

Arnaud Ferrari

Search for $H^+ \rightarrow \tau \nu$ in ATLAS

Search for $A \rightarrow Zh$ in ATLAS

Back-up

Searches for Higgs bosons beyond the Standard Model using the ATLAS experiment

Arnaud Ferrari

Uppsala University, Sweden

Lake Louise Winter Institute 16 February 2015

Arnaud Ferrari

Search for $H^+
ightarrow au
u$ in ATLAS

Search for $A \rightarrow Zh$ in ATLAS

Back-up

Two-Higgs-Doublet Models in one slide

Rather than giving a catalogue of results, I focus on two recent analyses at $\sqrt{s} = 8$ TeV, with interpretations in CP-conserving Two-Higgs-Doublet Models (2HDMs):

- Five Higgs bosons: two CP-even (*h* and *H*), one CP-odd (*A*), two charged (*H*⁺ and *H*⁻).
- Seven free parameters: four Higgs boson masses, the ratio of vevs tan β, the mixing angle α between h and H, the potential parameter m²₁₂ that mixes the two Higgs doublets Φ₁ and Φ₂.
- Four Yukawa coupling arrangements:

	q_u	q_d	l
Type I	Φ2	Φ2	Φ2
Type II (*)	Φ2	Φ1	Φ1
Lepton-specific	Φ2	Φ2	Φ1
Flipped	Φ2	Φ1	Φ2

(*) The MSSM Higgs sector is a type-II 2HDM.

Arnaud Ferrari

Search for $H^+ \rightarrow \tau \nu$ in ATLAS

Search for $A \rightarrow Zh$ in ATLAS

Back-up

Outline

1 Search for $H^+ \rightarrow \tau \nu$ in ATLAS

Search for $A \rightarrow Zh$ in ATLAS

$H^+ \rightarrow \tau \nu$ in ATLAS (1)

Search for charged Higgs bosons produced in association with top quarks, in the mass ranges 80-160 GeV (light H^+) and 180-1000 GeV (heavy H^+). The decay $H^+ \rightarrow \tau \nu$ is significant for all mass points.

Arnaud Ferrari

Search for $H^+ \rightarrow \tau \nu$ in ATLAS

Search for $A \rightarrow Zh$ in ATLAS

Back-up

Search strategy for a light (heavy) *H*+ bose

• Use a $\tau_{had} + E_{T}^{miss}$ trigger,

Exactly one τ_{had} with p^τ_T > 40 GeV, no electron/mugure of p_T > 25 GeV, at least 4 (3) jets with p > 25 GeV, including ≥ 1 *b*-tag;

 $\begin{cases} E_{\rm T}^{\rm miss} > 65\,(80)~{\rm GeV}; \\ E_{\rm T}^{\rm miss}/\sqrt{\sum p_{\rm T}^{\rm PV~trk}} > 6.5\,(6.0)~{\rm GeV} \end{cases}$

$H^+ \rightarrow \tau \nu$ in ATLAS (1)

Search for charged Higgs bosons produced in association with top quarks, in the mass ranges 80-160 GeV (light H^+) and 180-1000 GeV (heavy H^+). The decay $H^+ \rightarrow \tau \nu$ is significant for all mass points.

Arnaud Ferrari

Search for $H^+ \rightarrow \tau \nu$ in ATLAS

Search for $A \rightarrow Zh$ in ATLAS

Back-up

Search strategy for a light (heavy) H^+ boson:

- Use a $\tau_{had} + E_{T}^{miss}$ trigger,
- Exactly one τ_{had} with p^τ_T > 40 GeV, no electron/muon of p_T > 25 GeV, at least 4 (3) jets with p_T > 25 GeV, including ≥ 1 *b*-tag;
- $\begin{cases} E_{\rm T}^{\rm miss} > 65\,(80)~{\rm GeV}; \\ E_{\rm T}^{\rm miss} / \sqrt{\sum p_{\rm T}^{\rm PV~trk}} > 6.5\,(6.0)~{\rm GeV}^{1/2}. \end{cases}$

Arnaud Ferrari

Search for $H^+ \rightarrow \tau \nu$ in ATLAS

Search for $A \rightarrow Zh$ in ATLAS

Back-up

$H^+ ightarrow au u$ in ATLAS (2)

In selected τ +jets events, the discriminating variable is the transverse mass, with a cut at 20 (40) GeV for the light (heavy) H^+ search:

$$m_{\mathrm{T}} = \sqrt{2 p_{\mathrm{T}}^{ au} E_{\mathrm{T}}^{\mathrm{miss}} (1 - \cos \Delta \phi_{ au_{\mathrm{had}},\mathrm{miss}})}$$

Background estimations \rightarrow data-driven methods for 99% of the total background:

- True τ_{had}: embedding;
- Fake τ_{had} from jets: matrix method;
- Fake τ_{had} from electrons/muons: simulation with correction factors from data.

