
1 
The Status of Reactor Antineutrino Flux 

Modelling 
G.Kessedjian - LPSC 

Fission yield measurements  
and  

associated covariance data. 

G.Kessedjian  
LPSC  

For the Lohengrin fission collaboration  



G.Kessedjian - LPSC 
The Status of Reactor Antineutrino Flux 

Modelling 
2 

1- Fission yields : why do we need new measurements ? 
 
2- Impact of the covariance in the decay heat for nuclear applications 
 
3- Thermal neutron induced fission yields available  
 
4- Self-normalization, systematic group, and ND  Bases :  
  basic elements of correlations 
  
 example on measurements @ lohengrin 
 
5-  Proposal to increase the constraints on the decay heat 
 

 Outlook 



Impact of fission yields in the actual and innovative fuel cycles 
 
• Inventory of used fuel : isotopic composition 
• Residual power : minor actinides and fission products 
• Radiotoxicity of used fuel 
• Experimental fuel studies : reaction cross sections and isotope yields  are needed for 
comparison Calculation/ Experiment (C/E) 
• Calculation/prediction of prompt  rays emitted in a core 
 
 

For fission process study  
 
 
• Test the fission model predictions is necessary for the evaluations at different neutron 
energies 
• Lack on dynamical aspect for fission process modelisation →𝑌(𝐴,𝑍,E*,𝐽𝜋 ) 
 Spin distribution 
 Search of signatures of the fission modes in the kinetic energy distributions 
• Inconsistency between Models or evaluations and Experiments for heavy fragments and 
symmetric region  
 → Nuclear charge Polarization 
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    1- Fission yields : why do we need new measurements ? 

),,,(),()()(),,,,( kkk EZAJPZAEPAZPAYJEZAY  

Mass    Charge        Kinetic           spin     distributions 
  energy 

Not possible  
Mass measurements are 
usually more available and 
precise than isotopic 
measurements  

 
 
 Needs of new measurements 
 
• Structure in mass and nuclear charge distributions  

 (e.g. Fifrelin, neutron emission,  prompt) 

• Isotopic distributions near symmetric region  Nuclear charge polarization 

• Spin distributions of the fission fragments as a function of the excitation energy 

  e.g. modeling prompt  emission 
 

 

 

 

 

 

 

 
 
 Needs of details on the measurements  
 

-  Evaluation : No covariance available 

-  Mass =  Isotope 

-  Variance(Mass) =  Var(Isitope)  

   > Var( major Isotope)  
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    1- Fission yields : why do we need new measurements ? 

Not possible  
Mass measurements are 
usually more available and 
precise than isotopic 
measurements  

 
 
 Needs of new measurements 
 
• Structure in mass and nuclear charge distributions  

 (e.g. Fifrelin, neutron emission,  prompt) 

• Isotopic distributions near symmetric region  Nuclear charge polarization 

• Spin distributions of the fission fragments as a function of the excitation energy 

  e.g. modeling prompt  emission 
 

 

 

 

 

 

 

 
 
 Needs of details on the measurements  
 

-  Evaluation : No covariance available 

-  Mass =  Isotope 

-  Variance(Mass) =  Var(Isitope) + … +  Cov (Isotopes) 

   > Var( major Isotope)  
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~ 100 most 
 Important Isotopes 

after shutdown 

Main contributors  
~20 

Isotopes 

J.Ch. Benoit, PhD Thesis CEA Cadarache  
J.Ch. Benoit, O.Serot et al., Physor 2012. 
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2-  Impact of the covariance in the decay heat  
for nuclear applications 

 Sensitivities to residual power 
 
 Study realized by CEA/DEN in the framework of the reactor decay heat 
measurements  after shutdown: only isotopes with a lifetime greeter than 
few seconds are considered ; usual data bases are used (ENSDF, JEFF, 
ENDF…) 
 
Assuming Independent measurements 
:  

• fission yield uncertainties from 
2.5% to 5%  
• Energy (beta gamma) 
uncertainties from 1% to 0.2 %  
• Period uncertainties from 1% to 
>0.1 %  
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2-  Impact of the covariance in the decay heat  
for nuclear applications 

 Sensitivities to residual power 
 
 Study realized by CEA/DEN in the framework of the reactor decay heat 
measurements  after shutdown: only isotope with a lifetime greeter than 
few seconds are considered ; usual data bases are used (ENSDF, JEFF, 
ENDF…) 

J.Ch. Benoit, PhD Thesis CEA Cadarache  
J.Ch. Benoit, O.Serot et al., Physor 2012. 
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 Assuming total correlations in fission 
yields data uncertainties from 8% to 16% 
 
Uncertainties due to the fission yields 
are greater than the mean / energy 
released or the periods with a factor  
2.5 to 80 according to : 
 
