NSW Estimates of Data Rates

Daniel Lellouch
Weizmann Institute

NSW Electronics Trigger \& DAQ dataflow

Main Assumptions

- Luminosity: 7×10^{34}
- Correlated and uncorrelated backgrounds: scale from RUN-1
- Increase in energy, new beam pipe \& shielding: ~30\% reduction
- Will have a thinner JD \rightarrow background increase
- Assume overall compensation of effects
- Strips per μ :
- sTGC: 4.7 for sTGC
- MM: 4 to 9 depending on angle and mag field. Take a conservative 10 until detailed Monte Carlo provides a better parametrization.
- Read out 3 BC's for sTGC, 5 for MM

Background parametrization

Actual parametrization in $\Delta \eta \bullet \Delta \phi$ (matches geometry)

Data rates from VMM chips

NSW Electronics Trigger \& DAQ dataflow

Goal: verify that rates are well below $640 \mathrm{Mb} / \mathrm{s}$

- ~8 times more VMM chips for MM (left) than sTGC (right) since strip widths are $\sim .4$ resp 3.2 mm
- Rates scale accordingly
- Well in busyness

Data rates on E-links to GBT

NSW Electronics Trigger \& DAQ dataflow

Goal: verify that rates are well below 160 or $320 \mathrm{Mb} / \mathrm{s}$, depending on configuration

sTGC rates over (S)ROC to GBT E-links

- Rates have been balanced by ad-hoc mapping of VMM to SROC
- Flexibility in n/w configuration, but no more than 8 inputs per GBT
- Worst case: $\sim 47 \%$ of available bandwidth

MM rates over ROC to GBT E-links

- No contingency (actually negative!)
- Wait for a more detailed simulation; if needed, extra links can be added

Data rates of GBT outputs

NSW Electronics Trigger \& DAQ dataflow

Goal: verify that GBT rates are below $3.2 \mathrm{~Gb} / \mathrm{s}$ and FELIX below 40Gb/s

GBT to FELIX, and FELIX output data rates

Copious contingency!

* $=$ not yet calculated but very small

Trigger processor(s) occupancy

NSW Electronics Trigger \& DAQ dataflow

Goal: estimate fraction of trigger candidates lost by processor occupancy

- Estimate probability of $1,2,3$ or more sTGC trigger candidates per sector
- Need sophisticated simulation of pad trigger and reliable estimate of angle of tracklets due to correlated background.
- Waiting for it, assume that at most 30% of corr. background tracks do produce a pad trigger (very preliminary simulation gave 10\%)
- The result is: $\sim 10^{-3}$ trigger inefficiency. However, depends on $3^{\text {rd }}$ power of rate!

Conclusion

- No show-stopper identified
- However, some estimates need to be refined by a better simulation
- If needed, ad-hoc solutions can be implemented

