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Introduction

• Holography uses string-theory/gravity as an alternative description of

strong-coupling physics at large N .

• In this language a heavy-ion collisions leads to the formation of a localized

unstable black hole.

• This black holes expands adiabatically and finally decays through a process

that is similar but may be different from Hawking evaporation.
KIritsis+Taliotis

• Although QCD is not exactly a near-semiclassical theory, it is close:

therefore heavy ion collisions may help understand some aspects of black

hole physics that so far were considered far from experiments.

• So far, numerical gravitational calculations are not fully in line to describe

the details of such a collision but we are getting there.

2



• We may use however techniques first due to Penrose (trapped surfaces)
to get quantitative information on heavy-ion collision multiplicities.

• The idea is that a minimal trapped surface is always hidden behind a
horizon.

• Therefore its area is always smaller that the horizon area

• Such trapped surfaces can be calculated rather straightforwardly, by solv-
ing a classical boundary value problem.

• From Bekenstein’s formula the area of the horizon determines the entropy
of the black hole and this can be converted to the total multiplicity in a
heavy ion collision.

• Although this gives a lower bound on the total multiplicity as a function
of the cm energy per nucleon, s we can use properties of AdS space and
numerical data to argue that the leading s-dependence is the same.

• One can therefore produce a multiplicity function for high-energies that
is known up to a multiplicative constant that can be fit to experiment.

Black Hole Formation, Elias Kiritsis
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The IHQCD multiplicities

• There is no UV cutoff involved here.
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• Predictions for PbPb (A=207) at LHC:

Nch = 19100,27000,30500 for 2.76,5.5 and 7 TeV respectively.

Black Hole Formation, Elias Kiritsis
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The string/gravity description of

strong-coupling QCD

• As there are no generic techniques to control strong coupling physics,

any related tool is important.

• The correspondence between strongly-coupled gauge theories and string

theories have provided tools, in order to calculate at strong coupling.

• This correspondence works in a large-Nc, and strong (’t Hooft) coupling

regime. It is complementary to pQCD.

• The simplest and most controlable example involves a highly symmetric,

and scale invariant theory, N = 4 sYM. Its dual description involves string

theory (and gravity) in AdS5 space.

Black Hole Formation, Elias Kiritsis
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The gauge-theory/gravity correspondence

• There is one-to-one correspondence between on-shell string states Φ(r, xµ) and gauge-
invariant (single-trace) operators O(xµ) in the sYM theory

• In the string theory we can compute the ”S-matrix” , S(ϕ(xµ)) by studying the response
of the system to boundary conditions Φ(r = 0, xµ) = ϕ(xµ)

• The correspondence states that this is equivalent to the generating function of correlators
of O ⟨e

∫
d4x ϕ(x) O(x)⟩ = e−S(ϕ(x))

Maldacena 1997, Gubser+Klebanov+Polyakov, Witten, 1998
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• One of the most remarkable facts of the correspondence is that thermal-
ization in the QFT corresponds to the formation of a BH in the bulk.

• The thermal gauge theory ensemble maps to a large BH filling the AdS5
space.

• The laws of BH thermodynamics now find their explanation: they corre-
spond to the thermodynamics of the dual gauge theory.

• Therefore a heavy-ion collision with a thermalized final state must corre-
spond to the formation (and decay) of a black hole in the dual language.

• I should also stress that in the gravitational language, we have seen an
extra dimension that is “infinite”. Its KK states, are known since 30-50 years: they

are the radial excitations of glueballs, mesons and baryons. It is a “fuzy”extra dimension:

all but the few ligher KK states have large widths and are unobservable.

• The context however is different in many respects from the “popular”
bhs of “large extra dimensions” (that are not visible at LHC).

• What is the dual gravity/string theory that describes YM?

Black Hole Formation, Elias Kiritsis
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A model for Holographic YM

• We know that for Nc → ∞ QCD should be described by a (soft) string
theory in the UV.