Arnaud Ferrari

Search for $H^+ \rightarrow \tau \nu$ in ATLAS

Search for $A \rightarrow Zh$ in ATLAS

Back-up

$H^+ ightarrow au u$ in ATLAS (3)

Embedding

- Select a μ+jets sample in data, with looser cuts than the nominal event selection;
- Remove the muon signature and replace it with a simulated τ;
- Let τ decay with TAUOLA;
- Propagate the τ decay products through the full ATLAS detector simulation and reconstruction to get the background shape.
- Renormalise this background to account for trigger efficiencies, τ decay branching fractions, etc.

Arnaud Ferrari

Search for $H^+ \rightarrow \tau \nu$ in ATLAS

Search for $A \rightarrow Zh$ in ATLAS

Back-up

$H^+ ightarrow au u$ in ATLAS (3)

Embedding

- Select a µ+jets sample in data, with looser cuts than the nominal event selection;
- Remove the muon signature and replace it with a simulated τ;
- Let τ decay with TAUOLA;
- Propagate the τ decay products through the full ATLAS detector simulation and reconstruction to get the background shape.
- Renormalise this background to account for trigger efficiencies, τ decay branching fractions, etc.

Arnaud Ferrari

Search for $H^+ \rightarrow \tau \nu$ in ATLAS

Search for $A \rightarrow Zh$ in ATLAS

Back-up

$H^+ ightarrow au u$ in ATLAS (4)

Matrix method

- Select loose and tight samples in data, which differ only by the τ_{had} identification criteria;
- From simulation, determine the probability *p*_r of a <u>real</u> loose τ_{had} to fulfill the tight requirement;
- Using a W+jets control region in data, determine the probability p_m that a <u>fake</u> loose τ_{had} fulfills the tight requirement;
- In the loose sample, weight events as follows:
 - Loose but not tight τ_{had}

$$\rightarrow W = \frac{p_m p_r}{p_r - p_m}$$

• Tight τ_{had} $\rightarrow w = \frac{p_m(p_r-1)}{2p_r p_r}$.

Arnaud Ferrari

Search for $H^+ \rightarrow \tau \nu$ in ATLAS

Search for $A \rightarrow Zh$ in ATLAS

Back-up

$H^+ ightarrow au u$ in ATLAS (4)

Matrix method

 Select loose and tight samples in data, which differ only by the τ_{had} identification criteria;

 From simulation, determine the probability *p_r* of a <u>real</u> loose τ_{had} to fulfill the tight requirement;

- Using a W+jets control region in data, determine the probability p_m that a <u>fake</u> loose τ_{had} fulfills the tight requirement;
- In the loose sample, weight events as follows:
 - Loose but not tight τ_{had}

$$\rightarrow \mathbf{w} = \frac{p_m p_r}{p_r - p_m}$$

• Tight τ_{had} $\rightarrow w = \frac{p_m(p_r-1)}{p_r-p_m}$. Multi-jet background from data-driven methods, with the results of fits using the power-log function:

Arnaud Ferrari

Search for $H^+ \rightarrow \tau \nu$ in ATLAS

Search for $A \rightarrow Zh$ in ATLAS

Back-up

$H^+ ightarrow au u$ in ATLAS (5)

Result: no statistically significant excess of data with respect to the SM predictions.

Sample	Low-mass H ⁺ selection	High-mass <i>H</i> ⁺ selection
True τ_{had} (embedding method)	$2800\pm60\pm500$	$3400 \pm 60 \pm 400$
Misidentified jet $\rightarrow \tau_{had}$	$490 \pm 9 \pm 80$	$990 \pm 15 \pm 160$
Misidentified $e \rightarrow \tau_{had}$	$15\pm 3\pm 6$	$20\pm2\pm9$
Misidentified $\mu \rightarrow \tau_{had}$	$18 \pm 3 \pm 8$	$37\pm5\pm8$
All SM backgrounds	$3300 \pm 60 \pm 500$	$4400 \pm 70 \pm 500$
Data	3244	4474
$H^+ (m_{H^+} = 130 \text{GeV})$	$230\pm10\ \pm40$	
$H^+ (m_{H^+}^{\prime} = 250 {\rm GeV})$		$58 \pm 1 \pm 9$

$H^+ ightarrow au u$ in ATLAS (6)

Limit plots + interpretation in the MSSM m_h^{max} scenario

BSM Higgs boson searches in ATLAS

Arnaud Ferrari

Search for $H^+ \rightarrow \tau \nu$ in ATLAS

Search for $A \rightarrow Zh$ in ATLAS

$H^+ ightarrow au u$ in ATLAS (6)

Limit plots + interpretation in the MSSM m_h^{mod+} scenario

BSM Higgs boson searches in ATLAS

Arnaud Ferrari

Search for $H^+ \rightarrow \tau \nu$ in ATLAS

Search for $A \rightarrow Zh$ in ATLAS

$H^+ ightarrow au u$ in ATLAS (6)

Limit plots + interpretation in the MSSM m_h^{mod-} scenario

BSM Higgs boson searches in ATLAS

Arnaud Ferrari

Search for $H^+ \rightarrow \tau \nu$ in ATLAS

Search for $A \rightarrow Zh$ in ATLAS

Arnaud Ferrari

Search for $H^+
ightarrow \tau
u$ in ATLAS

Search for $A \rightarrow Zh$ in ATLAS

Back-up

$A \rightarrow Zh$ in ATLAS (1)

Search for a neutral CP-odd Higgs boson produced via gluon fusion, in the mass range 220-1000 GeV. The decay $A \rightarrow Zh$ ($m_h = 125 \text{ GeV}$) is significant for part of the 2HDM parameter space, especially below the $t\bar{t}$ threshold.

