frac{1}{3}}$ and that the entropy remains approximately constant.
- This symmetric late time behavior was first justified by finding it as a (non-singular) solution of the dual gravitational equations corresponding to a bulk black hole where the horizon position shrinks with time.

Subleading terms in this gravitational solution indicated the presence of small viscosity.

 Finally it was shown in general that large-wavelength solutions to the AdS Einstein equations generate the relativistic Navier-Stokes equation with an infinite series of "viscous" corrections that generate dissipation.

Bhattacharya+Hubeny+Minwalla+Rangamani, 2008

The Bjorken Relation

- Consider that after the collision of the nuclear pancakes a lot of particles are produced at $t = \tau$. These are confined in a slice of longitudinal width dz and transverse area A.
- The longitudinal velocities have a spread $dv_L = \frac{dz}{\tau}$.
- ullet Near the middle region $v_L o 0$

$$\frac{dy}{dv_L} = \frac{d}{dv_L} \left[\frac{1}{2} \log \frac{1 + v_L}{1 - v_L} \right] = \frac{1}{1 - v_L^2} \simeq 1$$

We may now write

$$dN = dv_L \; \frac{dN}{dv_L} \simeq \frac{dz}{\tau} \; \frac{dN}{dy} \quad \rightarrow \quad \frac{dN}{dz} \simeq \frac{1}{\tau} \; \frac{dN}{dy}$$

• If $\langle E_T \rangle \simeq \langle m_T \rangle$ is the average energy per particle then the energy density in this area at $t = \tau$ is given by the Bjorken formula:

$$\langle \epsilon(au)
angle \simeq rac{dN \langle m_T
angle}{dz \; A} = rac{1}{ au} rac{dN}{dy} rac{\langle m_T
angle}{A} = rac{1}{ au \; A} rac{dE_T^{ ext{total}}}{dy}$$

• It is valid if (1) τ can be defined meaningfully (2) The crossing time $\ll \tau$.

RETURN

Glauber initial conditions

• We model the nucleus with the Woods-Saxon density distribution

$$\rho_A(\vec{x}) = \frac{\rho_0}{1 + \exp\left[\frac{(|\vec{x}| - R)}{\chi}\right]}$$

For Au, A=197, $R\simeq 6.4$ fm, $\chi=\simeq 0.54$ fm, and $\int d^3x \rho(\vec{x})=A$.

The nuclear thickness function is defined as

$$T_a(x_\perp) = \int_{-\infty}^{\infty} dz \ \rho(\vec{x})$$

We can calculate the number density of nucleons participating in the collision as

$$n_{\text{part}}(x,y,b) = T_A\left(x + \frac{b}{2},y\right)[1 - P(x,y)] + (b \to -b)$$
 , $P(x,y) = 1 - \left(1 - \frac{\sigma T_A\left(x - \frac{b}{2},y\right)}{A}\right)^A$

P is the probability of finding at least one nucleon of the second nucleus in position (x,y) and σ is the nucleon-nucleon cross-section. The number density of binary collisions

$$n_{\text{coll}}(x, y, b) = \sigma T_A \left(x + \frac{b}{2}, y \right) T_A \left(x - \frac{b}{2}, y \right)$$

(The two nuclei are at (b/2,0) and (-b/2,0).)

• The centrality is determined by the total number of participating nucleons, $N_{\rm part}(b) = \int d^2x \; n_{\rm part}$ and the initial energy density from

$$\epsilon(\tau = \tau_0, x, y, b) = \text{constant} \cdot n_{\text{coll}}(x, y, b)$$

• The constant is fitted to the data.

The Color Glass Condensate initial conditions

• The number density of gluons, produced during the collision of two nuclei is given by

$$\frac{dN}{d^2x_TdY} = \mathcal{N} \int \frac{d^2p_T}{p_T^2} \int^{p_T} d^2k_T \ \alpha_s(k_T) \phi_A(x_1, (\vec{p}_T + \vec{k}_T)^2/4, \vec{x}_T) \phi_A(x_1, (\vec{p}_T - \vec{k}_T)^2/4, \vec{x}_T)$$

 \vec{P}_T and Y are the transverse momentum and rapidity of produced gluons, $x_{1,2} = p_T e^{\pm Y}/\sqrt{s}$ is the momentum fraction of colliding gluon ladders. \mathcal{N} is fitted to data.