• But there should be some gravity description in the IR, as the coupling
there is strong.

• The most important bulk fields are expected to be the metric gµν dual
to Tµν, and a scalar ϕ (the “dilaton”) dual to tr[F2].

• A good guess is an action of the form

Sg =M3N2
c

∫
d5x

√
g

[
R−

4

3
(∂ϕ)2 + Vg(ϕ)

]
Gursoy+Kiritsis+Nitti, 2007, Gubser+Nelore, 2008

• The potential Vg ↔ QCD β-function

• The scale factor of the bulk metric corresponds to the YM energy scale.

• eϕ → λ ’t Hooft coupling

Black Hole Formation, Elias Kiritsis
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YM Entropy

From M. Panero, arXiv:0907.3719
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Equation of state

From M. Panero, arXiv:0907.3719
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The sound speed
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Holographic YM Black holes
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Α=1

Α<1
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T

• There are small uniform black-holes that are thermodynamically unstable

• There are Large uniform black holes that thermodynamically stable.
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• The large black holes have E ∼ T4, S ∼ T3 as T → ∞. The horizon
position is rlargeh ∼ 1

T → 0 at large temperatures, where r = 0 is the position
of the AdS boundary. The specific heat is positive.

• The small black holes are unstable, with negative specific heat. They are
however nowhere near Schwartzschild black holes.

• As T → ∞ their horizon shrinks to zero size as rsmall
h ∼ T

Λ2
QCD

.

S ≃ V3 exp

−3
T2

Λ2
QCD

 , E ≃ V3M
3
P T exp

−3
T2

Λ2
QCD

 , T → ∞

• At large T , the small and large black holes satisfy the duality relation

(ΛQCD rsmall
h )(ΛQCD rlargeh ) ≃ 1

• We also have for any Ti, Tj

Elarge(Ti) > Esmall(Tj) , Slarge(Ti) > Ssmall(Tj)

• These suggest that during a collision it is an unstable analogue of the
large black holes that will be created.

• Studying however, time dependent unstable black holes is very difficult
analytically.

Black Hole Formation, Elias Kiritsis
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Collisions of shock waves

• We would like to model the heavy ion collision in the dual gravitational

5d language.

• In the dual gravitational theory to QCD, heavy ions can be modeled as

localised energy distributions collided at high relative velocities.

• Energy sources in gravitational theories generate gravitational fields de-

scribed by generalizations of the Schwartzschild solution.

• Two such energy sources colliding at high energy pose a formidable prob-

lem even for the classical theory as their gravitational fields start interacting

long before the sources collide.

• However at high energies, things simplify a bit: at ultrarelativistric speeds,

the gravitational fields squeeze into a cone, that becomes narrower with

energy. In the limit E → ∞, v → c, the field is squeezed on the light cone

x+ = 0, or x− = 0.
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• The metric around flat space is

ds2 = ηµνdx
µdxν + ϕ(x⊥)δ(x

+)(dx+)2

• ϕ(x⊥) describes the transverse profile of the wave.

• It can be obtained :

(a) By solving the Einstein equations with an appropriate ansatz

(b) By infinitely boosting the Schwartzschild solution.
Aichelburg+Sexl, 1971

• As the gravitational field of shock waves is squeezed, one can superpose

two such solutions that describe two particles in a head-on collision

ds2 = ηµνdx
µdxν +

[
ϕ1(x⊥)δ(x

+)(dx+)2 + ϕ2(x⊥)δ(x
−)(dx−)2

]
• The metric is valid in the three quadrants due to causality: x+ < 0 or

x− < 0.

• The metric changes in x+ > 0 and x− > 0 and it is a non-trivial task to

determine it.
13-
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Horizons and trapped surfaces

• A defining property of a black-hole formation during the collisions of
energy packets is the appearance of an event horizon.

• This is a difficult property to verify, as it is global, and the full metric in
the whole of spacetime is needed.

• There are however hints of the formation of a horizon that may appear
earlier during the dynamical process.