Search strategy for $A \rightarrow Zh$, with $h \rightarrow \tau \tau$:

- Reconstruct only $Z \rightarrow \ell \ell$ decays ($\ell = e, \mu$);
- Three channels: $\ell \ell \tau_{had} \tau_{had}$, $\ell \ell \tau_{lep} \tau_{had}$, $\ell \ell \tau_{lep} \tau_{lep}$;
- Missing Mass Calculator (MMC) to estimate $m_{\tau\tau}$;
- Reconstruct the A boson mass with:

 $m_A^{
m rec} = m_{\ell\ell au au} - m_{\ell\ell} - m_{ au au} + m_{ au au}$, we

- * Search strategy for A ightarrow Zh, with h -
 - Two channels: $\ell\ell bb$, $\nu\nu bb$;
 - Scale each b-jet four-momentum by V25 GeV.m
 - $A \rightarrow Zh \rightarrow \ell\ell bb \Rightarrow m_A^{\rm rec} = m_{\ell\ell b}$
 - $A \rightarrow Zh \rightarrow \nu\nu bb \Rightarrow$ reconstruct a transverse maps.

Arnaud Ferrari

Search for $H^+
ightarrow au
u$ in ATLAS

Search for $A \rightarrow Zh$ in ATLAS

Back-up

$A \rightarrow Zh$ in ATLAS (1)

Search for a neutral CP-odd Higgs boson produced via gluon fusion, in the mass range 220-1000 GeV. The decay $A \rightarrow Zh$ ($m_h = 125 \text{ GeV}$) is significant for part of the 2HDM parameter space, especially below the $t\bar{t}$ threshold.

- * Search strategy for $A \rightarrow Zh$, with $h \rightarrow \tau \tau$:
 - Reconstruct only $Z \rightarrow \ell \ell$ decays ($\ell = e, \mu$);
 - Three channels: $\ell \ell \tau_{had} \tau_{had}$, $\ell \ell \tau_{lep} \tau_{had}$, $\ell \ell \tau_{lep} \tau_{lep}$;
 - Missing Mass Calculator (MMC) to estimate $m_{\tau\tau}$;
 - Reconstruct the A boson mass with:

 $m_A^{
m rec}=m_{\ell\ell au au}-m_{\ell\ell}-m_{ au au}+m_Z+m_h.$

- ^t Search strategy for $\mathsf{A} o \mathsf{Z}\mathsf{h}$, with h
 - Two channels: $\ell\ell bb$, $\nu\nu bb$;
 - Scale each b-jet four-momentum by 125 Ge
 - $A \rightarrow Zh \rightarrow \ell\ell bb \Rightarrow m_A^{\rm rec} = m_{\ell\ell b}$
 - $A \rightarrow Zh \rightarrow \nu \nu bb \Rightarrow$ reconstruct a transverse mass

Arnaud Ferrari

Search for $H^+ \rightarrow \tau \nu$ in ATLAS

Search for $A \rightarrow Zh$ in ATLAS

Back-up

$A \rightarrow Zh$ in ATLAS (1)

Search for a neutral CP-odd Higgs boson produced via gluon fusion, in the mass range 220-1000 GeV. The decay $A \rightarrow Zh$ ($m_h = 125 \text{ GeV}$) is significant for part of the 2HDM parameter space, especially below the $t\bar{t}$ threshold.

- * Search strategy for $A \rightarrow Zh$, with $h \rightarrow \tau \tau$:
 - Reconstruct only $Z \rightarrow \ell \ell$ decays ($\ell = e, \mu$);
 - Three channels: $\ell\ell\tau_{had}\tau_{had}$, $\ell\ell\tau_{lep}\tau_{had}$, $\ell\ell\tau_{lep}\tau_{lep}$;
 - Missing Mass Calculator (MMC) to estimate $m_{\tau\tau}$;
 - Reconstruct the *A* boson mass with:

 $m_A^{
m rec}=m_{\ell\ell au au}-m_{\ell\ell}-m_{ au au}+m_Z+m_h.$

- * Search strategy for $A \rightarrow Zh$, with $h \rightarrow b\bar{b}$:
 - Two channels: *llbb*, *vvbb*;
 - Scale each b-jet four-momentum by 125 GeV/mbb;
 - $A \rightarrow Zh \rightarrow \ell\ell bb \Rightarrow m_A^{\text{rec}} = m_{\ell\ell bb};$
 - $A \rightarrow Zh \rightarrow \nu\nu bb \Rightarrow$ reconstruct a transverse mass:

$$m_A^{\mathrm{rec},\mathrm{T}} = \sqrt{(E_\mathrm{T}^{bb} + E_\mathrm{T}^{\mathrm{miss}})^2 + (\vec{p}_\mathrm{T}^{bb} + \vec{p}_\mathrm{T}^{\mathrm{miss}})^2}.$$

Arnaud Ferrari

Search for $H^+ \rightarrow \tau \nu$ in ATLAS

Search for $A \rightarrow Zh$ in ATLAS

Back-up

$A \rightarrow Zh$ in ATLAS (2)

Backgrounds for $A \rightarrow Zh \rightarrow \ell \ell \tau_{had} \tau_{had}, \, \ell \ell \tau_{lep} \tau_{had}$:

- ZZ^* , SM Zh (with real objects) \rightarrow simulation.
- Fake τ_{had} (and/or lepton) background, mostly from Z+jets \rightarrow data-driven template method.