- the full covariance of fission yields  
-data bases available 
- gamma ray energy deposition 

Is it realistic ?  
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 Principal method used for fission yields measurements available :  
 

• Double Ionization chamber (IC) and Tof : 2E - 2V : 
  

• mass resolution ( > 1%) Then  mass measurements are naturally correlated 
• Complete mass range  
• For isotopic yields using IC in light mass region  

 charge de-convolution  Cov <0 
 

• Lohengrin spectrometer at ILL  
 

•1u resolution at 3   up to A ~ 150 – 160 according to the target 
• measurement over a complete mass range is impossible with a same target for 
mass  no complete data set  cross normalization 
• For isotopic yields by gamma spectroscopy, complete range  
• For isotopic yields using IC in light mass region  

 charge de-convolution  Cov <0 
  

• Radio-isotopic measurement :  
 
 Cumulated measurement over a long time > accumulation on the long life 
 isotope  
    provide cumulated mass yields 
     no complete mass range 

 
  

    3- Thermal neutron induced fission yields available  



For all methods, the  binary fission yields normalization are defined equal to 2 
 
 
              with             fission rate measurement for mass A 
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    4- Self-normalization - systematic group  -  and ND  Bases :  
  basic elements of correlations 



For all methods, the  binary fission yields normalization are defined equal to 2 
 
 
              with             fission rate measurement for mass A 
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    4- Self-normalization - systematic group  -  and ND  Bases :  
  basic elements of correlations 



For all methods, the  binary fission yields normalization are defined equal to 2 
 
 
              with             fission rate measurement for mass A 
 
 
 
 
 
 
    
    Sensitivity of a fission yields to the fissions rates 
     depend of fission yields 
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    4- Self-normalization - systematic group  -  and ND  Bases :  
  basic elements of correlations 



For all methods, the  binary fission yields normalization are defined equal to 2 
 
 
              with             fission rate measurement for mass A 
 
 
 
 
 
 
    
    Sensitivity of a fission yields to the fissions rates 
     depend of fission yields 
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    4- Self-normalization - systematic group  -  and ND  Bases :  
  basic elements of correlations 

  
k=i & kj or k  i & k=j ; <0 
k=i=j ; >0 
k  i & kj ; >0 



For all methods, the  binary fission yields normalization are defined equal to 2 
 
 
              with             fission rate measurement for mass A 
 
 
 
 
 
 
    
    Sensitivity of a fission yields to the fissions rates 
     depend of fission yields 
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    4- Self-normalization - systematic group  -  and ND  Bases :  
  basic elements of correlations 

Normalization  Systematic uncertainties  



  

• Lohengrin mass separator 
 Lohengrin : selection with the mass on ionic charge ratios  A/q and Kinetic energy on 
 Ionic charge E/q  
       (A1,E1,q1)≡ (A2,E2,q2) ≡(A3,E3,q3) 

 Setup:  

 - IC & A/A|Lohengrin = 400   mass yields  up to A = 155 (at 3)   
 - Ge Clover    Isotopic yields with  spectrometry 

 for low yields or low  intensities, 

signal/background ratio is too poor to obtain sufficient 

accuracy  

•   

  

 

 

 

 

 

 
 

Etudes des rendements de fission  

IC 

A1; A2; A3 

 BRED 
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    example : Lohengrin measurements 
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    example : Lohengrin Mass measurements 

• Method : relative measurements    (Same method for Isotopic yields ) 
 
 
 
 
 
 
 
- cross normalization between measurements of each targets   systematic correction   
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    example : Lohengrin Mass measurements 

• Method : relative measurements    (Same method for Isotopic yields ) 
 
 
 
 
 
 
 
- cross normalization between measurements of each targets   systematic correction   
- burn up evolution Bu(t): target sputtering   systematic correction 
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• Method : relative measurements    (Same method for Isotopic yields ) 
 
 
 
 
 
 
 
- cross normalization between measurements of each targets   systematic correction   
- burn up evolution Bu(t): target sputtering   systematic correction 
- kinetic energy distribution Ek  
- Ionic charge distribution q 
-(Ek ,q) correlation 
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    example : Lohengrin Mass measurements 



e.g. 233U(nth,f) mass yields in heavy mass region :  
  partial results using 2 targets    

18 

PhD thesis 
F. Martin 
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    example : Lohengrin Mass measurements 



 Correlation matrix between the NAi 

    (number of events) 

 Correlation matrix between the YAi 

    (mass yields) 
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e.g. 233U(nth,f) mass yields in heavy mass region :  
  partial results using 2 targets    

    example : Lohengrin Mass measurements 
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Questioning on the data sets :  
 