• Such hints are the trapped surfaces: Surfaces whose null normals are
inward.

• In plain words: they are surfaces that due to the attractiveness of gravity
and the focusing of geodesics they will evolve inside an event horizon (that
may form later).

• Such (codimension 2) surfaces are much easier to find, and sometimes (as
with Penrose-type surfaces) the shock-wave geometry before the collision
is enough to determine them.
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• A limit form of a trapped surface is a ”marginal trapped surface”: in
plain words it is a surface that is only barely trapped.
Mathematically it has vanishing “expansion”: ∇ · ℓ = 0. It is also known as
the apparent horizon.

• In the gravitational theory the area of a horizon is interpreted as entropy
according to the Bekenstein postulate.

• It can be shown, using the singularity thms, that the area of a marginally
trapped surface, is always smaller or equal to that of an event horizon that
will eventually form.

Penrose

• As the marginally trapped surface has the largest area, we obtain a lower
bound on the entropy:

S ≥ Smarginally trapped

• This is a central ingredient in our subsequent calculations.

Black Hole Formation, Elias Kiritsis
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Entropy and multiplicity

• Entropy can be translated into the total multiplicity Nch measured in
heavy ion collisions.

• 1 Charged particle is accompanied by approximately 1
2 Neutral particle

(isospin symmetry). Therefore:

Ntot = Nch+Nneutral ≃
3

2
Nch

• Estimate of total entropy:
Heinz

S ≃ 5 ×
3

2
× Nch ≃ 7.5 Nch

• We will use Nch, Ntot, and S interchangeably as they are proportional.

Black Hole Formation, Elias Kiritsis
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Shock waves in Einstein-Dilaton gravity

S5 = −M3
∫
d5x

√
g

[
R−

4

3
(∂Φs)

2 + V (Φs)
]

• We first find shock wave solutions in this theory of the form

ds2 = b(r)2
[
dr2 + dxidxi − 2dx+dx− + ϕ(r, x1, x2)δ(x+)(dx+)2

]

and Φs = Φs(r, x+) with the asymptotically AdS boundary at r = 0.

• The shock wave profile ϕ must satisfy(
∇2

⊥ +3
b′

b
∂r + ∂2r

)
ϕ = −M3J++, , ∂−J++ = 0

• This theory for Φs = V =constant provides the AdS solution b(r) = ℓ
r.

For a constant transverse profile the solution is

ϕAdS5 = E r4

Black Hole Formation, Elias Kiritsis
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Non-trivial transverse profiles

• The simplest profile, is the uniform one in transverse space

ϕ ∼
∫

dr

b(r)3

• For non-trivial profiles we separate variables ϕk ∼ fk(x⊥)gk(r)(
∂2x⊥ +

1

x⊥
∂x⊥ − k2

)
fk(x⊥) = 0

(
∂2r +3

b′(r)

b(r)
∂r + k2

)
gk(r) = 0.

• The first equation yields

fk(x⊥) = C1K0(kx⊥) + C2I0(kx⊥)

• The solution to g(r) depends on the scale factor b(r). The equation for
g is the same as that for 2++ glueballs with mass m2 = k2. For discrete
spectra, the transverse radii are quantized, 1

mn
following the spectrum.

• There are two classes of transverse distributions:

♠ Exponentially localised ones corresponding to a single k: K0 ∼ e−k|x⊥|.

♠ Power like ones corresponding to integrals over k: 1
(|x⊥|2+L2)a

Black Hole Formation, Elias Kiritsis
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A host of non-AdS backrounds

• non-AdS scale factors: (not everything is allowed).

♠ b ∼ ra, with a ≤ −1. This corresponds to quasiconformal geometries,
with no confinement, continuous spectrum and no mass gap, with potential
asymptotics as Φs → ∞, V ∼ eQΦs, Q < 4

3.

