

The Status of NOvA

Gavin S. Davies Indiana University for the NOvA Collaboration

Lake Louise Winter Institute Fairmont Chateau Lake Louise Alberta, Canada February 15 – 21, 2015

\triangleright Observe $v_{\mu} \rightarrow v_{e}$, $\overline{v}_{\mu} \rightarrow \overline{v}_{e}$

 \circ Measure θ_{13} via ν_e appearance o Determine the neutrino mass hierarchy o Search for neutrino CP violation \circ Determine the θ_{23} octant

 \triangleright Observe $v_{\mu} \rightarrow v_{\mu}$, $\overline{v}_{\mu} \rightarrow \overline{v}_{\mu}$

 \circ Precision measurements of $|\Delta m^2_{32}|$, θ₂₃

o Over-constrain the atmospheric sector

\triangleright Broad Exotic Physics programme

- o Neutrino cross-sections at the Near Detector
- o Sterile Neutrinos
- o Supernova neutrinos (SNEWS) and Monopoles
- o Non-Standard neutrino Interactions (NSI)

- **N**uMI **O**ff-axis **ν**^e **A**ppearance experiment
- \triangleright Over 200 scientists from 38 institutions and 7 countries \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc NK E
- ≥ 810 km baseline from Fermilab to Ash River, Minnesota
	- o Long underground path to Far Detector leads to ~30% matter effects
- \triangleright Two functionally identical detectors, optimised for v_{e} identification
	- o 14 kt liquid scintillator Far Detector on the surface at Ash River (3m of overburden)
	- o A ~300 ton Near Detector (~100m underground) at Fermilab, 1 km from source

\triangleright Detectors placed 14 mrad off the NuMI beam axis

- ≥ 14 -kton Far Detector (~3x MINOS) o 64% liquid scintillator by mass
- ≥ 0.3 kton Near Detector
	- o 18,000 cells/channels.
- \triangleright Each plane just 0.15 X₀. Great for e⁻ vs π⁰ separation
	- o Fine grained, low-Z, highly active, tracking calorimeters
	- o WLS fibres looped in 4x6cm PVC cells

Extruded plastic (PVC) cells filled with 10.2 million litres of scintillator instrumented with -shifting fibre and

▌

MULLER

Fiber pairs

from 32 cells

To APD Readout

32-pixel APD

- \triangleright First Analysis period: February 2014 to January 2015
	- o Far Detector expanded from 4 to 14 kT during this period
- \triangleright Detector instrumented in 64 plane segments (1 kT) allowing for physics data to be taken during construction
- Detector fully instrumented in August 2014,
- Beam power increased from 280 to 320 KW
	- o In total \approx 1.7 x 10²⁰ POT collected (1/4 of a TDR year)

Far Detector Cosmic Ray Data/Simulations

- Two methods:
	- o "EID" (top) is a neural net evaluation of the shower longitudinal and transverse profile
	- o "LEM" (bottom) matches the event topologies to large libraries of signal and background events.
- **Both achieve acceptable levels of rejection, with preselection, 40M:1 and 21M:1 against cosmic-rays recorded using the far detector**
- \triangleright Evaluation of performance on beam neutrinos awaits full analysis of near detector data

νμ* Charged-Current Candidate (Far Detector)

Feb 15-21, 2015 Gavin S. Davies, Indiana University, NOvA - LLWI

10

νe* Charged-Current Candidate (Far Detector)

Near Detector Neutrino Distributions

550 µs Near Detector readout window

Feb 15-21, 2015 Gavin S. Davies, Indiana University, NOvA - LLWI

14

550 µs Near Detector beam spill

The v_{ρ} Appearance Measurement

 \triangleright To first order NOvA will measure:

$$
P(\nu_{\mu} \to \nu_{\text{e}}) \text{ and}
$$

$$
P(\overline{\nu}_{\mu} \to \overline{\nu}_{\text{e}}) \text{ at } 2 \text{ GeV}
$$

 $P(\overline{v}_e)$ vs. $P(v_e)$ for sin²(2 θ_{23}) = 1

The v_{ρ} Appearance Measurement

 \triangleright To first order NOvA will measure:

 $P(\nu_\mu \rightarrow \nu_e)$ and $P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e})$ at 2 GeV