* Background shape from a template region = signal event selections, except that the opposite-sign $\tau\tau$ and/or $\tau_{\rm had}$ -identification requirements fail.

* Region A (B) = Signal (template) region with inverted $m_{\tau\tau}$ requirements (i.e. less than 75 GeV or more than 175 GeV).

* Scale the template shape by the ratio N_A/N_B .

Backgrounds for ${m {\cal A}} o {m {\cal Z}}{m {h}} o \ell \ell au_{ ext{lep}} au_{ ext{lep}}$

- VV, VVV, ttZ (with real objects) → simulation.
- Fake lepton background (mostly for ter nep fet from Z+jets: extrapolation from a control region in data with non-isolated lepton(s)

Backgrounds for $A \rightarrow Zh \rightarrow \ell\ell bb$, $\iota \iota bc$ All are estimated using simulation, e.e.

background (from data)

LLWI 2015, 16 February 2015

Arnaud Ferrari

Search for $H^+ \rightarrow \tau \nu$ in ATLAS

Search for $A \rightarrow Zh$ in ATLAS

Back-up

$A \rightarrow Zh$ in ATLAS (2)

Backgrounds for $A \rightarrow Zh \rightarrow \ell \ell \tau_{had} \tau_{had}, \, \ell \ell \tau_{lep} \tau_{had}$:

- ZZ^* , SM Zh (with real objects) \rightarrow simulation.
- Fake τ_{had} (and/or lepton) background, mostly from Z+jets \rightarrow data-driven template method.

* Background shape from a template region = signal event selections, except that the opposite-sign $\tau\tau$ and/or τ_{had} -identification requirements fail.

* Region A (B) = Signal (template) region with inverted $m_{\tau\tau}$ requirements (i.e. less than 75 GeV or more than 175 GeV).

* Scale the template shape by the ratio N_A/N_B .

Backgrounds for $A \rightarrow Zh \rightarrow \ell \ell \tau_{\text{lep}} \tau_{\text{lep}}$:

- VV, VVV, $t\bar{t}Z$ (with real objects) \rightarrow simulation.
- Fake lepton background (mostly for τ_{lep}τ_{lep} = eμ), from Z+jets: extrapolation from a control region in data with non-isolated lepton(s).

Backgrounds for $A \rightarrow Zh \rightarrow \ell\ell bb$, $\iota \nu bb$. All are estimated using simulation, except the multi-jet background (from data).

Arnaud Ferrari

Search for $H^+ \rightarrow \tau \nu$ in ATLAS

Search for $A \rightarrow Zh$ in ATLAS

Back-up

$A \rightarrow Zh$ in ATLAS (2)

Backgrounds for $A \rightarrow Zh \rightarrow \ell \ell \tau_{had} \tau_{had}, \, \ell \ell \tau_{lep} \tau_{had}$:

- ZZ^* , SM Zh (with real objects) \rightarrow simulation.
- Fake τ_{had} (and/or lepton) background, mostly from Z+jets \rightarrow data-driven template method.

* Background shape from a template region = signal event selections, except that the opposite-sign $\tau\tau$ and/or τ_{had} -identification requirements fail.

- * Region A (B) = Signal (template) region with inverted $m_{\tau\tau}$ requirements (i.e. less than 75 GeV or more than 175 GeV).
- * Scale the template shape by the ratio N_A/N_B .

Backgrounds for $A \rightarrow Zh \rightarrow \ell \ell \tau_{\text{lep}} \tau_{\text{lep}}$:

- VV, VVV, $t\bar{t}Z$ (with real objects) \rightarrow simulation.
- Fake lepton background (mostly for τ_{lep}τ_{lep} = eμ), from Z+jets: extrapolation from a control region in data with non-isolated lepton(s).

Backgrounds for $A \rightarrow Zh \rightarrow \ell\ell bb$, $\nu\nu bb$:

All are estimated using simulation, except the multi-jet background (from data).

LLWI 2015, 16 February 2015

Arnaud Ferrari

Search for $H^+ \rightarrow \tau \nu$ in ATLAS

Search for $A \rightarrow Zh$ in ATLAS

Back-up

$A \rightarrow Zh$ in ATLAS (3)

No statistically significant excess of data with respect to the SM predictions in the three channels with $h \rightarrow \tau \tau$.