♠ Confining backgrounds that are scale invariant in the IR, with b(r) ∼
(r0 − r)a, a > 1

3. They have a discrete spectrum of glueballs and a mass
gap. The potential asymptotics as Φs → ∞ are V ∼ eQΦs, Q > 4

3.

♠ Confining backgrounds with b(r) ∼ e−(Λr)a, a > 0. They have a discrete
spectrum and a mass gap. The potential asymptotics as Φs → ∞ are

V ∼ e
4
3Φs Φ

a−1
a
s . a = 2, corresponds to IHQCD

♠ Confining backgrounds with b(r) ∼ e
−
(

Λ
r−r0

)a
, a > 0. They have a discrete

spectrum and a mass gap. The potential asymptotics as Φs → ∞ are

V ∼ e
4
3Φs Φ

a+1
a

s .

Black Hole Formation, Elias Kiritsis
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The Penrose-type marginal trapped surface

• S1 is defined by x+ = 0, x− + 1
2ψ1(r, x1, x2). S2 is defined by x− = 0,

x+ + 1
2ψ2(r, x1, x2).

• They are glued along a two-surface C: ψ1|C = ψ2|C = 0, with a continuity
condition on the normals on C.

Strapped =
M3

4
(V ol(S1) + V ol(S2))

Black Hole Formation, Elias Kiritsis
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Review of the equations

• For two shock wave profiles ϕ1,2(r, x⊥) solving the appropriate equations

∇2ϕ1,2 = −M3J++ , ∇2 ≡
(
∇2

⊥ +3
b′

b
∂r + ∂2r

)
• The two pieces of the marginal trapped surface, determined by ψ1,2(r, x⊥)
must satisfy:

∇2
(
ϕ1,2 − ψ1,2

)
= 0

Their boundary surface C is determined as

ψ1|C = ψ2|C = 0

and the continuity of the normals along C gives the final equation∑
i=r,1,2

∂iψ1 ∂iψ2|C = 8b(r)2

Then the entropy bound is

Strapped =
M3

4
(V ol(S1) + V ol(S2))

20



• What is the use of a lower bound Strapped?

• Assume that at large energy s → ∞, we find that Strapped = A sa +

subleading.

• The ratio S
Strapped

, if the trapped surface ends in the UV part of the

geometry (that is expected to be close to AdS5) is to a good accuracy

s-independent due to scale invariance.
Romatschke, 2011

• Therefore S = Ãsa +subleading. We can predict the leading high energy

dependence.

Black Hole Formation, Elias Kiritsis
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Known results

• We will only consider head-on collisions

• The entropy production was calculated in AdS5 from shock waves uniform

in transverse space . The result is Strapped ∼ s
1
3.

Gubser+Pufu+Yarom

• The entropy production was calculated in AdS5 from shock waves with a

(x2⊥ + L2)−3 transverse profile. The result is again Strapped ∼ s
1
3.

Gubser+Pufu+Yarom

• Some more general distributions were explored in the same context and

a maximal size was found for the formation of the trapped surface.
Alvarez-Gaumé+Gomez+Vera+Tavanfar+Vazquez-Mozo

• These results seem to overestimate the pre-LHC data
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• We would like to test other backgrounds beyond AdS5. In particular test
the different 5d backgrounds as a function of their ability to confine, and
have discrete spectra.

• We would like to test different transverse profiles, in particular well local-
ized (exponential) ones in transverse space, that look more like the energy
distribution of nuclei.

• We would like to somehow accommodate the fact that QCD is weakly
coupled in the UV and this suppresses multiplicities at large momentum
transfers.

Black Hole Formation, Elias Kiritsis
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What are we missing?

• AdS5 is a VERY crude model for the QCD dynamics.

• Improved Holographic QCD is much better but contains only glue. What

we scatter are very energetic 2++ glueballs. No quarks, no nuclei.

• The holographic theories are not properly weakly coupled in the UV.

• This description is valid as Nc ≫ 1.

• The geometry is not always well defined during the collision.

