

Searches for long-lived particles at CMS

Loïc Quertenmont
On behalf of the CMS Collaboration

Lake Louise Winter Hastinutie
17 Edward 2015

Why?

Why searching for Long-Lived particles?

- Predicted by many BSM models:
 - Split SUSY, GMSB, AMSB, pMSSM, Hidden Valley, RPV SUSY, UED, ...
 - Long lifetime because of a new symmetry conservation or small decay phase space
- Escape all constrained from prompt particles searches
 - May explain why SUSY was not yet discovered at the LHC ©
- Who knows what BSM looks like
 - Model independent searches

27% of pMSSM points have the NLSP with cτ>1cm... Completely unconstrained by prompt searches

Each entry correspond to a point in the 19D pMSSM parameter space → each point is a model

Long-Lived particle searches@CMS

- Stable or Long lifetime (cτ > ~1m)
 - Stopped particles New
 - Long-Lived charged particles (HSCP) New

arXiv:1501.05603

JHEP 07 (2013) 122

+ arXiv:1502.02522

- Short lifetime (cτ < ~1m)
 - Disappearing Tracks New
 - Displaced Leptons New
 - Displaced Photons Not shown here
 - Displaced Jets
 - Two Displaced e/μ leptons New

arXiv:1411.6006

arXiv:1411.6977

j.physletb.2013.04.027

arXiv:1411.6530

arXiv:1409.4789

Many new results... but only 15' to described them...
I won't go into the details of the analyses but just flash the results

Search for stopped particles

- Stopped HSCP Signature
 - Energetic cluster in calorimeter coming from the decay of a stopped particle $\tilde{g} o g \tilde{\chi}_1^0$ or $\tilde{t} o t \tilde{\chi}_1^0$
 - Assynchronous
 - → No p-p collisions produced
 - Backgrounds: cosmics, beam halo instrumental (noise) backgrounds

Constaints are set on stops/gluinos over 13 order of magnitudes in the lifetime

Model independent limits provided for different jet pT thresholds.

Search for LL charged particles

High pT Track with low velocity

- Signature: Muon or Tracker track with high pT and high dE/dx and long TOF
- Sensitivity: long-lived (cτ>~1m) particles with e/3<|Q|<8e

p (GeV/c)

Stops, Gluinos, Staus, Charginos, other species of leptons

- Best limits to date on several long-lived particle classes
- $M_{Gluino} > 1322 GeV$, $M_{Stop} > 935 GeV$
- First CMS limits on gluino fully hadronizing into gluino balls (f=100%).
- Many more results in <u>arXiv: 1305.0491</u>

Constraining other BSM models

A fast technique to estimate the CMS sensitivity to LL particles in other BSM models was developped and used to constrained AMSB and pMSSM models 96% of pMSSM points with τ >10ns are excluded

Search for disappearing tracks

AMSB SUSY predicts nearly degenerate neutralino and chargino: △M ≈100-200 MeV → Chargino is long-lived and decays to neutralino and a very soft pion

Disappearing High pT Track

- Signature: tracker track with high pT and missing outer hits and small E_{calo}
- Backgrounds: fake tracks, kinked tracks (bremsstrahlung and nucl. int)

AMSB models with a chargino mass less than 260 GeV, corresponding to a mean proper lifetime of 0.2 ns are excluded

Start filling the gap in pMSSM too

Search for displaced di-lepton pairs

Displaced pair of leptons (ee or μμ)

Signature: Displaced vertex → use the significance of the displacement

Backgrounds: fake tracks, nuclear interactions, ...

RPV SUSY: $\tilde{q} \rightarrow (q)\tilde{\chi}^0 \rightarrow \ell\ell\nu$ Signal benchmark :

> h or H→XX, X→II where X is long-lived and

> > (this totally espaces limits from BR(H→Invisible))

Limits are presented for mH in [125,1000] GeV.

Parametrization of the acceptance is provided for possible reinterpretation!

As model independent as possible...

Search for displaced di-jet pairs

Displaced pair of jets

→ use a vertex discriminant for S/B separation Signature : Displaced vertex

 Signal benchmark : **RPV SUSY:** neutralino → u d v $H \rightarrow XX$, $X \rightarrow qq$ where X is long-lived and

Limits are presented for mH in [125,1000] GeV. Parametrization of the acceptance is provided for possible reinterpretation! As model independent as possible...

Search for displaced e+µ leptons

 Signature: electron and muons originating from two displaced vertex focus on displacement from 200µm to 2 cm

Signal benchmark : stop stop → eb μb

Backgrounds: tau leptons and Heavy flavor quaks (b/c)

Summary

- CMS has a strong research program for Long-lived particles
- A large variety of signatures have been used,
 - Stopped objects (in calorimeters)
 - Special tracks (dE/dx, TOF, missing hits)
 - Displaced objects (photons, leptons and jets)
- Constrains set on a large variety of models
 - Split SUSY, GMSB, AMSB, pMSSM, Hidden Valey, RPV SUSY, etc...
- Model independent results
 - For most case, we provide techniques to evaluate the acceptance of the CMS analyses to other BSM models
- More details, plots and results on

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO

Thank you....

Backups

125GeV Higgs \rightarrow XX, X \rightarrow II

Reconstruction efficiency vs Lxy

