Recent Multiboson Production Results from CMS

Lake Louise Winter Institute 2015

<u>Lorenzo Viliani</u> On behalf of CMS collaboration

Univ. & INFN Firenze (Italy)

16/02/2015

Introduction

> Diboson production results:

- Recent CMS measurements using 8 TeV data.
- > Analyses in the ZZ, WZ and WW channels.
- Cross section measurements and limits on aTGCs.

> Vector Boson Scattering (VBS):

- Recent CMS measurement using data collected at 8 TeV
- > Important process to be studied at LHC.
- Limits on aQGCs and on doubly-charged Higgs boson.

- Important for testing the gauge sector of the Standard Model.
- Constitute irreducible backgrounds for Higgs boson analyses and searches.
- Also good tests for new physics beyond the SM.
- Deviations interpreted in terms of anomalous Triple Gauge Couplings (aTGCs).
 - Couplings defined by operators in an effective Lagrangian.
 - Typically evident in high tails of observable's distribution.

ZZ→lll'l' at 8 TeV

CMS-PAS-SMP-13-005 Phys. Lett. B 740 (2015) 250

Signature

- Two lepton pairs peaking at $\rm M_{\rm Z}.$
- l=e,μ l'=e,μ,τ

Selections

- Two same-flavor and opposite-sign isolated leptons from each Z.
- Lepton pair retained if 60<M₁₁<120 GeV.
- At least one lepton with $p_T > 20 \text{ GeV}$ and one with $p_T > 10 \text{ GeV}$.

Backgrounds

- Mostly rejected by isolation and identification criteria.
- The remnants are Z/WZ+jets.

ZZ→2l2v: expected to be published within next few weeks.

 $\sigma = 7.7 \pm 0.5(stat)^{+0.5}_{-0.4}(syst) \pm 0.4(theo) \pm 0.2(lumi) pb$

Anomalous couplings effects simulated with SHERPA and used to set limits on ZZZ and ZZy couplings.

16/02/2015

$W^+W^- \rightarrow 2l2\upsilon$ at 8 TeV Phys. Lett. B 721 (2013) 190–211 (

Signature

 Two oppositely charged electrons or muons with p_T>20 GeV plus MET.

Selections

- Jet veto and anti top-tagging to suppress top background.
- E_T^{miss} >45 GeV in same flavor final state to suppress DY.
- E_T^{miss} >20 GeV in opposite flavor.
- Extra lepton veto.

Backgrounds

- $t\bar{t}$ and tW
- VV
- Z/W + jets

 $\sigma = 69.9 \pm 2.8(stat) \pm 5.6(syst) \pm 3.1(lumi) pb$

Inclusive cross section slightly higher than the SM NLO expectation of 57.3^{+2.3}_{-1.6} pb.

ATLAS result

 $\sigma = 71.4 \pm 1.2(stat) \pm 5.0(syst) \pm 2.2(lumi) pb$

$VZ \rightarrow V+2 \ b$ -jets

CMS-PAS-SMP-13-011 EPJC 74 (2014) 2973

GeV

Entries / 15

Signature

- Very similar to VH analysis with $H \rightarrow b\overline{b}$.
- Two b-tagged jets from Z decay.
- V detected through leptonic decay.

Selections

- Analysis divided into three lepton categories.
- $Z \rightarrow ll$: isolated and oppositely charged leptons with 60< M_{\parallel} <120 GeV.
- $W \rightarrow lv$: single isolated lepton + $E_T^{\text{miss}} > 45 \text{ GeV}$
- $Z \rightarrow \upsilon \upsilon$: $E_T^{miss} > 100 \text{ GeV}.$
- $p_T^V > 100$ GeV in each channel.