	Expected Background	Data
$\ell\ell au_{had} au_{had}$	28 ± 6	29
$\ell\ell\tau_{lep} au_{had}$	17 ± 4	18
$\ell\ell\tau_{lep}\tau_{lep}$ (SF)	9.5 ± 0.6	10
$\ell\ell\tau_{lep}\tau_{lep}$ (DF)	7.2 ± 0.7	7

Arnaud Ferrari

Search for $H^+ \rightarrow \tau \nu$ in ATLAS

Search for $A \rightarrow Zh$ in ATLAS

Back-up

$A \rightarrow Zh$ in ATLAS (4)

No statistically significant excess of data with respect to the SM predictions in the two channels with $h \rightarrow b\bar{b}$.

	ℓℓbb	ννbb
Z+jets	1443 ± 60	225 ± 11
W+jets	-	55 ± 8
Тор	317 ± 28	203 ± 15
Diboson	30 ± 5	10.8 ± 1.6
SM Zh, Wh	31.7 ± 1.8	22.5 ± 1.2
Multi-jet	20 ± 16	3.2 ± 3.1
Total background	1843 \pm 34	521 \pm 12
Data	1857	511

Arnaud Ferrari

Search for $H^+ \rightarrow \tau \nu$ in ATLAS

Search for $A \rightarrow Zh$ in ATLAS

Back-up

$A \rightarrow Zh$ in ATLAS (5)

Limit plots for $\sigma_{pp \rightarrow A} imes BR(A \rightarrow Zh) imes BR(h \rightarrow \tau \tau / b\bar{b})$

The next slides show interpretations of these limits in CP-conversing 2HDMs, assuming:

- *m_h* = 125 GeV,
- $m_A = m_H = m_{H^{\pm}}$,
- $m_{12}^2 = m_A^2 \tan \beta / (1 + \tan^2 \beta)$.

Arnaud Ferrari

Search for $H^+ \rightarrow \tau \nu$ in ATLAS

Search for $A \rightarrow Zh$ in ATLAS

Back-up

$A \rightarrow Zh$ in ATLAS (5)

Limit plots for $\sigma_{pp \rightarrow A} \times BR(A \rightarrow Zh) \times BR(h \rightarrow \tau \tau / b\bar{b})$

The next slides show interpretations of these limits in CP-conversing 2HDMs, assuming:

- *m_h* = 125 GeV,
- $m_A = m_H = m_{H^{\pm}}$,
- $m_{12}^2 = m_A^2 \tan \beta / (1 + \tan^2 \beta).$

$A \rightarrow Zh$ in ATLAS (6a)

UPPSALA

UNIVERSITET

BSM Higgs boson searches

in ATLAS Arnaud Ferrari

Search for

in ATLAS

Search for

 $A \rightarrow Zh$

in ATLAS

Arnaud Ferrari

Search for $H^+ \rightarrow \tau \nu$ in ATLAS

Search for $A \rightarrow Zh$ in ATLAS

Back-up

$A \rightarrow Zh$ in ATLAS (6b)

Arnaud Ferrari

Search for $H^+ \rightarrow \tau \nu$ in ATLAS

Search for $A \rightarrow Zh$ in ATLAS

Back-up

Conclusion

Two searches for BSM Higgs bosons were recently made public by ATLAS, based on the full 2012 dataset at 8 TeV:

- Search for a charged Higgs boson H^+ decaying into $\tau\nu$ in fully hadronic final states:
 - BR $(t \rightarrow bH^+) \times$ BR $(H^+ \rightarrow \tau \nu) < 1.3 0.23\%$ for the mass range 80-160 GeV;
 - $\sigma_{t[b]H^+} \times BR(H^+ \rightarrow \tau \nu) < 760 4.5$ fb for the mass range 180-1000 GeV;
 - More details in http://arxiv.org/abs/1412.0
- Search for a CP-odd Higgs boson A deceving in the first final states):
 - σ_A × BR(A → Zh) × BR(h → ττ) 98 12 lb, σ_A × BR(A → Zh) × BR(h → bb) 570 -101 both for the mass range 220-100 Ge
 Submitted to arXiv today! For note details see as:

https://atlas.web.cern.ch/Atlas/GROUPS/PHYS CS/PALE 24

More (BSM) Higgs boson searches in ATLAS can be found here: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HiggsPublicResults

LLWI 2015, 16 February 2015

Arnaud Ferrari

Search for $H^+ \rightarrow \tau \nu$ in ATLAS

Search for $A \rightarrow Zh$ in ATLAS

Back-up

Conclusion

Two searches for BSM Higgs bosons were recently made public by ATLAS, based on the full 2012 dataset at 8 TeV:

- Search for a charged Higgs boson H^+ decaying into $\tau\nu$ in fully hadronic final states:
 - BR(t→ bH⁺) × BR(H⁺ → τν) < 1.3 − 0.23% for the mass range 80-160 GeV;
 - $\sigma_{t[b]H^+} \times BR(H^+ \rightarrow \tau \nu) < 760 4.5$ fb for the mass range 180-1000 GeV;
 - More details in http://arxiv.org/abs/1412.6663.
- Search for a CP-odd Higgs boson A decaying into Zh (five different final states):
 - $\sigma_A \times BR(A \rightarrow Zh) \times BR(h \rightarrow \tau\tau) < 98 13 \text{ fb},$ $\sigma_A \times BR(A \rightarrow Zh) \times BR(h \rightarrow b\bar{b}) < 570 - 14 \text{ fb},$ both for the mass range 220-1000 GeV;

