

Grid operations in 2014

T1/T2 workshop - Torino

23 February 2015 Latchezar Betev

T1/T2 workshops

Porsche 911 – spot the difference(s)

Carrera **2005** (model 996) 3.6L straight 6, 320 PS 0-100Km/h 3.9sec Top speed 286Km/h

Carrera **2015** (model 991) 3.8L straight 6, 560 PS 0-100Km/h 3.1sec Top speed 318Km/h ALICE Grid – 10 years in production

Similar schema used

Distinctive design, excellent performance

Most of the people who designed and implemented it audience today!

Unchanged looks, but continuous development under

More powerfu

The ALICE Grid sites today

New sites

- KISTI officially a T1 in WLCG
- UNAM MoU for T2 in November 2014, towards a T1
- WUT (Poland) in production September 2014
- RRC-KI T1 (not yet a T1[©]) in production January 2014
- ZA_CHPC x4 capacity in November 2014
- Bandung and Cibinong in production
 September 2014

A new job record

CPU resources evolution

Resources evolution

- From 2011 to 2014 88% CPU increase
 - @22% average per year slightly above the WLCG projection
 - Due to new sites (!) and above-flat budget capacity increase
 - We will work on keeping the trend, see Predrag's talk on why this is of crucial importance
- Storage capacity is growing at ~15% per year
 - Also slightly above flat-budget scenario
 - Level of usage remains safe, see Costin's talk for explanations

Yearly job profile

Resources distribution

Continuous and remarkable 50/50 share between large (T0/T1) and smaller computing centres

Central services operation

- Total downtime 43 hours => 99.5% availability
- The blue grass above sites profile site updates announcements, see individual sites for details

Catalogue stats

Computing tasks and workflow

Wall time resources share 2014

Individual analysis: 12%

@all centres

432 users

Organized analysis: 16%

@all centres

Organized analysis

Individual analysis

Analysis evolution

- From 2012 to 2014 the individual user analysis has decreased by 50%
 - It has remained at the same level of resources utilization between 2013 and 2014
- The organized analysis fully compensated the 'loss' of individual already in 2013
- Since 2013, the amount of resources used by analysis has grown by 35%, all of it organized
- The number of individual users has remained steady at ~445
- There is still ample room to increase the share of the organized analysis

Efficiency per workflow

Grid efficiency

Grid efficiency evolution

- Since the re-introduction of TTree Cache, the efficiency has stabilized at ~85%
 - The dramatic decrease of individual analysis also helped the efficiency increase
- In the past year, there is a slight upward trend, could be attributed to the better availability of storage (see next)
- We could expect a slight (2-5%) increase
 - If the individual analysis is decreased by factor 2
 - If the current efficiency level of the other activities remains the same

Storage availability

Storage availability evolution

- Constant improvement in availability
 - SEs are independent, no correlation in downtime
- Directly affecting the workload efficiency
- Room for further increase!
 - Allowed downtime for availability >99% = 88 hours

•	Current replica model (2 copies)
	=> probability for both replicas
	to be inaccessible @91% SE
	availability = 0.8%

Top 15 SEs, one year average

@95% availability = 0.25%

	Series	Last value	Min	Avg *
52.	Strasbourg_IRES - SE	100	0	99.72
17.	Grenoble - SE	100	0	99.62
33.	Legnaro - SE	100	0	99.57
48.	SNIC - DCACHE	98.39	0	99.46
23.	IPNL - SE	98.36	0	99.43
12.	CNAF - SE	97.61	0	99.42
37.	NDGF - DCACHE	96.25	0	99.36
21.	Hiroshima - SE	98.36	0	99.33
9.	CERN - EOS	98.34	0	99.24
27.	JINR - SE	100	0	99.19
10.	CERN - OCDB	98.34	0	99.17
36.	MEPHI - EOS	100	0	99.15
13.	CNAF - TAPE	100	0	99.12
56.	Torino - SE	93.76	0	99.1
34.	LLNL - SE	91.97	0	99.06

Storage use

Ratio r/w 8.5

9.8

24

Storage use evolution

- Increase in read volume directly correlated with the increase in analysis activity
 - Improved ratio read/write
- In 1 year ALICE overwrites the entire disk storage completely
 - Timely cleanup is critical to keep the SEs in good health
 - ... and to have free space for the new data
 - The disk cleanup is a continuous activity
 - Minimal amount of 'dark data' and files with low popularity

Resources usage 2014

2013	CPU (KHS06)	Disk (PB)	Tape(PB)	
Tier 0	90	8.3	12.0	
Tiers 1	110	10.1	6.0	Requirements
Tiers 2	190	12.8	=0	
2013	CPU (KHS06)	Disk (PB)	Tape(PB)	
Tier 0	90	8.1	14.0	
Tiers 1	117	11.0	13.7	Pleadges
Tiers 2	186	14.1	5.0	
	CPU (KHS06)	Disk (PB)	Tape(PB)	
Tier 0	43	6,6	10,8	
Tiers 1	119	7,6	5,5	Usage
Tiers 2	189	7,1	=:	
All Tiers	372 (351)	23 (21,3)	16,3	

Summary

- 2014 was (another) successful year for Grid operations
- Despite the absence of data taking, the Grid resources use was uninterrupted
 - In fact it has increased, as was the available capacity
- New centers have entered production the Grid is expanding above the 'flat budget' scenario
- Substantial increase of analysis, most of it organized
- Efficiency remains high, and can be increased further
- The computing centres operation continues to be smooth
 - Software and hardware updates have negligible effect on general Grid availability

Thanks to all who contributed to 2014 being another great Grid year!

Thanks to all contributors

For those who still did not do it – please upload your presentations

Many thanks to our Italian colleagues for hosting the 5-th annual T1/T2 workshop