MCFM NLO cross section = 22.3 ± 1.1 pb In agreement also with $WZ \rightarrow 3lv$ channel

Diboson cross sections results

INFN

aTGCs results

Charged aTGCs described using the LEP parameterization.

arXiv:hep-ph/9601233

In SM all neutral TGCs are zero at tree level. Limits are set on ZZZ and ZZ γ couplings using anomalous parameters $f_4^{\ V}$ and $f_5^{\ V}.$

Nov 2013			
			ATLAS Limits CMS Prel. Limits
εγ	⊢ I	ZZ	-0.015 - 0.015 4.6 fb ⁻¹
¹ 4	H	ZZ	-0.004 - 0.004 19.6 fb ⁻¹
	Н	ZZ (2l2v)	-0.004 - 0.003 5.1, 19.6 fb ⁻¹
۶Z	├────┤	ZZ	-0.013 - 0.013 4.6 fb ⁻¹
⁴	H	ZZ	-0.004 - 0.004 19.6 fb ⁻¹
	н	ZZ (2l2v)	-0.003 - 0.003 5.1, 19.6 fb ⁻¹
¢γ	⊢ −−−−−1	ZZ	-0.016 - 0.015 4.6 fb ⁻¹
¹ 5	⊢ −−1	ZZ	-0.005 - 0.005 19.6 fb ⁻¹
	H	ZZ(2l2v)	-0.004 - 0.004 5.1, 19.6 fb ⁻¹
۶Z		ZZ	-0.013 - 0.013 4.6 fb ⁻¹
1 ₅	⊢ –−1	ZZ	-0.005 - 0.005 19.6 fb ⁻¹
	н	ZZ (2l2v)	-0.004 - 0.003 5.1, 19.6 fb ⁻¹
-0.5	0	0.5	1 1.5 x10 ⁻
		aTC	SC Limits @95% C.L

No evidence of anomalous triple gauge couplings is observed

16/02/2015

L Viliani – LLWI 2015

Vector Boson Scattering (VBS)

| N F N

VBS in W[±]W[±]jj

CMS-PAS-SMP-13-015

MadGraph+VBFNLO correction: 5.8 ± 1.2 fb

2000

VBS in W[±]W[±]jj

Limits on alternative models

• An excess of events could be also interpreted in terms of aQGCs or models with doubly-charged Higgs boson.

Conclusions

Candidate VBS event in the di-muon channel recorded by CMS

- CMS provided precise cross sections measurements for diboson processes using 7 and 8 TeV data.
- Limits on charged and neutral aTGCs have been set and no evidence of deviations from SM is found.
- > ATLAS and CMS reported the first evidence of VBS at LHC.
- Run2 data taking is essential to achieve higher significance on same sign VBS.

	DIBO	SON PROCESSES	VECTOR BOSON SCATTERING	
PAS	ZZ	SMP-13-005		
	WW	SMP-12-024	SMP-13-015	
	WZ	SMP-13-011		
Luminosity and Energy	ZZ	19.4 fb ⁻¹ (8 TeV)		
	WW	3.5 fb ⁻¹ (8 TeV)	19.4 fb ⁻¹ (8 TeV)	
	WZ 18.9 fb ⁻¹ (8 TeV)			
Results	Cross sect	tion and aTGCs limits	aQGCs and H++ limits	

WZ→3lu CMS-PAS-SMP-12-006

Signature & Selections

- Events with 3 leptons in the final state.
- Two oppositely charged e or μ peaking at M_z , from the Z boson decay.
- One isolated lepton plus MET from the W decay.

Backgrounds

- Non-peaking: tt.
- Z+fake lepton: fake laptons from jets or photons.
- Z+prompt lepton: $ZZ \rightarrow 4l$ events with a non detected lepton.

