Status of the SABRE Experiment

Francis Froborg For the SABRE Collaboration

Lake Louise Winter Institute 18 February 2015

Dark Matter Signal? Annual Modulation

The DAMA/LIBRA Experiment

- 25 high purity NaI(Tl) crystals with 9.7 kg each
- 2 PMTs coupled via 10 cm quarz light guide to each crystal
- 1–2 % modulation at 2–6 keV_{ee} with 9.3 C.L.

Peak end of May / beginning of June

The Tension

The NaI Powder

Development of Ultra High Purity Powder

- $\bullet\,$ Started ~ 5 years ago by Prof. Calaprice, Prof. Benziger, and Dr. Wright
- Collaboration with 2 industrial partners for production
- Independent high sensitivity impurity measurements

	Seastar	Sigma-	DAMA	DAMA
Element	[ppb]	Aldrich [ppb]	Powder [ppb]	Crystal [ppb]
K	12	3.5 (18)*	100	~13
Rb	14	0.2	n.a.	< 0.35
U	$< 0.2 (3.5 \times 10^{-3})^{**}$	$< 1.7 \ (< 10^{-3})^{**}$	~ 0.02	$0.5 - 7.5 \times 10^{-3}$
Th	$< 0.1 \ (< 10^{-3})^{**}$	$< 0.5 \ (< 10^{-3})^{**}$	~ 0.02	$0.7 - 10 \times 10^{-3}$

* Independent measurement

** Preliminary measurement at PNNL; full validation needed.

Crystal Growth

Crucible Tests

- Test growth of small crystals in different crucibles and ampules
- Careful material selection
- Precision cleaning

Crucible	Cleaning	Contamination due to crystal growth [ppb]			
Ampules	procedure	K	Rb	Th	U
#1,#1	Standard	65 ± 10	N.D.	0.2-0.4	0.1-0.2
#1,#2	Precision	41 ± 10	N.D.	N.D.	N.D.
# 2, # 2	Precision	63 ± 10	N.D.	N.D.	N.D.
# 3, # 3	Precision	6 ± 10	N.D.	N.D.	N.D.
Blank test	Precision	1.5	4×10^{-3}	0.4×10^{-3}	0.14×10^{-3}

- Grow crystal with ~ 8.5 cm diameter, 10 cm length
- Same growth method as small high purity crystals

The Goal

- Validate growth method for big crystals
- Grow big (\sim few kg) crystal with very good scintillation properties

Conclusions

Improved Performance

Higher light yield, lower threshold

- PMTs directly coupled to crystal
- Pre-amplifier developed at LNGS to suppress afterglow coincidence rate

Improved PMTs

- High quantum efficiency: ~ 35 %
- Low radioactivity: $\sim 1 \text{ mBq U}$, Th, Co; $\sim 10 \text{ mBq K}$
- Further improvements in development
- Development by Hamamatsu in collaboration with Princeton

Improving PMTs

New Stem

- Designed to reach higher radio-purity and better stability
- Ceramic feedthroughs use ultra high purity alumina (Al₂O₃)
- Special brazing of feedthroughs to Kovar plate by PPPL
- High QE PMT to be built with this stem by Hamamatsu

Motivation	SABRE	Conclusion
00	0000000000	
Lower Background		

Dangerous Background: ⁴⁰K

The Veto Principle

- 3 keV Auger e⁻ accompanying 1.46 MeV γ after electron capture \Rightarrow Right in the region of interest
- DAMA reports 13 ppb ⁴⁰K contamination in their crystals

Test in DarkSide

The DarkSide LS Veto

- 4 m diameter liquid scintillator veto
- 30 tons of PC+TMB
- 110 high QE PMTs (R5912)
- Shielded by 3–4 m of water

First Proof of Concept

- 1 of 4 pipes available for SABRE
- First test with standard purity crystal
 ⇒ Test of veto efficiency
- Possibility of runs with high purity crystals
 - \Rightarrow Test of crystal purity
 - \Rightarrow Maybe possibility of first DM run

The Portable Veto

The SABRE Veto Vessel

- 1.5 m diameter × 1.5 m length
- Made out of low radioactivity steel
- ~ 2.3 tons of scintillator (LAB or PC)
- 10 veto PMTs (Hamamatsu R5912)
- Expected light yield ~ 0.2 p.e./keV
- Shielded by 20– 25 cm steel or equivalent in lead or water

Expectations

Background

- Crystal purity same as NaI powder
- External background can be shielded
- Radioactivity of components negligible

 $\Rightarrow \sim 0.15 \text{ cts}/(\text{keV kg d})$

Sensitivity

- 3 years stable detector operations
- No other seasonal effect in ROI
- 50 kg NaI(Tl) array:
 ~ 4σ power to verify DAMA
- 25 kg NaI(Tl) array:
 ~ 2.5σ power to verify DAMA

Conclusions & Outlook

Conclusions

- WIMP interpretation of DAMA modulation signal in tension with other experiments
- Independent NaI(Tl) experiments needed ⇒ SABRE
- Ultra high purity NaI powder for high purity NaI(Tl) crystals
- Low background with high purity materials and active veto
- High light yield & lower threshold due to improved, pre-amplified PMTs directly coupled to crystal

Outlook

- Proof of principle at DarkSide in preparation
- Portable SABRE veto vessel under construction