- \triangleright Measurements give an allowed region in this space
- \triangleright In this case all inverted hierarchy scenarios are excluded at > 2σ
- \triangleright The measured probabilities depend on the mass hierarchy, θ_{23} octant, and δ_{cp}

0.09 $P(\overline{\vee}_{e})$ **NO_VA** Contours 3 yr \vee and 3 yr $\overline{\vee}$
 $|\Delta m_{32}|$ = 2.32 10⁻³ eV² 0.08 $\sin^2(2\theta_{13}) = 0.095$ $\sin^2(2\theta_{23}) = 1.00$ 0.07 inverted hierarchy 0.06 normal 0.05 hierarchy 0.04 0.03 0.02 \circ δ = 0 $\delta = \pi/2$ $\Box \delta = \pi$ 0.01 $\delta = 3\pi/2$ 0 0.02 0.04 0.06 0.08 $P(v_{a})$

1 and 2 σ Contours for Starred Point

Mass Hierarchy/CPV resolution significance

- \triangleright Significance of mass hierarchy resolution using energy spectrum
- Energy fit provides improvement on the fully degenerate δ_{CP} values

Mass Hierarchy/CPV resolution significance

- Significance of mass hierarchy resolution using energy spectrum
- Energy fit provides improvement on the fully degenerate δ_{CP} values
- \triangleright T2K baseline of 295 km; much smaller matter effects
	- \triangleright But exactly the same kind of CP sensitivity

 \triangleright Disappearance results are important to v_e analysis and resolution of θ_{23} octant \triangleright Fit quasi-elastic, non-QE and contained samples

- \triangleright In 1+1 year can exclude maximal mixing at 90% if sin² 2 θ_{23} = 0.95
- \triangleright In 3+3 years can achieve percent level uncertainty on atmospheric parameters

θ_{23} Octant Determination: $v_e + v_u$ analysis

 \triangleright Expected contours for one example scenario using 3 years of data for each neutrino mode

- \triangleright In this favourable case we distinguish hierarchy and octant at $>$ 2 σ
- \triangleright Rule out half of δ_{CP} space (2σ)

- Construction of NOvA experiment is complete; both Near and Far Detectors are recording high quality data with > 99% active channels
- \triangleright Analysis of early data is underway with mature reconstruction and particle identification
	- o Far Detector cosmic background rejection at the 40M:1 level achieved
	- o Systematic errors are being finalised
- \triangleright Best case hierarchy determination of 3σ, CPV discovery 1.5σ
- For sufficiently non-maximal θ_{23} , good chance to determine octant
- \triangleright Beam power increased from 280 to 320 KW (Feb. 2014 Jan. 2015)
	- In total \approx 1.7 x 10²⁰ POT collected (1/4 of a TDR year)
- \triangleright Preparing for first analyses to be released this Summer!
- \triangleright Excited for the release of first results; watch this space in 2015!

- Construction of NOvA experiment is complete; both Near and Far Detectors are recording high quality data with > 99% active channels
- \triangleright Analysis of early data is underway with mature reconstruction and particle identification
	- o Far Detector cosmic background rejection at the 40M:1 level achieved
	- o Systematic errors are being finalised
- \triangleright Best case hierarchy determination of 3σ, CPV discovery 1.5σ
- For sufficiently non-maximal θ_{23} , good chance to determine octant
- \triangleright Beam power increased from 280 to 320 KW (Feb. 2014 Jan. 2015)
	- In total \approx 1.7 x 10²⁰ POT collected (1/4 of a TDR year)
- \triangleright Preparing for first analyses to be released by this Summer!
- \triangleright Excited for the release of first results; watch this space in 2015!

facebook.com/novaexperiment

Thank you for a great conference and stunning surroundings!

facebook.com/novaexperiment

Feb 15-21, 2015

Gavin S. Davies, Indiana University, NOvA - LLWI - LLWI 22

Backup

Accelerator and NuMI upgrades

 Fermilab has completed a series of upgrades to the Main Injector and Recycler rings to reduce the cycle time from 2.2 s to 1.3 s