• There may be other marginal trapped surfaces that are NOT of the

Penrose type.

Black Hole Formation, Elias Kiritsis
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Uniform transverse glueballs

b3(rH) =
E√
8

, Strapped ∼
∫ rH
∞

b3(r)dr

• Non-confining

b(r) ∼
(
r

ℓ

)a
, (a ≤ −1) , Strapped ∼ s

1
2−

1
6a ,

1

3
≤

1

2
−

1

6a
≤

1

2

• Confining (scaling)

b(r) ∼
(
r − r0
ℓ

)a
,

(
a ≥

1

3

)
, Strapped ∼ s

1
2+

1
6a ,

1

2
≤

1

2
+

1

6a
≤ 1

• Confining (IR of IHQCD)

b(r) ∼ e−(
r
ℓ)
a
, (a > 0) , Strapped ∼ s

1
2 (log s)

1+a
a

• Confining II

b(r) ∼ e
−
(

ℓ
r−r0

)a
, (a > 0) , Strapped ∼ s

1
2 (log s)

1−a
a

Black Hole Formation, Elias Kiritsis
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Non-uniform transverse glueballs

• Powerlike distribution

ϕ =
(
r − r0
L

)−1+3a
2

P
1
2
3a
2 −1

(1 + 2q)

(q(1 + q))
1
4

, q =
x2⊥ + (r − r′)2

4(r − r0)(r′ − r0)

• Confining b(r) ∼
(
r
ℓ

)a
, a > 1

3

Strapped ∼ s
1
2
3a+3
3a+2

• Non-Confining , a < −1

Strapped ∼ s
3a+1
6a

• Exponential scale factor,

ϕ = e
3r
2R

e−
3
2
√
u

√
u

, u =
(x⊥ − x′⊥)

2 + (r − r′)2

R2

b ∼ e−
r
R , Strapped ∼ s1.66(log s)1.17

Black Hole Formation, Elias Kiritsis
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IHQCD-like geometry

• We call this (by abuse of language): ”IHQCD model”

b(r) =
ℓ

r
e
− r2

R2

• The geometry is asymptotically AdS5 in the UV, (r → 0), and confining

in the IR.

ϕk =
E

8π(Mℓ)3k2
gn(kr)K0(kx⊥) , gn =

r4

R4
L
(2)
n

(
3r2

R2

)

• The size is quantized : k2n = (n+2)12
R2 (linear glueball trajectory).

• Trapped surface area can be computed only numerically.

Black Hole Formation, Elias Kiritsis
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General lessons

• If the UV geometry is asymptotically AdS5 most of the “trapped entropy”

originates in the UV part of the geometry. Multiplicity comes from the high-

energy part of phase space.

• For uniform transverse distributions only, the AdS geometry produces the

less entropy from the rest.

• A general trend in non-trivial transverse energy distributions is that at

equal total energy the most dilute energy distribution produces the most

entropy.

• Sometimes we do not find a trapped surface. In IHQCD there is no

trapped surface for the lowest lying 2++ gluball.
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• An AdS geometry produces more entropy than an asymptotically AdS

confining geometry.

b(r) ℓ
r

ℓ
r exp[−

r2

R2]

Transverse profile

Uniform SAdSunif S
IHQCD
unif

GYP SAdSGPY Not studied

Exponential SAdSexp S
IHQCD
exp

SAdSunif > SAdSGPY > SAdSexp , S
IHQCD
unif > SIHQCDexp

SAdSunif > S
IHQCD
unif , SAdSGPY > SIHQCDexp , SAdSexp > SIHQCDexp

Black Hole Formation, Elias Kiritsis
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The perturbative UV-fix

• How do we encode the weak coupling dynamics in the UV?

• Use a UV cutoff in AdS, and assume that above it the entropy production
vanishes. This changes S ∼ s

1
3 to S ∼ s

1
6.

Gubser+Pufu+Yarom

• A more natural place to cutoff the strong coupling regime is the “satu-
ration” scale Qs. McLerran,Venugopalan,Khrazeev......

