Tandem-ALTO IPN Orsay

Outline

ALTO facility: stable and radioactive beam

BEDO setup and projects

Beta-delayed neutron spectroscopy (+ gammas)

ISOLDE experiment

Stable and radioactive beams!

MINIBALL at Orsay coupled with ORGAM

Campaign Managers: Iolanda Matea & Georgi Georgiev

12 ORGAM *anti-Compton shielded*Ge detectors x 0.1%

8 Miniball triple cluster detectors at @ 14 cm from target *with addback* without Compton shield

The ISOL facility

What beams can we produce?

-500 25

Different beam lines

Tape station BEDO at ALTO

Short-term experiments at ALTO (1)

Fast timing ¹³⁴Sn

Fast timing with LaBr₃

¹³⁴In (4⁻?): 200 pps with Laser ion source

- 1 % LaBr₃ efficiency
- 7% beta efficiency (start for the timing)
 - 17% neutron-emission probability
- 70 ps lifetime in 2+ of ¹³⁴Sn, larger in 4+

5 days (1 beam prep.) for fast timing

Short-term experiments at ALTO (2)

Decay spectroscopy: 135Sn

¹³⁵In (9/2+?): 50 pps with Laser ion source:

- Gamma efficiency 4%: need of gamma-gamma coincidences
- 50% estimated neutron emission after beta decay

4 days (1 beam prep.) for Beta-gamma spectroscopy

Mid-term experiments at ALTO: Bound and unbound states in β decay

Courtesy of M. Madurga, CERN

Why β-delayed neutron spectroscopy?

In neutron-rich nuclei the beta-decay Q value increases to values well above 10 MeV

Mid-term experiments at ALTO: collective states via β-decay

The large Q_{β} -value window (> 12 MeV) allows populating at least the PDR

Courtesy of M. Madurga, CERN

^{133,134}In rates @ ALTO: 1000 pps; 50 pps

Mid-term experiments at ALTO: collective states via β -decay (2)

The β decay could populate states which are the PDR on the IAS(R) of the mother nucleus

Example: 134 In -> 134 Sn (Q_{β} = 14.7 MeV) $_{V}f_{7/2}$ -> $\pi g_{9/2}$

 β decay: $v2f_{7/2} \rightarrow \pi 2f_{7/2}$, $\pi 2f_{5/2}$;

QRPA calculations with the Skl3 interaction: PDR at 10 MeV

^{133,134}In rates @ ALTO: 1000 pps; 50 pps

¹³³In (9/2+), ¹³⁴In (4-), ¹⁰⁰Rb (3-), ⁸⁴Ga (0-): all possible cases at ALTO. Both population of PDR via GT and the PDR on the IAS (if energetically allowed) possible

Experimental setup (1)

Tonnere, VANDLE neutron arrays

ε: 12 %; σ: 120 keV (1 MeV)

Ion trap for neutron spectroscopy?

ε: > 60 %; σ: 30 keV (1 MeV)

R.M. Yee et al., Phys. Rev. Lett.110 (2013) 092501

Polarized radioactive beams: spin of states via the neutron angular distribution

Available (?) experimental setups

Neutron arrays (VANDLE at Oak Ridge, MONSTER...)

ε: 12 %; σ: 100 keV (1 MeV)

Complementarity of high-energy (6-12 MeV) γ-ray spectroscopy:

- Energy resolution for the states (important for comparison with shell model)
 - Indications on the multipolarity of the states

Possible experiment at ALTO

BEDO:

- Tape station
- Two large-volume Ge crystals
 - Two Paris clusters
 - Neutron detector

ISOLDE IDS-VANDLE setup

Which neutron detectors?

- Tonnere (kaput ?)
- Detectors from Strasbourg ?
 - Monster

Counting rate and open problems

Counting rate estimate:

¹³⁴In: 50 pps

2 Ge crystal efficiency (2%), 2 Paris cluster efficiency (3%)

3 % γ branching ratio from 6-10 MeV states

170 high-energy γ/h from PARIS

4 high-energy γ/h in coincidence with low-energy γ

Open problems:

- γ branching ratio, but it could also be an indication on the nature of the state
- Feeding of the high-lying states or decay to excited states: measure the β energy?

Proposal (approuved): Betadelayed neutron spectroscopy of ⁵¹⁻⁵⁴Ca

Past 51Ca measurement

 $P_{1n} = 63 \pm 8 \%$

⁵¹Ca: many intersting states above the neutron separation threshold

F. Perrot et al., Phys. Rev. C 74, 014313 (2006)

The $7/2^-$ state is an hole in the $vf_{7/2}$ shell (FF transition);

GT : $vf_{7/2} -> \pi f_{7/2}$ (high energy!)

Past 53Ca measurement

- The GT decay should populate the $\pi f_{7/2}$ shell -> we expect $v f_{7/2}^{-1} \pi f_{7/2}^{-1}$ states at 8-10 MeV: 2n emission
- FF could also lead to $vp_{1/2}^{-1}$ $vp_{3/2}^{-1}$ $vf_{7/2}^{-1}$ states (closed Z=20)

F. Perrot et al., Phys. Rev. C 74, 014313 (2006)

Not enough statistics to reconstruct the level scheme

What we want to measure

⁵¹Ca

- The GT decay should populate the $\pi f_{7/2}$ shell -> we expect $v f_{7/2}^{-1} \pi f_{7/2}^{-1}$ states at 8-10 MeV: 2n emission
- FF also lead to $vp_{3/2}^{-1} vf_{7/2}^{-1}$ states (closed Z=20)

⁵³Ca

- The GT decay should populate the $\pi f_{7/2}$ shell -> we expect $v f_{7/2}^{-1} \pi f_{7/2}^{-1}$ states at and above 10 MeV: 2n emission
- FF could also lead to $vp_{1/2}^{-1}$ $vp_{3/2}^{-1}$ $vf_{7/2}^{-1}$ states (closed Z=20)

51,52,53Ca: GT (and FF) strength distribution

Experimental setup: VANDLE + IDS

VANDLE neutron array

ε: 10 %; σ: 80 keV (1 MeV)

Experimental setup: rates

1n efficiency	2n efficiency	γ efficiency
10 %	~ 0.1 %	~ 2 %

	⁵¹ K	⁵² K	⁵³ K
Production rates	32000 pps	3000 pps	50 pps
Counts (1n)	5.67·10 ⁷	1.35·10 ⁷	5·10 ⁵
Counts (2n)	?	3.2-104	7 ⋅10 ³

Conclusions

Mid-term experiments at ALTO: collective states via beta-decay

The large Q_{β} -value window (> 12 MeV) allows populating at least the PDR

The β decay could populate states which are the PDR on the IAS(R) of the mother nucleus

Example: 134 In -> 134 Sn (Q_{β} = 14.7 MeV) $_{V}f_{7/2}$ -> $\pi g_{9/2}$

β decay: $v2f_{7/2} \rightarrow \pi 2f_{7/2}$, $\pi 2f_{5/2}$;

QRPA calculations with the Skl3 interaction: PDR at 10 MeV

^{133,134}In rates @ ALTO: 1000 pps; 50 pps