• If all sets correspond to a complete measurement 
  
 Yields and covariance 
 are defined set by set  
 
• If the data sets are not complete 
  
  need a cross normalization  
 
 covariance terms between  
elements of different sets exist 
 
 induce a positive contribution  
on the fission yields variances   
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    example : Lohengrin Mass measurements 
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    5-  Proposal to increase the constraints on the decay heat 

Complete the β/γ measurements per fissioning nucleus with differential 
β/γ decay heat measurements per mass A in order to : 

• Increase the number of measurements to test calculations   
• Change the systematic uncertainties of the experiment  
• measure directly    
 
 

 
  Yields – Energy released – Periods 
 
• Intermediate measurements between TAGS and elementary 
fission curve (integral measurement per actinide) 
 
• Measurement in a time range starting from 1-2 µs 
 

 
 

););,(;();;( ;  EZAYtfAtP 



Lohengrin : selection with the mass on ionic charge ratios  A/q 
and Kinetic energy on Ionic charge E/q  
      (A1,E1,q1)≡ (A2,E2,q2) ≡(A3,E3,q3) 
 
GFM : Spatial dispersion of fission  
fragments according to  
the mass A and Nuclear charge Z 
      [1] 

  

Coupled Lohengrin  Gas Filled Magnet spectrometers  

 Goal : quasi Isobaric beam 
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Etudes des rendements de fission  
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IC 

A1 A3 
A2 

 BGFM 

Calorimeter 

    5-  Proposal to increase the constraints on the decay heat 



Available 4He Gas Filled Magnet spectrometer@ Lohengrin  

A/A        63 ;    58 ;   52 ;  50     exit collimator 1cm  100 Gauss 
  

A  85      90     95    100 63,3 

57,7 

51,5 

49,8 
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    5-  Proposal to increase the constraints on the decay heat 
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• Due to the competition between normalization and systematic uncertainties, 
correlation matrix doesn’t get extreme values (1 or -1) but could have huge 
structures around  zero 
 
• Nevertheless, the structures induce coherence between mass and isotopic 
uncertainties and then error compensations in calculations. 
 
• To increase the precision on the decay heat, it could be interesting to 
complete the differential and integral measurements with semi-differential 
measurements. 
 Coupled Lohengrin  Gas Filled Magnet spectrometers and  β/γ calorimeter 
  
Thus, we will increase the number of comparisons and identify the isobaric 
chains where TAGS are required     
  
   

    Conclusion 
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FIPPS Project dedicated to fission induced prompt particle study. 
 
 Project of new instrument, complementary to the Lohengrin facility 
   Nuclear structure and nuclear fission studies 

 
 n/gamma detectors coupled to a fission fragment filter 

 
 Goal of the filter : 

• Characterize the complementary mass (<A2>, Ek) 
• Clean the gamma spectrum to identify the discrete gamma rays  
     of  (A1, Z1) 

    Perspectives @ ILL 

A2 Filter 
GFM  

 

beam n 

A1 IC 

γ 

γ 
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Collaboration for the measurement campaign @Lohengrin : 
 

C. Sage, G. Kessedjian, A. Chebboubi, A. Bidaud, A. Billebaud, N. Capellan,  
S. Chabod, O. Méplan  

LPSC, UJF, INP, Grenoble 
 

H. Faust, U. Köster, A. Blanc, P. Mutti,  
ILL, Grenoble 

 
O. Litaize, O. Serot, D. Bernard  

CEA/Cadarache 
 

A. Letourneau, S. Panebianco, T. Materna, C. Amouroux 
CEA/Saclay 

 
X. Doligez, IPN, Orsay 

 
PhD thesis : F.Martin, C. Amouroux 
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Backup 
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1- Fission yields : why do we need new measurements ? 
 
Pourquoi des rendements > puissance Beta gamma (t) 
 intérêt puissance residuelle 
 intérêt spectre beta > neutrino  
  total beta /gamma emission per fissioning nucleus 
1.Thermal neutron induced fission : Lohengrin ??? 
2-Mesure de rendement > auto-normalisation ou non ! Independant de 
JEFF 
 Mass   
 Isotopic dependant de eval ou de mesures Y(A) 
 dependant de la manip, des choix d’analyses  
  eg SOFIA  mass resolution  sig = 0.4 
   Z resolution sig = 0.6 
  Mass and charge matrice is statistical deconvolution 
covariance   systematic uncertainty  
 
3-  Impact des cov dans l’écal de la puissance résiduelle 
4-  Option pour contraindre les incert : mesure de puissance residuelle par 
ligne isobarique produit par la fission 
 Mesures de TAGS  > isotope/isotope 
 GFM >  Mass per mass /fissioning isotope 
 FIPPS  



 100 
 Important Isotopes 

after shutdown 

Main contributors  
~20 

Isotopes 

 Impact of fission yields in the actual and innovative fuel cycles 
  Inventory of used fuel : isotopic composition 

  Residual power : minor actinides and fission products 
  Radiotoxicity of used fuel 
  Experimental fuel studies : reaction cross sections and isotope yields  are 
 need ed to comparison Calculation/ Experiment (C/E) 
 Calculation/prediction of prompt  rays emitted in a core 

 

 Sensitivities to residual power 
 Independent measurements :  
  uncertainties from 2.5% to 5%  
 
 Total correlations in data  
  uncertainties from 8% to 16% 
 
Uncertainties due to the fission yields  
are greater than the mean / energy  
released or the periods with a factor  
2.5 to 800. 