R3,1

r

1/Qs R

Asym. Freedom IREntropy Production

Q2
s ≃ (0.2 GeV )2 ×A

1
3 × (

√
sNN)2λ , λ ∈ [0.1,0.15]

• This defines the AdS −Qs “model”

Black Hole Formation, Elias Kiritsis
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The IHQCD multiplicities

• There is no UV cutoff involved here.

Nch = 78.05
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• Predictions for PbPb (A=207) at LHC:

Nch = 19100,27000,30500 for 2.76,5.5 and 7 TeV respectively.

Black Hole Formation, Elias Kiritsis
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The AdS-Qs multiplicities

• There is a UV cutoff at Qs.

Nch = 1.54
(
A

Aau

)17
18

( √
s

1 GeV

)0.483
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• Predictions for pp (A=1) at LHC: Nch = 70,110,190,260 for 0.9,2.36,7
and 14 TeV respectively.

• Predictions for PbPb (A=207): Nch = 18750,261800,29400 for 2.76,5.5
and 7 TeV respectively.

Black Hole Formation, Elias Kiritsis
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ALICE multiplicities

A. Toia for ALICE, Arxiv:1107.1973

Black Hole Formation, Elias Kiritsis
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Outlook

• Our approach is of restricted validity, it seems to give good numbers, but
cannot distinguish between the two models.

• It can be improved in several ways.

• Obtaining the differential multiplicities is preferable, but this requires full
scale PDE evolution of the BH geometry

• In the last year this seems to becoming possible

Heller+Janik+Witaszczyk

Black Hole Formation, Elias Kiritsis
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THANK YOU
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Phase transition vs crossover

• The pure gauge theory (first-order) critical temperature is Tc ≃ 240± 15 MeV.

• It is interesting that the lightest bound state (glueball) in the pure gauge theory has a
mass 1700 MeV so that Tc

M0++
≃ 0.14

• The crossover with almost physical quarks is at Tc ≃ 175±15 MeV ≃ 1012 0K. → 10−6

sec

Black Hole Formation, Elias Kiritsis
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The mid-rapidity range

• The crossing time for Au nuclei (with radius 8 fm) is ∼ 0.1fm/c ≃ 3× 10−25 seconds.

• The particles with small vL are produced after 1 fm/c ≃ 3×10−24 seconds. Those with
higher vL are produced later due to time dilation.

• Use the rapidity variable y = 1
2 log

1+vL
c

1−vL
c

. ∆y is Lorentz invariant.

• The ”new matter” (free of fragments) is produced near y ≃ 0. This is what we are
looking for.

• This can be tested by looking at how much ”baryon” number is at mid-rapidity
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• Distribution of zero baryon number and net baryon number particles as a function of
rapidity (from BRAHMS)

• Each beam nucleon looses 73 ± 6 GeV on the average that goes into creating new

particles. Therefore there is 26 TeV worth of energy available for particle production.

Black Hole Formation, Elias Kiritsis
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Phases of a collision

The “initial” energy density is given by the Bjorken formula

Black Hole Formation, Elias Kiritsis
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Is there thermal equilibrium?

PHENIX (triangles), STAR(stars), BRAHMS (circles) PHOBOS (crosses) particle ratios,

at Au+Au (s=200 GeV) at mid-rapidity vs thermal ensemble predictions.

Black Hole Formation, Elias Kiritsis
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Ellipticity
Ollitrault, 1992

• In an off-center collision, an initial elliptic pattern is produced.

• If the subsequent interactions are weak particles are free streaming and this elliptic
pattern is wiped-out

• If the interactions are strong, this pattern persists and is visible in the detectors.

Black Hole Formation, Elias Kiritsis
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Elliptic flow

• Such Elliptic flow has been observed recently in strongly coupled cold

gases.