 $\sigma = 24.61 \pm 0.76 (stat) \pm 1.13 (syst) \pm 1.08 (lumi) pb$

MCFM cross section = $22.3 \pm 1.1 \text{ pb}$

Decay	Expected	Background	Total	Observed	CMS $\sqrt{s} = 8 \text{ TeV} \text{ I} = 19.6 \text{ fb}^{-1}$
channel	ZZ yield		expected		> 140
4e	$55.28 \pm 0.25 \pm 7.64$	$2.16 \pm 0.26 \pm 0.88$	$57.44 \pm 0.37 \pm 7.69$	54	• Data
4μ	$77.32 \pm 0.29 \pm 10.08$	$1.19 \pm 0.36 \pm 0.48$	$78.51 \pm 0.49 \pm 10.09$	75	∾ ¹²⁰ ZZ
2e2µ	$136.09 \pm 0.59 \pm 17.50$	$2.35 \pm 0.34 \pm 0.93$	$138.44 \pm 0.70 \pm 17.52$	148	₩Z/Z + jets
$ee \tau_h \tau_h$	$2.46 \pm 0.03 \pm 0.32$	$3.46 \pm 0.34 \pm 1.04$	$5.92 \pm 0.36 \pm 1.15$	10	
$\mu\mu\tau_{\rm h}\tau_{\rm h}$	$2.80 \pm 0.03 \pm 0.34$	$3.89 \pm 0.37 \pm 1.17$	$6.69 \pm 0.39 \pm 1.30$	10	
$ee\tau_e\tau_h$	$2.79 \pm 0.03 \pm 0.36$	$3.87 \pm 1.26 \pm 1.16$	$6.66 \pm 1.34 \pm 1.29$	9	
$\mu\mu\tau_{\rm e}\tau_{\rm h}$	$2.87 \pm 0.03 \pm 0.37$	$1.49 \pm 0.67 \pm 0.60$	$4.36 \pm 0.71 \pm 0.73$	2	40 -
$ee \tau_{\mu} \tau_{h}$	$3.27 \pm 0.03 \pm 0.42$	$1.47 \pm 0.41 \pm 0.44$	$4.74 \pm 0.43 \pm 0.63$	2	20
$\mu\mu\tau_{\mu}\tau_{\rm h}$	$3.81 \pm 0.03 \pm 0.50$	$1.55 \pm 0.43 \pm 0.46$	$5.36 \pm 0.46 \pm 0.70$	5	
$ee\tau_e\tau_\mu$	$2.23 \pm 0.03 \pm 0.29$	$3.04 \pm 1.32 \pm 1.50$	$5.27 \pm 1.40 \pm 1.61$	4	
$\mu\mu\tau_{\rm e}\tau_{\mu}$	$2.41 \pm 0.03 \pm 0.32$	$0.74 \pm 0.51 \pm 0.37$	$3.15 \pm 0.54 \pm 0.51$	5	m ₇ (GeV)
Total $\ell\ell\tau\tau$	$22.65 \pm 0.05 \pm 2.94$	$19.51 \pm 2.15 \pm 5.85$	$42.16 \pm 2.28 \pm 6.87$	47	21

Decay channel	Total cross section, pb
4e	$7.2^{+1.0}_{-0.9}$ (stat) $^{+0.6}_{-0.5}$ (syst) ± 0.4 (theo) ± 0.2 (lumi)
4μ	$7.3^{+0.8}_{-0.8}$ (stat) $^{+0.6}_{-0.5}$ (syst) \pm 0.4 (theo) \pm 0.2 (lumi)
$2e2\mu$	$8.1^{+0.7}_{-0.6}$ (stat) $^{+0.6}_{-0.5}$ (syst) \pm 0.4 (theo) \pm 0.2 (lumi)
$\ell\ell au au$	$7.7^{+2.1}_{-1.9}$ (stat) $^{+2.0}_{-1.8}$ (syst) ± 0.4 (theo) ± 0.2 (lumi)
Combined	$7.7 \pm 0.5 ({ m stat}) {}^{+0.5}_{-0.4} ({ m syst}) \pm 0.4 ({ m theo}) \pm 0.2 ({ m lumi})$

ZZ→4l differential cross sections

16/02/2015

W+W-→2l2v yields

$\ell' \nu \ell'' \nu$
684 ± 50
132 ± 23
60 ± 22
27 ± 3
43 ± 12
14 ± 5
275 ± 35
959 ± 60
1111

