
A word from the librarian

Karolos Potamianos

FCC Weekly Software Meeting

20 November 2014

A few words about me

•  Position: post-doc at LBNL (USA), working on the ATLAS experiment
•  Main role: ATLAS Pixel DAQ coordinator since 2 years
•  My background: Applied Physics (Engineering degree from ULB, Belgium)

and HEP (PhD in Physics from Purdue University, USA)
•  Past research: Higgs (ZH/WH at CDF and H à ZZ à 4l at ATLAS), top

quark (single top and top pair at CDF), the Etmiss + jets signature

My motivation
•  I have worked with code bases from 3 major experiments (CDF, CMS and

ATLAS) and think that some things could be better streamlined, causing less
headaches to the (increasingly many) collaborators of HEP experiments

•  FCC-SW is a starting effort; I hope I can contribute to making development
easier for the collaboration (sound workflows facilitate contributions)

K. Potamianos - Preparation for M7 2

How I see my role

•  Colin and Benedikt have already started very nice things, and I would like to
help them, and the rest of you, with my contributions

•  I have enough programming experience in several programming languages
to feel comfortable in recommending coding practices ; I would therefore like
to propose to update the current FCC SW coding style, with emphasis on:
–  Code modularity and re-usability (but not just for the sake of it)
–  Common code structure, and relevant, meaningful comments
–  Modern computing practices (esp. regarding variable scope and pointers)
–  Modern C++1x programming

•  I don’t do this just for the sake of it: I would like to work with a code base that
is a breeze to maintain and which has many contributors, a fast turn-
around (esp. regarding bug fixes), and an easy learning curve for
newcomers ; our goal is to get physics studies (and later results) out!

K. Potamianos - Preparation for M7 3

The git way

•  For FCC-SW we git as our version control system (VCS) – I fully support it!
•  But git is not svn (as you’ve probably figured) ; it’s (I believe) easier than

SVN (and way more powerful) … once you forget about SVN

•  In git, every user has one copy of the whole repository (with the
complete history of commits – not the case of SVN) and a working copy
–  This means that one car work completely offline and still have his/her

code source under version control (committing is still possible!)
–  But this also means that your commits are local and not shared with

anybody until you send them somewhere (push in the git lingo)
–  Work can be shared in many ways, but we recommend using GitHub for

centralization purposes (and ease of use) – more on this later
•  I don’t want to explain git here – there are many tutorials out there and I can

summarize the major use cases if there’s a request for it – but you can
contact me for help ; I will do my best to respond in a timely manner

K. Potamianos - Preparation for M7 4

GitHub

•  GitHub is a web-service that allows you to host git repositories and share
them with the world

•  We have set up one such repository for the FCC-SW, which you can find at
https://github.com/HEP-FCC/FCCSW

•  The repository above is the official repository, our “common code”
•  Users can simply get the code by cloning that repository, selecting a branch

or a tag (version of the code) and then run it
•  Developers, however, need to first clone the repository in GitHub (under

their user account) and then use that to develop on
•  Once the feature they’re working on is ready, they should test it and then

inform the maintainers (a few people) that their feature is ready to use

•  This may sound more difficult than the SVN-way but it has many advantages
and, in my own opinion, very little drawbacks

K. Potamianos - Preparation for M7 5

GitHub Workflow
Code user
1.  On your computer (or lxplus), clone the FCCSW repository

git clone https://github.com/HEP-FCC/FCCSW.git FCCSW

2.  Assuming the master branch is what we want, build the code and run
Code contributors (everybody)
1.  Fork the FCCSW repository from https://github.com/HEP-FCC/FCCSW

(requires a GitHub account)
2.  On your cmoputer, clone the FCCSW repository from your account

git clone https://github.com/karolos-potamianos/FCCSW.git FCCSW

3.  You can build the code, and run it
4.  To contribute, create a branch named after your contribution, and add files

you modified (or added)
git checkout -b methodToFindDarkMatter  
git add ClassToFindDarkMatter.cxx ClassToFindDarkMatter.h  
Check your code compiles and doesn’t crash for common cases  
git commit -m “Adding a new class to find dark matter”

5.  Your changes are local, you need to push them to your remote repository
git push # Some more setup is needed – see TWiki

K. Potamianos - Preparation for M7 6

GitHub Workflow

6.  Once you’ve pushed them to your GitHub account, others can already test

them and comment on the implementation (there’s a very nice interface)
7.  Once you think this feature you’re working on is ready and tested, merge

the code form the official GitHub repository to keep in synch
»  You’re recommended do do this often in the development process;

the more the better as logical conflicts are easier to address
(git takes good care of merging in changes to orthogonal code)

»  Main advantage: who better than the implementer can best fix
conflicts arising from the feature he/she’s adding or working on ?

8.  Submit a pull request in GitHub so that the maintainers can merge it with
the official FCCSW repository, and make it easily available

»  This represent a “validation” of the package but of course does not
mean that there are no bugs in the said code

»  At this point, rapid checks will be done regarding the presence of
compilability, code comments and code structure

9.  Once the request is approved, your code is part of the FCCSW J

K. Potamianos - Preparation for M7 7

GitHub Workflow – Remarks
•  While this modus operandi seems long and tedious, it has many

advantages:
–  You can continue your work autonomously until your feature is ready, with

version control (unlike with SVN)
–  Others are not affected by pieces you might break (happens a lot with

SVN), although please keep in mind that every commit should compile!
–  Your user repository on GitHub is a remote backup, with high availability
–  GitHub is very good regarding code and commit history visualization,

commenting and issue reporting, which is why many projects use it

•  Additional advantages related to using git
–  You can work on multiple topics using branches, and quickly switching form

one branch to another – this is particular useful for hotfixes, but also for
trying parallel development paths that can be discarded later (you only do a
pull request once you have your feature ready, keeping the rest local)

–  By committing often (which is recommended) and doing atomic functional
commits (adding all your changes in 1 commit is NOT recommended) git
will know about the code changes and merging/reverting/etc. is really easy

K. Potamianos - Preparation for M7 8

General coding remarks
•  Collaborating with other developers (esp. not professional coders,

although!) requires some common agreements in order to make
everybody’s life easier
–  Nobody wants to spend minutes/hours figuring out that this piece of code

simply swaps the bits of a word (OK, real-life cases are more tricky)
–  Nobody wants to move across multiple files to figure out that a given

function does/doesn’t overload a function defined in the interface
–  Nobody wants to spend a day looking into the implementation of a package

in order to add a feature that could have taken 10 minutes to add if the
design intentions and implementation choices were clearly expressed

•  Some of these concerns are more advanced, but they have a common
source: the lack of proper documentation
–  Agreed, we are physicists and don’t want do spend time writing comments,

but the community benefits as a whole! Even yourself, a few years later!
–  Documenting also helps in the design: describe the feature before you

implement it, and then check it against your description
•  Some features should be enforced at commit as well:
–  Compilability of code, code structure and also presence of comments

K. Potamianos - Preparation for M7 9