 Submitted to arXiv today! For more details, see also: https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2013-06/

More (BSM) Higgs boson searches in ATLAS can be found here: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HiggsPublicResults

LLWI 2015, 16 February 2015

Arnaud Ferrari

Search for $H^+ \rightarrow \tau \nu$ in ATLAS

Search for $A \rightarrow Zh$ in ATLAS

Back-up

Conclusion

Two searches for BSM Higgs bosons were recently made public by ATLAS, based on the full 2012 dataset at 8 TeV:

- Search for a charged Higgs boson H^+ decaying into $\tau\nu$ in fully hadronic final states:
 - BR($t \rightarrow bH^+$) × BR($H^+ \rightarrow \tau \nu$) < 1.3 0.23% for the mass range 80-160 GeV;
 - $\sigma_{t[b]H^+} \times BR(H^+ \rightarrow \tau \nu) < 760 4.5$ fb for the mass range 180-1000 GeV;
 - More details in http://arxiv.org/abs/1412.6663.
- Search for a CP-odd Higgs boson A decaying into Zh (five different final states):
 - $\sigma_A \times BR(A \rightarrow Zh) \times BR(h \rightarrow \tau\tau) < 98 13 \text{ fb},$ $\sigma_A \times BR(A \rightarrow Zh) \times BR(h \rightarrow b\bar{b}) < 570 - 14 \text{ fb},$ both for the mass range 220-1000 GeV;

 Submitted to arXiv today! For more details, see also: https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2013-06/

More (BSM) Higgs boson searches in ATLAS can be found here: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HiggsPublicResults

Arnaud Ferrari

Search for $H^+
ightarrow au
u$ in ATLAS

Search for $A \rightarrow Zh$ in ATLAS

Back-up

BACK-UP

• • 6

Arnaud Ferrari

Search for $H^+ \rightarrow \tau \nu$ in ATLAS

Search for $A \rightarrow Zh$ in ATLAS

Back-up

$H^+ \rightarrow \tau \nu$ – systematic uncertainties

Impact of systematic uncertainties on the final observed limit, ordered (from top to bottom) by decreasing impact on the fitted signal strength parameter.

LLWI 2015, 16 February 2015

Arnaud Ferrari

Search for $H^+ \rightarrow \tau \nu$ in ATLAS

Search for $A \rightarrow Zh$ in ATLAS

Back-up

$H^+ \rightarrow \tau \nu$ – more MSSM interpretation plots

From left to right: light stau, light top squark, tauphobic MSSM scenarios. There is only a significant exclusion power for light H^+ .

Arnaud Ferrari

Search for in ATLAS

Search for in ATLAS

Back-up

$A \rightarrow Zh \rightarrow \ell \ell \tau_{had} \tau_{had}$ – event selection

- Combination of single-lepton and di-lepton triggers;
- Exactly two opposite-sign leptons (ee or μμ) and exactly two opposite-sign τ_{had} (loose τ -ID = 65% efficiency):
 - $p_{\rm T} > 26$ (15) GeV for a leading (sub-leading) e.
 - $p_{\rm T} > 25 36$ (10) GeV for a leading (sub-leading) μ ,
 - $p_{\rm T} > 35$ (20) GeV for a leading (sub-leading) $\tau_{\rm had}$.
- 80 < $m_{\ell\ell}$ (GeV) < 100 & 75 < $m_{\tau\tau}$ (GeV) < 175;

• $p_{\rm T}(\ell\ell) > \begin{cases} 125 \, {\rm GeV} \mbox{ if } m_A^{\rm rec} > 400 \, {\rm GeV}, \\ 0.64 \times m_A^{\rm rec} - 131 \, {\rm GeV} \mbox{ otherwise}. \end{cases}$

Arnaud Ferrari

Search for $H^+ \rightarrow \tau \nu$ in ATLAS

Search for $A \rightarrow Zh$ in ATLAS

Back-up

$A \rightarrow Zh \rightarrow \ell \ell \tau_{\text{lep}} \tau_{\text{had}}$ – event selection

- Combination of single-lepton and di-lepton triggers;
- Exactly three leptons (*eee*, *eeμ*, *eμμ*, *μμμ*) and exactly one τ_{had} (medium τ-ID = 55% efficiency):
 - $p_{\rm T} > 26$ (15) GeV for a leading (remaining) e,
 - $p_{\rm T} > 25 36$ (10) GeV for a leading (remaining) μ ,
 - $p_{\rm T}$ > 20 GeV for $\tau_{\rm had}$.
- The same-flavour opposite-sign *ll* pair with the smallest |*m*_{*ll*-}*m*_{*Z*}| is assigned to *Z*, the remaining lepton is *π*_{lep} and must be opposite-sign w.r.t. *π*_{had};
- 80 < $m_{\ell\ell}$ (GeV) < 100 & 75 < $m_{\tau\tau}$ (GeV) < 175.