VZ→V+2 b-jets MVA

$VZ \rightarrow V+2$ *b-jets* contour plot

- LEP parameterization: respects SU(2)xU(1) gauge invariance and conserves the charge conjugation and and parity symmetries.
- Involves 5 parameters:

$$1)\Delta g_{1}^{Z} = g_{1}^{Z} - 1$$

$$2)\Delta k_{\gamma} = k_{\gamma} - 1$$

$$\mathcal{L} = ig_{WWV} \left(g_{1}^{V} (W_{\mu\nu}^{+} W^{-\mu} - W^{+\mu} W_{\mu\nu}^{-}) V^{\nu} + \kappa_{V} W_{\mu}^{+} W_{\nu}^{-} V^{\mu\nu} + \frac{\lambda_{V}}{M_{W}^{2}} W_{\mu}^{\nu+} W_{\nu}^{-\rho} V_{\rho}^{\mu} + ig_{4}^{V} W_{\mu}^{+} W_{\nu}^{-} (\partial^{\mu} V^{\nu} + \partial^{\nu} V^{\mu}) - ig_{5}^{V} \epsilon^{\mu\nu\rho\sigma} (W_{\mu}^{+} \partial_{\rho} W_{\nu}^{-} - \partial_{\rho} W_{\mu}^{+} W_{\nu}^{-}) V_{\sigma} + \tilde{\kappa}_{V} W_{\mu}^{+} W_{\nu}^{-} \tilde{V}^{\mu\nu} + \frac{\lambda_{V}}{m_{W}^{2}} W_{\mu}^{\nu+} W_{\nu}^{-\rho} \tilde{V}_{\rho}^{\mu} \right)$$

$$5)\lambda_{Z}$$

- > Because of gauge invariance only 3 parameters are independent: 1) $\Delta k_z = \Delta g_1^z - \Delta k_y \tan^2 \theta_w$
 - 2) $\lambda_{\gamma} = \lambda_{Z}$

aQGCs parameterization

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \sum_{\text{dimension } d} \sum_{i} \frac{c_i^{(d)}}{\Lambda^{d-4}} \mathcal{O}_i^{(d)}$$

- Effective field theory approach: put new physics in higher dimension terms.
- > New physics appear as anomalous QGC.
- It is a model independent approach, complementary to direct searches.
- Different parameterizations = dimension-6 or dimension-8 operators.

aTGCs summary

Limits on neutral aTGCs for ZZy and Zyy			al aTGCs for Ζγγ	Limits on charged aTGCs for WWy				
Oct 2014				Oct 2014				
	I	I	CMS Prel. Limits CMS Prel. Limits CMS Prel. Limits		·		CMS Prel. Limits D0 Limit LEP Limit	
h ^γ	⊢−−−−	Zγ	-0.015 - 0.016 4.6 fb ⁻¹	Δκ		_ ₩γ	-0.410 - 0.460 4.6	6 fb ⁻¹
1 ₃	\mapsto	Zγ	-0.003 - 0.003 5.0 fb ⁻¹	Δικγ	⊢ I	Wγ	-0.380 - 0.290 5.0	0 fb ⁻¹
	⊢	Zγ	-0.004 - 0.004 19.5 fb ⁻¹		HH	WW	-0.210 - 0.220 4.9	9 fb ⁻¹
	H	Zγ	-0.022 - 0.020 5.1 fb ⁻¹			WV	-0.210 - 0.220 4.6	6 fb ⁻¹
L-7	H	Zγ	-0.013 - 0.014 4.6 fb ⁻¹		⊢−−−−− I	WV	-0.110 - 0.140 5.0	0 fb ⁻¹
n _	H	Zγ	-0.003 - 0.003 5.0 fb ⁻¹		⊢O	D0 Combination	-0.158 - 0.255 8.6	6 fb ⁻¹
	H	Zγ	-0.003 - 0.004 19.5 fb ⁻¹		⊢ ●−−1	LEP Combination	-0.099 - 0.066 0.7	7 fb ⁻¹
	⊢−−−−− −	Żγ	-0.020 - 0.021 5.1 fb ⁻¹	λ	⊢I	Wγ	-0.065 - 0.061 4.6	6 fb ⁻¹
ι γ τοο	⊢−−−− I	Żγ	-0.009 - 0.009 4.6 fb ⁻¹	γυγ	⊢ −−1	Wγ	-0.050 - 0.037 5.0	0 fb ⁻¹
h ₄ x100	н	Ζγ	$-0.001 - 0.001 - 5.0 \text{ fb}^{-1}$		⊢ −−1	WW	-0.048 - 0.048 4.9	9 fb ⁻¹
	н	Ζγ	$-0.004 - 0.004 - 5.0 \text{ fb}^{-1}$		$\vdash \vdash$	WV	-0.039 - 0.040 4.6	6 fb ⁻¹
.7		Zγ	-0.009 - 0.009 4.6 fb ⁻¹		H	WV	-0.038 - 0.030 5.0	0 fb ⁻¹
h₄x100	н	Zγ	$-0.001 - 0.001 - 5.0 \text{ fb}^{-1}$		HOH	D0 Combination	-0.036 - 0.044 8.6	6 fb⁻¹
	···	-, 7∨	$-0.003 - 0.003 - 19.5 \text{ fb}^{-1}$		H e -I	LEP Combination	-0.059 - 0.017 0.7	7 fb⁻¹
				-0.5		0.5 1	15	
-0.5	0	0.5	aTGC Limits @95% C.L.	-0.5	U	aTGC L	imits @ ^{'9} 5%	C.L.