Black Hole Formation, Elias Kiritsis
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Hydrodynamic elliptic flow

Elliptic flow data from STAR as a function of pT (right) compared to

relativistic hydrodynamics calculations with non-zero shear viscosity, from

Luzum+Romanschke (2008).

Black Hole Formation, Elias Kiritsis
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Boost-invariant expansion and AdS/CFT

• Bjorken has guessed correctly in 1983 that a heavy-ion collision will be
described in its later stages as a boost invariant expansion of a relativistic
fluid: densities will depend only on τ2 = (x0)2 − (x3)2.

• Moreover, from scale invariance ρ = T00 ∼ τ−
4
3, instead of the free-

streaming option ρ = T00 ∼ τ−1. This implies that T ∼ τ−
1
3 and that the

entropy remains approximately constant.

• This symmetric late time behavior was first justified by finding it as a
(non-singular) solution of the dual gravitational equations corresponding to
a bulk black hole where the horizon position shrinks with time.

Janik+Peschanski, 2005

Subleading terms in this gravitational solution indicated the presence of
small viscosity.

• Finally it was shown in general that large-wavelength solutions to the AdS Einstein equa-

tions generate the relativistic Navier-Stokes equation with an infinite series of “viscous”

corrections that generate dissipation.
Bhattacharya+Hubeny+Minwalla+Rangamani, 2008
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The Bjorken Relation

• Consider that after the collision of the nuclear pancakes a lot of particles are produced
at t = τ . These are confined in a slice of longitudinal width dz and transverse area A.

• The longitudinal velocities have a spread dvL = dz
τ
.

• Near the middle region vL → 0

dy

dvL
=

d

dvL

[
1

2
log

1+ vL

1− vL

]
=

1

1− v2L
≃ 1

• We may now write

dN = dvL
dN

dvL
≃
dz

τ

dN

dy
→

dN

dz
≃

1

τ

dN

dy

• If ⟨ET ⟩ ≃ ⟨mT ⟩ is the average energy per particle then the energy density in this area at
t = τ is given by the Bjorken formula:

⟨ϵ(τ)⟩ ≃
dN⟨mT ⟩
dz A

=
1

τ

dN

dy

⟨mT ⟩
A

=
1

τ A

dEtotal
T

dy

• It is valid if (1) τ can be defined meaningfully (2) The crossing time ≪ τ .

RETURN
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Glauber initial conditions

• We model the nucleus with the Woods-Saxon density distribution

ρA(x⃗) =
ρ0

1+ exp
[
(|x⃗|−R)

χ

]
For Au, A = 197, R ≃ 6.4 fm, χ =≃ 0.54 fm, and

∫
d3xρ(x⃗) = A.

• The nuclear thickness function is defined as

Ta(x⊥) =

∫ ∞

−∞
dz ρ(x⃗)

• We can calculate the number density of nucleons participating in the collision as

npart(x, y, b) = TA

(
x+

b

2
, y

)
[1− P (x, y)]+(b→ −b) , P (x, y) = 1−

(
1−

σTA
(
x− b

2
, y
)

A

)A
P is the probability of finding at least one nucleon of the second nucleus in position (x,y)
and σ is the nucleon-nucleon cross-section. The number density of binary collisions

ncoll(x, y, b) = σTA

(
x+

b

2
, y

)
TA

(
x−

b

2
, y

)
(The two nuclei are at (b/2,0) and (−b/2,0).)
• The centrality is determined by the total number of participating nucleons, Npart(b) =∫
d2x npart and the initial energy density from

ϵ(τ = τ0, x, y, b) = constant · ncoll(x, y, b)

• The constant is fitted to the data.
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The Color Glass Condensate initial conditions

• The number density of gluons, produced during the collision of two nuclei is given by

dN

d2xTdY
= N

∫
d2pT

p2T

∫ pT

d2kT αs(kT)ϕA(x1, (p⃗T + k⃗T)
2/4, x⃗T)ϕA(x1, (p⃗T − k⃗T)

2/4, x⃗T)

P⃗T and Y are the transverse momentum and rapidity of produced gluons, x1,2 = pT e
±Y /

√
s

is the momentum fraction of colliding gluon ladders. N is fitted to data.