 

J.Ch. Benoit, PhD Thesis CEA Cadarache  
J.Ch. Benoit, O.Serot et al., Physor 2012. 
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    1- Fission yields : why do we need new measurements ? 
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 100 
 Important Isotopes 

after shutdown 

Main contributors  
~20 

Isotopes 

J.Ch. Benoit, PhD Thesis CEA Cadarache  
J.Ch. Benoit, O.Serot et al., Physor 2012. 
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Evaluation : No covariance avalaible 
Mass = Isitope 
Variance(Mass) =  Var(Isitope) +  
    Cov (Isotope) 
    

2-  Impact of the covariance in the decay heat  
for nuclear applications  Sensitivities to residual power 

 Independent measurements :  
  uncertainties from 2.5% to 5%  
 
 Total correlations in data  
  uncertainties from 8% to 16% 
 
Uncertainties due to the fission 
yields  
are greater than the mean / energy  
released or the periods with a factor  
2.5 to 800. 



  

• Lohengrin mass separator 
 Lohengrin : selection with the mass on ionic charge ratios  A/q and Kinetic energy on 
 Ionic charge E/q  
       (A1,E1,q1)≡ (A2,E2,q2) ≡(A3,E3,q3) 

 Setup:  

 - IC & A/A|Lohengrin = 400   mass yields  up to A = 155 (at 3)   
 - Ge Clover    Isotopic yields with  spectrometry 

 for low yields or low  intensities, 

signal/background ratio is too poor to obtain sufficient 

accuracy  

•   

  

 

 

 

 

 

 
 

Etudes des rendements de fission  

IC 

A1; A2; A3 

 BRED 
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    example : Lohengrin measurments 
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• Method : relative measurements 
 
 
 
 
 
 
 
- cross normalization : inerrant problem of the fission yield measurements > sum 2 ! 

- Even if no systematic exist in the determination of the FF rates, the yields are self-
correlated  
 > few percents (3 - 5% for 5% precision of rate N(A)  
- Partial measurements : normalization to  the evaluations  
 > history dependent > time dependent    
  > few percents (5-15%) if experimental data are not de-normalized  for 
  the evaluations!  
  > Raw data dependence  > information on experimental methods 
     > intrinsic normalization of the method  

-burn up evolution Bu(t): target sputtering > the dependence of the target (production) 
and target thickness used  > At least few percent (1-5%) according the target 
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    example : Lohengrin measurments 
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- kinetic energy distribution Ek : 
 > no models due to the dependence of the target made  
 > At least few percents according to the full description or not  (0.-3%)  
- Ionic charge distribution q : 

> not completely at low charge (10-16)> limit of the Lohengrin electric fields 
> electron conversion depend of the nuclear structures of Isotopes 
  > At least few percent (1-3%) 
  

-(Ek ,q) correlation > At least few percent (3-5%) if no measurement mass per mass 
 
 
 
 

 
 
 
 
 
 
 

1-Lohengrin facility : method and limits  
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• Uncertainties are-they independent ?   
 - Kinetic energy distribution > Yes if complete Ek distribution is detailed  
                  > No if assumption on the Ek distribution (tail) 
 - Ionic charge distribution > not completely due to the low ionic charge 
 - Burnup > No !  
 - cross normalization  > Never !!! 
 

• Limit of precision on the final yields Y(A) : 5 to 10 % if there are not assumptions on 
the method of measurement. In the available data set, only few isotopes in the light 
fragment region have been studied  
 

• New measurements :  
 - complete range mass – complete distributions > independent of existing data  
  > consequence : beam time for this kind of measurements ! 
 - Covariance matrix is not a problem, it is the solution  
  >  Variance-Covariance builds the coherence in data set 
 
What is a true measurement ? Eigen value of covariance matrix of the measurements ! 

1-Lohengrin facility : method and limits  
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233U(nth,f) mass yields : analysis  

High fission rate : 

Self sputtering => apparent target thickness reduction 

Evolution monitored by repeated 136/21/E scans 

C. Sage, DANF 2011, 17-21 Oct., Smolenice Castle, Slovakia G.Kessedjian - LPSC 36 
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