• The gluon distribution function is

$$\phi_A(x, k_T^2, \vec{y}) = \frac{1}{\alpha_s(Q_s^2)} \frac{Q_s^2}{max[Q_s^2, k_T^2]} P_T(\vec{y}) (1 - x)^4$$

and P is the probability of finding at least one nucleon in position \vec{y}

$$P_T(\vec{y}) = 1 - \left(1 - \frac{\sigma T_A(\vec{y})}{A}\right)^A$$

The saturation scale is taken to be

$$Q_s^2(x, \vec{y}) = 2 \text{ GeV}^2 \left(\frac{T_A(\vec{y})/P_T(\vec{y})}{1.53/fm^2} \right) \left(\frac{0.01}{x} \right)^{\lambda}$$

with $\lambda \simeq 0.288$

• The initial energy density is given by

$$\epsilon(\tau = \tau_0, \vec{y}, b) = \text{constant} \times \left[\frac{dN}{d^2x_TdY}\right]^{\frac{4}{3}}$$

Jet-quenching

ullet In p-p and in d-Au collisions high- p_T jets appear back-to-back.

- This is not the case in Au-Au central collisions
- This is strong evidence for jet-quenching

- R_{AA} is the ratio of π^0 cross section at mid-rapidity in Au+Au central or d-Au collisions to that in p-p collisions corrected for the multiplicity.
- R_{AA} is small in Au+Au because the medium strongly interacts and reduces the rate of production of pions for the same momentum.

Black Hole Formation, Elias Kiritsis

Detailed plan of the presentation

- Title page 0 minutes
- Bibliography 1 minutes
- Introduction 3 minutes
- The string/gravity description of strong-coupling QCD 4 minutes
- The gauge-theory/gravity correspondence 6 minutes
- A model for Holographic YM 8 minutes
- YM entropy 9 minutes
- YM trace 10 minutes
- The speed of sound 11 minutes
- Holographic YM Black holes 15 minutes
- Collisions of shock waves 17 minutes
- Horizons and trapped surfaces 19 minutes
- Entropy and multiplicity 20 minutes
- Shock waves in Einstein-Dilaton gravity 22 minutes

- Non-trivial transverse profiles 24 minutes
- A host on non-AdS backrounds 26 minutes
- The Penrose-type marginal trapped surface 28 minutes
- Review of the equations 31 minutes
- Known results 33 minutes
- What are we missing? 35 minutes
- Uniform transverse glueballs 38 minutes
- Non-uniform transverse glueballs 40 minutes
- IHQCD-like geometry 42 minutes
- General lessons 44 minutes
- The perturbative UV-fix 46 minutes
- The IHQCD multiplicities 48 minutes
- The AdS- Q_s multiplicities 50 minutes
- ALICE multiplicities 51 minutes
- Outlook 53 minutes

- Phase transition vs Crossover 56 minutes
- The mid-rapidity range 59 minutes
- Phases of a collision 62 minutes
- Is there thermal equilibrium? 64 minutes
- Ellipticity 65 minutes
- Elliptic flow 67 minutes
- Hydrodynamic elliptic flow 70 minutes
- Boost-invariant expansion and AdS/CFT 72 minutes
- The Bjorken Relation 74 minutes
- Glauber initial conditions 76 minutes
- Color Glass Condensate initial conditions 78 minutes
- Jet Quenching 80 minutes
- The deconfined phase 82 minutes
- A "warmup" bottom-up model of flavor 84 minutes
- The chiral vacuum structure 90 minutes
- Chiral restauration at deconfinement 94 minutes
- Jump of the condensate at the phase transition 97 minutes

- Meson Spectra 101 minutes
- Mass dependence of f_{π} 102 minutes
- Linear Regge trajectories 103 minutes
- Fit to data 109 minutes
- Steps Forward 110 minutes
- Numerical solutions :T = 0 112 minutes
- Numerical solutions: Massless with $x < x_c$ 117 minutes
- Comparison to N=1 sQCD 120 minutes
- BKT scaling 125 minutes