• The gluon distribution function is

ϕA(x, k
2
T , y⃗) =

1

αs(Q2
s)

Q2
s

max[Q2
s , k

2
T ]

PT(y⃗) (1− x)4

and P is the probability of finding at least one nucleon in position y⃗

PT(y⃗) = 1−
(
1−

σTA(y⃗)

A

)A
• The saturation scale is taken to be

Q2
s(x, y⃗) = 2 GeV2

(
TA(y⃗)/PT(y⃗)

1.53/fm2

)(
0.01

x

)λ
with λ ≃ 0.288

• The initial energy density is given by

ϵ(τ = τ0, y⃗, b) = constant×
[

dN

d2xTdY

]4

3
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Jet-quenching

• In p-p and in d-Au collisions high-pT jets appear back-to-back.

44



• This is not the case in Au-Au central collisions

• This is strong evidence for jet-quenching

44-



• RAA is the ratio of π0 cross section at mid-rapidity in Au+Au central or d-Au collisions
to that in p-p collisions corrected for the multiplicity.

• RAA is small in Au+Au because the medium strongly interacts and reduces the rate of

production of pions for the same momentum.

Black Hole Formation, Elias Kiritsis

44-



Detailed plan of the presentation

• Title page 0 minutes

• Bibliography 1 minutes

• Introduction 3 minutes

• The string/gravity description of strong-coupling QCD 4 minutes

• The gauge-theory/gravity correspondence 6 minutes

• A model for Holographic YM 8 minutes

• YM entropy 9 minutes

• YM trace 10 minutes

• The speed of sound 11 minutes

• Holographic YM Black holes 15 minutes

• Collisions of shock waves 17 minutes

• Horizons and trapped surfaces 19 minutes

• Entropy and multiplicity 20 minutes

• Shock waves in Einstein-Dilaton gravity 22 minutes

45



• Non-trivial transverse profiles 24 minutes

• A host on non-AdS backrounds 26 minutes

• The Penrose-type marginal trapped surface 28 minutes

• Review of the equations 31 minutes

• Known results 33 minutes

• What are we missing? 35 minutes

• Uniform transverse glueballs 38 minutes

• Non-uniform transverse glueballs 40 minutes

• IHQCD-like geometry 42 minutes

• General lessons 44 minutes

• The perturbative UV-fix 46 minutes

• The IHQCD multiplicities 48 minutes

• The AdS-Qs multiplicities 50 minutes

• ALICE multiplicities 51 minutes

• Outlook 53 minutes

45-



• Phase transition vs Crossover 56 minutes

• The mid-rapidity range 59 minutes

• Phases of a collision 62 minutes

• Is there thermal equilibrium? 64 minutes

• Ellipticity 65 minutes

• Elliptic flow 67 minutes

• Hydrodynamic elliptic flow 70 minutes

• Boost-invariant expansion and AdS/CFT 72 minutes

• The Bjorken Relation 74 minutes

• Glauber initial conditions 76 minutes

• Color Glass Condensate initial conditions 78 minutes

• Jet Quenching 80 minutes

• The deconfined phase 82 minutes

• A “warmup” bottom-up model of flavor 84 minutes

• The chiral vacuum structure 90 minutes

• Chiral restauration at deconfinement 94 minutes

• Jump of the condensate at the phase transition 97 minutes

45-



• Meson Spectra 101 minutes

• Mass dependence of fπ 102 minutes

• Linear Regge trajectories 103 minutes

• Fit to data 109 minutes

• Steps Forward 110 minutes

• Numerical solutions :T = 0 112 minutes

• Numerical solutions: Massless with x < xc 117 minutes

• Comparison to N=1 sQCD 120 minutes

• BKT scaling 125 minutes

Black Hole Formation, Elias Kiritsis

45-