Arnaud Ferrari

Search for $H^+ \rightarrow \tau \nu$ in ATLAS

Search for $A \rightarrow Zh$ in ATLAS

Back-up

$A \rightarrow Zh \rightarrow \ell \ell \ell \tau_{\text{lep}} \tau_{\text{lep}}$ – event selection

- Combination of single-lepton and di-lepton triggers;
- At least four leptons with:
 - one same-flavour opposite-sign pair satisfying 80 < m_{ll} (GeV) < 100,
 - one same-flavour (SF) or different-flavour (DF) lepton pair with a MMC mass between 90 and 190 GeV,
 - *p*_T > 20 (15, 10) GeV for the leading (second, third) lepton.
- Among all possible lepton quadruplets, pick the one that minimizes the sum of mass differences w.r.t. the Z and h bosons;
- Cuts to reduce the ZZ* and Z+jets backgrounds:
 - *m*^{rec}_h outside the Z peak (80-100 GeV),
 - $E_{\rm T}^{\rm miss}$ > 30 GeV,
 - $\Delta \phi(Z, \text{miss}) > \pi/2$,
 - $p_{\rm T} > 15$ GeV for the highest- $p_{\rm T}$ lepton of the *h* boson.

Arnaud Ferrari

Search for $H^+ \rightarrow \tau \nu$ in ATLAS

Search for $A \rightarrow Zh$ in ATLAS

Back-up

$A \rightarrow Zh \rightarrow \ell\ell \ell bb$ – event selection

- Combination of single-lepton and di-lepton triggers;
- Exactly two same-flavour leptons with p_T > 25 GeV for one of them, 83 < m_{ℓℓ} (GeV) < 99;
- Exactly two *b*-jets with *p*_T > 45 (20) GeV for the leading (sub-leading) jet, 105 < *m*_{bb} (GeV) < 145;
- $E_{\rm T}^{\rm miss}/\sqrt{H_{\rm T}}$ > 3.5 GeV^{1/2}, with $H_{\rm T}$ the scalar sum of $p_{\rm T}$ of all leptons and jets;
- $p_{\rm T}(\ell \ell) > 0.44 \times m_A^{\rm rec} 106 {\rm ~GeV}.$

Arnaud Ferrari

Search for $H^+ \rightarrow \tau \nu$ in ATLAS

Search for $A \rightarrow Zh$ in ATLAS

Back-up

$A \rightarrow Zh \rightarrow \nu \nu bb$ – event selection

- $E_{\rm T}^{\rm miss}$ trigger with a threshold at 80 GeV;
- $E_{T}^{miss} > 120 \text{ GeV}$ (energy-based) and $p_{T}^{miss} > 30 \text{ GeV}$ (track-based);
- No electron or muon with $p_{\rm T} > 7 {\rm ~GeV}$;
- Exactly two *b*-jets with *p*_T > 45 (20) GeV for the leading (sub-leading) jet, 105 < *m*_{bb} (GeV) < 145;
- Reject events fulfilling any of the following:
 - there is a jet with $|\eta| > 2.5$,
 - there are four or more jets,
 - one of the *b*-jets is the third highest-*p*_T jet.
- $H_{\rm T}$ > 120 (150) GeV, for events with two (three) jets;
- Requirements on △*R_{bb}* similar to the SM *h* boson search of JHEP 01 (2015) 069;
- $\Delta \phi(\vec{E}_{T}^{miss}, \vec{p}_{T}^{miss}) < \pi/2$, $Min[\Delta \phi(\vec{E}_{T}^{miss}, jet)] > 1.5$, $\Delta \phi(\vec{E}_{T}^{miss}, bb) > 2.8$.

Arnaud Ferrari

Search for $H^+ \rightarrow \tau \nu$ in ATLAS

Search for $A \rightarrow Zh$ in ATLAS

Back-up

$h/H/A \rightarrow au au$ in ATLAS (1)

Search for MSSM neutral Higgs bosons produced through gluon-gluon fusion or in association with *b*-quarks (dominating at large tan β). At the decoupling limit, *A* and *H* have similar masses and *h* becomes identical to the SM Higgs boson. The decay $h/H/A \rightarrow \tau \tau$ is considered.

Search channels for h/H/A bosons: $\tau_e \tau_\mu$ (6%), $\tau_e \tau_{had}$ (23%), $\tau_\mu \tau_{had}$ (23%), $\tau_{had} \tau_{had}$ (42%).

Arnaud Ferrari

Search for $H^+ \rightarrow \tau \nu$ in ATLAS

Search for $A \rightarrow Zh$ in ATLAS

Back-up

h/H/A ightarrow au au in ATLAS (2)

Two mass reconstruction methods:

- Missing Mass Calculator:
 - assume that E_T^{miss} only comes from the neutrinos from τ decays,
 - scan over the angles between the neutrinos and visible τ decay products,
 - weight each solution by probability density functions derived from simulations,
 - find the most likely value $m_{\tau\tau}^{\text{MMC}}$
- Total transverse mass:

$$m_{\mathrm{T}}^{\mathrm{total}} = \sqrt{m_{\mathrm{T}}^{2}(\tau_{1},\tau_{2}) + m_{\mathrm{T}}^{2}(\tau_{1},E_{\mathrm{T}}^{\mathrm{miss}}) + m_{\mathrm{T}}^{2}(\tau_{2},E_{\mathrm{T}}^{\mathrm{miss}})}$$

with
$$m_{
m T}=\sqrt{2
ho_{
m T1}
ho_{
m T2}(1-\cos\Delta\phi)}$$

Arnaud Ferrari

Search for $H^+ \rightarrow \tau \nu$ in ATLAS

Search for $A \rightarrow Zh$ in ATLAS

Back-up

$h/H/A \rightarrow \tau_e \tau_\mu$ in ATLAS

- Exactly one electron (p_T > 15 GeV) and one muon (p_T > 10 GeV), with opposite charges and isolation requirements;
- Events with at least one loose τ_{had} are vetoed;
- Two event categories: "tag" and "veto" based on the presence or absence of a b-jet;
- Kinematic requirements to reduce backgrounds with top quarks;
- Z+jets background estimated using embedding of simulated τ s into data $Z/\gamma^* \rightarrow \mu\mu$ events;
- Multi-jet background estimated using an ABCD data-driven method, based on the charge product of *e*μ and isolation requirements.

Arnaud Ferrari

Search for $H^+ \rightarrow \tau \nu$ in ATLAS

Search for $A \rightarrow Zh$ in ATLAS

Back-up

$h/H/A \rightarrow \tau_{\text{lep}} \tau_{\text{had}}$ in ATLAS

- Exactly one electron/muon (p_T > 26 GeV) and one oppositely charged medium τ_{had};
- Searches for $m_A < 200$ GeV:
 - Two categories, "tag" and "veto", based on the presence or absence of a b-jet,
 - Kinematic requirements to reduce backgrounds with top quarks in the tag category,
 - Kinematic requirements to reduce W+jets backgrounds in the veto category.
- Searches for $m_A \ge 200 \text{ GeV}$:
 - Kinematic requirements to reduce mostly W+jets backgrounds,
 - τ_{lep} and τ_{had} well separated in φ and p_T.
- Z+jets background \rightarrow embedding;
- Multi-jet background \rightarrow ABCD method, based on the charge product of $\eta_{ep} \tau_{had}$ and lepton isolation requirements;
- Fake τ_{had} background estimated with simulation and renormalised after comparison in data control regions.

Arnaud Ferrari

Search for $H^+ \rightarrow \tau \nu$ in ATLAS

Search for $A \rightarrow Zh$ in ATLAS

Back-up

$h/H/A \rightarrow \tau_{had} \tau_{had}$ in ATLAS

- At least two loose τ_{had} objects, the two with the highest p_T must have $p_T > 50$ GeV, opposite charges, and be back-to-back.
- Events with electrons and/or muons are vetoed;
- Two event categories:
 - single-τ_{had} trigger (STT) with at least one τ_{had} of p_T > 150 GeV,
 - di- τ_{had} trigger (DTT) with a leading τ_{had} of $p_{T} < 150$ GeV, both medium τ -ID, $E_{T}^{miss} > 10$ GeV, $H_{T} > 160$ GeV.
- $m_{\rm T}^{\rm total}$ is the final discriminant, as the multi-jet background dominates:
 - STT: uses a control region where the second τ_{had} fails the τ-ID requirement + the measured probability of a jet faking τ_{had} in dijet events,
 - DTT: ABCD data-driven method, based on the charge product of \(\tau_{had}\) \(\tau_{had}\) and \(E_T^{miss} requirement.\)

Arnaud Ferrari

Search for $H^+ \rightarrow \tau \nu$ in ATLAS

Search for $A \rightarrow Zh$ in ATLAS

Back-up

$h/H/A \rightarrow \tau \tau$ in ATLAS – limits (1)

Upper limits on the cross section of a scalar boson produced via gluon fusion (left) or in association with *b*-quarks (right) times the branching fraction into $\tau\tau$.

Arnaud Ferrari

Search for $H^+ \rightarrow \tau \nu$ in ATLAS

Search for $A \rightarrow Zh$ in ATLAS

Back-up

$h/H/A \rightarrow \tau \tau$ in ATLAS – limits (2)

Interpretation in the MSSM m_h^{max} scenario:

In the m_h^{max} scenario, the radiative corrections are chosen such that m_h is maximized for a given tan β and M_{SUSY} . For $M_{SUSY} = 1$ TeV, this results in $m_h \simeq 130$ GeV for large m_A and tan β .

Arnaud Ferrari

Search for $H^+ \rightarrow \tau \nu$ in ATLAS

Search for $A \rightarrow Zh$ in ATLAS

Back-up

$h/H/A \rightarrow \tau \tau$ in ATLAS – limits (3)

Interpretation in the MSSM m_{b}^{mod+} and m_{b}^{mod-} scenarios:

The m_h^{mod+} and m_h^{mod-} scenarios are similar to the m_h^{max} scenario, apart from the fact that the choice of radiative corrections is such that the maximum light CP-even Higgs boson mass is about 126 GeV (the amount of mixing in the top squark sector is reduced compared to m_h^{max}). This choice increases the region of the parameter space compatible with the observed Higgs boson mass. The m_h^{mod+} and m_h^{mod-} scenarios only differ in the sign of a parameter.