Triple-boson processes

Diboson final states in scattering topologies and triboson final states can be used to set limits on quartic gauge couplings (aQGCs).

WWy and WZy

CMS-PAS-SMP-13-009

Phys. Rev. D 90, 032008 (2014)

distribution.

Signal signature

- Events with one photon and a pair of vector bosons (WV).
- One W is required to decay to leptons and the other boson (W or Z) decays hadronically.

Selections

- Similar to the previous analyses.
- Photon required to have ET>30 GeV.
- Events with photon candidates in the endcaps are rejected.

Results

- Only upper limit of 311 fb at 95% CL on Wvg cross section (3.4 times larger than SM prediction).
- No evidence for anomalous WWgg and WWZg QGCs is found.

Signal and background yields in same sign *WWjj*

	Nonprompt	WZ	VVV	Wrong sign	WW DPS	Total bkg.	W [±] W [±] jj	Data
W^+W^+	2.1 ± 0.6	0.6 ± 0.1	0.2 ± 0.1	0.1 ± 0.1	0.1 ± 0.1	3.1 ± 0.6	7.1 ± 0.1	10
W^-W^-	2.1 ± 0.5	0.4 ± 0.1	0.1 ± 0.1	—		2.6 ± 0.5	1.8 ± 0.1	2
$W^{\pm}W^{\pm}$	4.2 ± 0.8	1.0 ± 0.1	0.3 ± 0.1	0.1 ± 0.1	0.1 ± 0.1	5.7 ± 0.8	8.9 ± 0.1	12

Upper and lower limits on on the nine dimension-8 parameters affecting QGCs between weak gauge bosons.

Operator coefficient	Exp. lower	Exp. upper	Obs. lower	Obs. upper	Unitarity limit
$F_{S,0}/\Lambda^4$	-42	43	-38	40	0.016
$F_{S,1}/\Lambda^4$	-129	131	-118	120	0.050
$F_{M,0}/\Lambda^4$	-35	35	-33	32	80
$F_{M,1}/\Lambda^4$	-49	51	-44	47	205
$F_{M,6}/\Lambda^4$	-70	69	-65	63	160
$F_{M,7}/\Lambda^4$	-76	73	-70	66	105
$F_{T,0}/\Lambda^4$	-4.6	4.9	-4.2	4.6	0.027
$F_{T,1}/\Lambda^4$	-2.1	2.4	-1.9	2.2	0.022
$F_{T,2}/\Lambda^4$	-5.9	7.0	-5.2	6.4	0.08

VBS in W[±]W[±]jj

