Studies of Λ_c production in pp and p-Pb collisions with ALICE at the LHC

XII Quark Confinement and the Hadron Spectrum 29 August - 3 September, Thessaloniki, Greece

Elisa Meninno
INFN and University of Salerno, Italy
on behalf of the ALICE Collaboration

 $\Lambda_c^+ \to p K^- \pi^+ (c\tau = 60 \ \mu m, BR = 6.84^{+0.32}_{-0.40}\%)$ $\Lambda_c^+ \to p K^0_S (c\tau = 60 \ \mu m, BR = 1.1 \pm 0.1\%)$

parameter resolution of the current ITS

HMPID

L3 Magnet

$\Lambda_c \rightarrow pK_s^0$ analysis in pp and pPb collisions

 K⁰_S candidate reconstructed from pairs of opposite-sign tracks forming a vertex displaced from the interaction vertex, according to track selection, topological cuts:

Distance of closest approach (DCA), Cosine of pointing angle, $p_T(K_s^0)$ daughters), $d_0(K_s^0)$ daughters),

 $|m_{inv}(\pi^+\pi^-) - m(K^0_S)| < 7.5 \text{MeV/c}^2$

A clear K_S^0 signal in $m_{inv}(\pi^+,\pi^-)$ limits the combinatorial background, despite the low B.R.

- Proton tracks candidates are selected, according to track selection and PID (main selection for protons, using TPC and TOF, number of sigma cut approach)
 - Built Λ_c candidate, combining K⁰_S and protons, according to loose topological cuts

$\Lambda_c \rightarrow pK\pi$ analysis in pp and pPb collisions

pKπ candidates building

Pairs of opposite charge tracks selected. Third track added to build a triplet and secondary vertex of the triplet estimated.

Cuts applied: high-quality single tracks cuts, cuts on daughter $p_{\rm T}$, quality of reconstructed vertex, DCA (distance of closest approach between tracks), cosine of $\Lambda_{\rm c}$ pointing angle (angle between the $\Lambda_{\rm c}$ flight line and the momentum of the reconstructed $\Lambda_{\rm c}$ candidates).

- PID is essential to identify protons, kaons and pions
- Detector used: TOF and TPC.
- Used approach: Bayesian PID (maximum probability criterion).
- Using PID the background is suppressed by a factor 100!

Λ_c signal extraction in pp and p-Pb collisions

In both analyses:

 Λ_c is reconstructed in a wide momentum range

In both analyses:

 Good agreement with MC expectations is observed

Perspectives for future measurements of Λ_c

- Main goals of the ALICE ITS Upgrade after the second LHC long shutdown (2019))
 - Improve impact parameter resolution (~ factor 3)
 - Improve tracking efficiency and p_{T} resolution at low p_{T}
 - Fast readout for data take
- These new features of ALICE will allow to measure charmed hadrons, and in particular Λ_c , in Pb-Pb collisions.

Perspectives for future measurements of Λ_c

- Main goals of the ALICE ITS Upgrade after the second LHC long shutdown (2019))
 - Improve impact parameter resolution (~ factor 3)
 - Improve tracking efficiency and p_{T} resolution at low p_{T}
 - Fast readout for data take
- These new features of ALICE will allow to measure charmed hadrons, and in particular Λ_c , in Pb-Pb collisions.

Thank you for your attention

Back up

Λ_c analysis in pp and p-Pb collisions

- Λ_c in pp collisions:
 - Fundamental reference for Pb-Pb
 - Useful test for perturbative Quantum Cromo Dynamics (pQCD)
 - Total cross section of charm production at the LHC with ALICE

Baryon cross section needed in addition to the D-meson cross section

- Λ_{C}^{+} in p-Pb collisions
 - Rreference for Pb-Pb
 - Study of cold nuclear matter effects (not due to QGP formation, such as modification of the Parton Distribution Functions (PDF), k_T broadening)

Decay channels studied in ALICE:

```
Λ_c^+ \rightarrow p \ K^- \pi^+  and charge conjugate (c.c.)

not resonant:

p \ K^*(892):

horseparate A = 0.30 \ M = 0.30 \
```

Λ_c analysis in pp and pPb collisions

Motivations in Pb-Pb collisions

- Charm is a very sensitive probe of the *Quark-Gluon-Plasma* (QPG), produced in heavy-ion collisions
- Together with charmed-mesons, the measurement of Λ_{c} in Pb-Pb collisions could give an insight into the hadronization mechanisms in QGP

Measurement of the baryon over meson ratio in the heavy-quark sector

The existence of stable bound diquark in QGP, would lead to a significant enhancement of Λ_c/D ratio in heavy ion collisions

Yield of Λ_c estimated using coalescent model

$\Lambda_c \rightarrow pK_s^0$ analysis in pp and pPb collisions

Analysis strategy

Next steps:

- Further selection to improve signal extraction, via topological cuts on several variables
- Signal extraction via invariant mass distributions
- Feed down correction
- Efficiency and acceptance corrections
- Cross section estimate

$$\left. \frac{d\sigma^{\Lambda_{c}^{\pm}}}{dp_{T}} \right|_{|y| < 0.5} = \frac{1}{2} \frac{1}{\Delta y \cdot \Delta p_{T}} \frac{f_{prompt} \cdot N^{\Lambda_{c}^{\pm} \text{ raw}}}{(\text{Acc} \times \varepsilon)_{prompt} \cdot \text{BR}_{\Lambda_{c} \to p\pi^{+}\pi^{-}(\leftarrow K_{s}^{0})} \cdot L_{\text{int}}}$$

 $\label{eq:Lint} \begin{aligned} & \text{L_{int} = integrated luminosity} \\ & \text{f_{prompt} = fraction of prompt Λ_{c}, after b feed-down subtraction} \end{aligned}$

$$N^{\Lambda_c}$$
 raw = raw yield $BR_{\Lambda_c \to p\overline{K}^0}$ (2015 PDG)