Intensity increased from 300 to 700 kW

 \Box Neutrino beamline optimised for NOvA

[1,3]GeV:
$$
(v_e + \overline{v}_e)/v_\mu = 0.6\%
$$

[1,3]GeV: $(v_e + \nabla_e)/v_\mu = 0.7\%$

[1,3]GeV:
$$
(v_e + \overline{v}_e)/v_\mu = 0.8\%
$$

[1,3]GeV: $(v_e + \nabla_e)/v_\mu = 1.0\%$

Background Estimations using Near Detector

- Extembled the muon track in a selected v_u CC event and use the rest as a hadronic shower-only event
- Muon Remove Charged Current (MRCC) events give us a well understood sample of hadronic showers
- $\triangleright \triangleright \vee \square$ events without the muon look a lot like Neutral Current events, which are the main background to the v_e analysis
- \triangleright Well defined v_uCC spectra, with well known efficiency and purity from the v_u disappearance analysis

Using MRCC as a data-driven correction

 \triangleright We use the data/MC ratio from MRCC to obtain a data-driven correction that is applied to the standard NC events as a function of energy

 $\label{eq:2} N C^{BG} = \frac{N C^{MC}}{M R C C^{MC}} \times M R C C^{Data}$

- \triangleright Many systematic effects cancel in the ratio, resulting in a more accurate estimate of background
- \triangleright Estimate Neutral Current background in psuedo-data on the right yields results consistent with MC truth

Predicting the Far Detector background

- The Near Detector νe selected NC and νμCC background components are corrected by the Far/Near MC ratio
- \triangleright Far/Near ratio accounts for geometry, fiducial volume ratio, intensity, detector differences and oscillations

0.08

0.06

0.04

0.02

10

15

True Energy (GeV)

 Area normalized event rates demonstrate differences in detector spectra shapes. A F/N ratio can be made from the non-normalized versions. These spectra are the true events with no selections applied. The F/N ratios change when various selections or PIDs are applied

Feb 15-21, 2015 Gavin S. Davies, Indiana University, NOvA - LLWI

15

True Energy (GeV)

10

Electron-neutrino Appearance in NOvA

 \triangleright NOvA measures the probability of v_e appearance in a v_μ beam

- **►** sin²(2θ₁₃) can be accessed in long baseline searching for ν_e events
- **sin² (2θ13**) has been measured which allows us to make measurements of δ_{CP}
- Note that we can gain information about the **θ²³** octant since **sin² (θ23**) is a coefficient on the leading-order term above
- Feb 15-21, 2015 Gavin S. Davies, Indiana University, NOvA LLWI \triangleright Probability is enhanced or suppressed due to matter effects which depend on the mass hierarchy, i.e the sign of Δm²₃₁ \sim Δm²₃₂ as well as neutrino vs. anti-neutrino running

- \triangleright If sin²2 θ_{23} is not maximal there is an ambiguity as to whether θ_{23} is larger or smaller than 45°
- \triangleright The sin² θ_{23} is unimportant when comparing accelerator experiments; however, it is crucial in comparing accelerator to reactor experiments
- \triangleright The sin²2 θ_{23} is measured via v_{μ} disapperance

$$
\frac{P(\nu_e)}{P(\nu_e)} \propto \frac{\sin^2(\theta_{23})\sin^2(2\theta_{13})}{\sin^2(\theta_{23})}
$$

Expected contours for one example scenario using 3 years of data for each neutrino mode

In "degenerate" cases, hierarchy and δ *information is coupled.* θ_{23} *octant information is not*

- \triangleright Octant information mostly independent
- \triangleright In this case (sin²2θ₂₃ = 0.95, θ₂₃ > π/4) determine octant at better than 2σ for almost any δ and hierarchy

Feb 15-21, 2015 Gavin S. Davies, Indiana University, NOvA - LLWI

$NOvA, |\epsilon_{e\tau}| = 0.2$ $0,10$

Non-Standard neutrino Interactions (NSI)

0.08

0.06

0.04

 0.02

 0.00

 $P(\overline{V}_{\mu} \rightarrow \overline{V}_{e})$

 Allowing for non-zero NSI in the e-τ sector, $|\epsilon_{\text{er}}|$ =0.2, expands the hierarchy regions significantly

NOvA bi-probability plots assume

standard neutrino interactions

- Consider qualitative possibilities:
- 1. NSI and hierarchy determination \triangle
- 2. NSI determination only

2.

